diff options
Diffstat (limited to '')
-rw-r--r-- | buch/papers/nav/bsp.tex | 81 | ||||
-rw-r--r-- | buch/papers/nav/main.tex | 1 |
2 files changed, 82 insertions, 0 deletions
diff --git a/buch/papers/nav/bsp.tex b/buch/papers/nav/bsp.tex new file mode 100644 index 0000000..6f30022 --- /dev/null +++ b/buch/papers/nav/bsp.tex @@ -0,0 +1,81 @@ +\section{Beispielrechnung} + +\subsection{Einführung} +In diesem Abschnitt wird die Theorie vom Abschnitt 21.6 in einem Praxisbeispiel angewendet. +Wir haben die Deklination, Rektaszension, Höhe der beiden Planeten Deneb und Arktur und die Sternzeit von Greenwich als Ausgangslage. +Die Deklinationen und Rektaszensionen sind von einem vergangenen Datum und die Höhe der Gestirne und die Sternzeit wurden von einem uns unbekannten Ort aus gemessen. +Diesen Punkt gilt es mit dem erlangten Wissen herauszufinden. + +\subsection{Vorgehen} + +\begin{center} + \begin{tabular}{l l l} + 1. & Koordinaten der Bildpunkte der Gestirne bestimmen \\ + 2. & Dreiecke aufzeichnen und richtig beschriften\\ + 3. & Dreieck ABC bestimmmen\\ + 4. & Dreieck BPC bestimmen \\ + 5. & Dreieck ABP bestimmen \\ + 6. & Geographische Breite bestimmen \\ + 7. & Geographische Länge bestimmen \\ + \end{tabular} +\end{center} + +\subsection{Ausgangslage} +Die Rektaszension und die Sternzeit sind in der Regeln in Stunden angegeben. +Für die Umrechnung in Grad kann folgender Zusammenhang verwendet werden: +\[ Stunden \cdot 15 = Grad\]. +Dies wurde hier bereits gemacht. +\begin{center} + \begin{tabular}{l l l} + Sternzeit $s$ & $118.610804^\circ$ \\ + Deneb&\\ + & Rektaszension $RA_{Deneb}$& $310.55058^\circ$ \\ + & Deklination $DEC_{Deneb}$& $45.361194^\circ$ \\ + & Höhe $H_{Deneb}$ & $50.256027^\circ$ \\ + Arktur &\\ + & Rektaszension $RA_{Arktur}$& $214.17558^\circ$ \\ + & Deklination $DEC_{Arktur}$& $19.063222^\circ$ \\ + & Höhe $H_{Arktur}$ & $47.427444^\circ$ \\ + \end{tabular} +\end{center} +\subsection{Koordinaten der Bildpunkte} +Als erstes benötigen wir die Koordinaten der Bildpunkte von Arktur und Deneb. +$\delta$ ist die Breite, $\lambda$ die Länge. +\begin{align} +\delta_{Deneb}&=DEC_{Deneb} = \underline{\underline{45.361194^\circ}} \nonumber \\ +\lambda_{Deneb}&=RA_{Deneb} - s = 310.55058^\circ -118.610804^\circ =\underline{\underline{191.939776^\circ}} \nonumber \\ +\delta_{Arktur}&=DEC_{Arktur} = \underline{\underline{19.063222^\circ}} \nonumber \\ +\lambda_{Arktur}&=RA_{Arktur} - s = 214.17558^\circ -118.610804^\circ = \underline{\underline{5.5647759^\circ}} \nonumber +\end{align} + + +\subsection{Dreiecke definieren} +Das Festlegen der Dreiecke ist essenziell für die korrekten Berechnungen. +BILD +\subsection{Dreieck ABC} +Nun berechnen wir alle Seitenlängen $a$, $b$, $c$ und die Innnenwinkel $\alpha$, $\beta$ und $\gamma$ +Wir können $b$ und $c$ mit den geltenten Zusammenhängen des nautischen Dreiecks wie folgt bestimmen: +\begin{align} + b=90^\circ-DEC_{Deneb} = 90^\circ - 45.361194^\circ = \underline{\underline{44.638806^\circ}}\nonumber \\ + c=90^\circ-DEC_{Arktur} = 90^\circ - 19.063222^\circ = \underline{\underline{70.936778^\circ}} \nonumber +\end{align} +Um $a$ zu bestimmen, benötigen wir zuerst den Winkel \[\alpha= RA_{Deneb} - RA_{Arktur} = 310.55058^\circ -214.17558^\circ = \underline{\underline{96.375^\circ}}.\] +Danach nutzen wir den sphärischen Winkelkosinussatz, um $a$ zu berechnen: +\begin{align} + a &= \cos^{-1}(\cos(b) \cdot \cos(c) + \sin(b) \cdot \sin(c) \cdot \cos(\alpha)) \nonumber \\ + &= \cos^{-1}(\cos(44.638806) \cdot \cos(70.936778) + \sin(44.638806) \cdot \sin(70.936778) \cdot \cos(96.375)) \nonumber \\ + &= \underline{\underline{80.8707801^\circ}} \nonumber +\end{align} +Für $\beta$ und $\gamma$ nutzen wir den sphärischen Seitenkosinussatz: +\begin{align} + \beta &= \cos^{-1} \bigg[\frac{\cos(b)-\cos(a) \cdot \cos(c)}{\sin(a) \cdot \sin(c)}\bigg] \nonumber \\ + &= \cos^{-1} \bigg[\frac{\cos(44.638806)-\cos(80.8707801) \cdot \cos(70.936778)}{\sin(80.8707801) \cdot \sin(70.936778)}\bigg] \nonumber \\ + &= \underline{\underline{45.0115314^\circ}} \nonumber +\end{align} + + \begin{align} + \gamma &= \cos^{-1} \bigg[\frac{\cos(c)-\cos(b) \cdot \cos(a)}{\sin(a) \cdot \sin(b)}\bigg] \nonumber \\ + &= \cos^{-1} \bigg[\frac{\cos(70.936778)-\cos(44.638806) \cdot \cos(80.8707801)}{\sin(80.8707801) \cdot \sin(44.638806)}\bigg] \nonumber \\ + &=\underline{\underline{72.0573328^\circ}} \nonumber +\end{align} + diff --git a/buch/papers/nav/main.tex b/buch/papers/nav/main.tex index 4c52547..37bc83a 100644 --- a/buch/papers/nav/main.tex +++ b/buch/papers/nav/main.tex @@ -15,6 +15,7 @@ \input{papers/nav/sincos.tex} \input{papers/nav/trigo.tex} \input{papers/nav/nautischesdreieck.tex} +\input{papers/nav/bsp.tex} \printbibliography[heading=subbibliography] |