diff options
Diffstat (limited to '')
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 11 |
1 files changed, 10 insertions, 1 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index a72c562..fd1659f 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -5,12 +5,16 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsection{Wärmeleitung in einem Homogenen Stab} +\subsection{Fourierreihe als Lösung des Sturm-Liouville-Problems +(Wärmeleitung)} In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses physikalischen Phänomenes auftritt. +% TODO: u is dependent on 2 variables (t, x) +% TODO: mention initial conditions u(0, x) + Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und Wärmeleitkoeffizient $\kappa$ betrachtet. Es ergibt sich für das Wärmeleitungsproblem @@ -355,6 +359,9 @@ wie auch mit isolierten Enden -\frac{n^{2}\pi^{2}}{l^{2}}. \end{equation} +% TODO: infinite base vectors and fourier series +\subsubsection{TODO: Auf Anzahl Lösungen und Fourierreihe eingehen} + % % Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt. % @@ -642,6 +649,8 @@ ergibt. Dieses Resultat kann nun mit allen vorhergehenden Resultaten zusammengesetzt werden um die vollständige Lösung für das Stab-Problem zu erhalten. +% TODO: elaborate + \subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur} \[ \begin{aligned} |