diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/060-integral/sqrat.tex | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/buch/chapters/060-integral/sqrat.tex b/buch/chapters/060-integral/sqrat.tex index f6838e5..ceb8650 100644 --- a/buch/chapters/060-integral/sqrat.tex +++ b/buch/chapters/060-integral/sqrat.tex @@ -337,7 +337,7 @@ Durch Ableitung der Funktion \[ F = -\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr) +\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr) \] kann man nachprüfen, dass $F$ eine Stammfunktion von $1/y$ ist, also @@ -345,7 +345,7 @@ also \int \frac{1}{y} = -\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr). +\frac{1}{\sqrt{a}}\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr). \end{equation} % @@ -458,7 +458,7 @@ Form = v_0 + C -\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{y}}\biggr) +\log\biggl(x+\frac{b}{2a}+\frac{y}{\sqrt{a}}\biggr) + \sum_{i=1}^n c_i \log v_i, |