diff options
Diffstat (limited to '')
-rw-r--r-- | buch/chapters/060-integral/differentialkoerper.tex | 515 | ||||
-rw-r--r-- | buch/chapters/references.bib | 7 |
2 files changed, 520 insertions, 2 deletions
diff --git a/buch/chapters/060-integral/differentialkoerper.tex b/buch/chapters/060-integral/differentialkoerper.tex index fac5338..8e1268c 100644 --- a/buch/chapters/060-integral/differentialkoerper.tex +++ b/buch/chapters/060-integral/differentialkoerper.tex @@ -427,6 +427,7 @@ In einer differentiellen Algebra kann jetzt die Frage nach der Existenz einer Stammfunktion gestellt werden. \begin{aufgabe} +\label{buch:integrale:aufgabe:existenz-stammfunktion} Gegeben eine differentielle Algebra $\mathscr{D}$ und ein Element $f\in\mathscr{D}$, entscheide, ob es ein Element $F\in\mathscr{D}$ gibt mit der Eigenschaft $F'=f$. @@ -632,9 +633,139 @@ das Polynom kleinsten Grades, welches $m(\alpha)=0$ erfüllt. Da das Minimalpolynom den kleinstmöglichen Grad hat, kann der Nenner von~\eqref{buch:integrale:eqn:algabl}, der noch kleineren Grad hat, unmöglich verschwinden. +Das Minimalpolynom ist auch im wesentlichen eindeutig. +Gäbe es nämlich zwei verschiedene Minimalpolynome $m_1$ und $m_2$, +dann müsste $\alpha$ auch eine Nullstelle des grössten gemeinsamen +Teilers $m_3=\operatorname{ggT}(m_1,m_2)$ sein. +Wären die beiden Polynome wesentlich verschieden, dann hätte $m_3$ +kleineren Grad, im Widerspruch zur Definition des Minimalpolynoms. +Also unterscheiden sich die beiden Polynome $m_1$ und $m_2$ nur um +einen skalaren Faktor. \subsubsection{Konjugation, Spur und Norm} % Konjugation, Spur und Norm +Das Minimalpolynom eines algebraischen Elementes ist nicht +eindeutig bestimmt. +Zum Beispiel ist $\sqrt{2}$ algebraisch über $\mathbb{Q}$, das +Minimalpolynom ist $m(X)=X^2-2\in\mathbb{Q}[X]$. +Es hat aber noch eine zweite Nullstelle $-\sqrt{2}$. +Mit rein algebraischen Mitteln sind die beiden Nullstellen $\pm\sqrt{2}$ +nicht zu unterscheiden, erst die Verwendung der Vergleichsrelation +ermöglicht, sie zu unterscheiden. + +Dasselbe gilt für die imaginäre Einheit $i$, die das Minimalpolynom +$m(X)=X^2+1\in\mathbb{R}[X]$ hat. +Hier gibt es nicht einmal mehr eine Vergleichsrelation, mit der man +die beiden Nullstellen unterscheiden könnte. +In der Tat ändert sich aus algebraischer Sicht nichts, wenn man in +allen Formeln $i$ durch $-i$ ersetzt. + +Etwas komplizierter wird es bei $\root{3}\of{2}$. +Das Polynom $m=x^3-2\in\mathbb{Q}[X]$ hat $\root{3}\of{2}$ als +Nullstelle und dies ist auch tatsächlich das Minimalpolynom. +Das Polynom hat noch zwei weitere Nullstellen +\[ +\alpha_+ = \frac{-1+i\sqrt{3}}{2}\root{3}\of{2} +\qquad\text{und}\qquad +\alpha_- = \frac{-1-i\sqrt{3}}{2}\root{3}\of{2}. +\] +Die beiden Lösungen gehen durch die Vertauschung von $i$ und $-i$ +auseinander hervor. +Betrachtet man dasselbe Polynom aber als Polynom in $\mathbb{R}[X]$, +dann ist es nicht mehr das Minimalpolynom von $\root{3}\of{2}$, da +$X-\root{3}\of{2}\in\mathbb{R}[X]$ kleineren Grad und $\root{3}\of{2}$ +als Nullstelle hat. +Indem man +\[ +m(X)/(X-\root{3}\of{2})=X^2+\root{3}\of{2}X+\root{3}\of{2}^2=m_2(X) +\] +rechnet, bekommt man das Minimalpolynom der beiden Nullstellen $\alpha_+$ +und $\alpha_-$. +Wir lernen aus diesen Beispielen, dass das Minimalpolynom vom Grundkörper +abhängig ist (Die Faktorisierung $(X-\root{3}\of{2})\cdot m_2(X)$ von +$m(X)$ ist in $\mathbb{Q}[X]$ nicht möglich) und dass wir keine +algebraische Möglichkeit haben, die verschiedenen Nullstellen des +Minimalpolynoms zu unterscheiden. + +Die beiden Nullstellen $\alpha_+$ und $\alpha_-$ des Polynoms $m_2(X)$ +erlauben, $m_2(X)=(X-\alpha_+)(X-\alpha_-)$ zu faktorisieren. +Durch Ausmultiplizieren +\[ +(X-\alpha_+)(X-\alpha_-) += +X^2 -(\alpha_++\alpha_-)X+\alpha_+\alpha_- +\] +und Koeffizientenvergleich mit $m_2(X)$ findet man die symmetrischen +Formeln +\[ +\alpha_+ + \alpha_- = \root{3}\of{2} +\qquad\text{und}\qquad +\alpha_+ \alpha_ = \root{3}\of{2}. +\] +Diese Ausdrücke sind nicht mehr abhängig von einer speziellen Wahl +der Nullstellen. + +Das Problem verschärft sich nocheinmal, wenn wir Funktionen betrachten. +Das Polynom $m(X)=X^3-z$ ist das Minimalpolynom der Funktion $\root{3}\of{z}$. +Die komplexe Zahl $z=re^{i\varphi}$ hat aber drei die algebraisch nicht +unterscheidbaren Nullstellen +\[ +\alpha_0(z)=\root{3}\of{r}e^{i\varphi/3}, +\quad +\alpha_1(z)=\root{3}\of{r}e^{i\varphi/3+2\pi/3} +\qquad\text{und}\qquad +\alpha_2(z)=\root{3}\of{r}e^{i\varphi/3+4\pi/3}. +\] +Aus der Faktorisierung $ (X-\alpha_0(z)) (X-\alpha_1(z)) (X-\alpha_2(z))$ +und dem Koeffizientenvergleich mit dem Minimalpolynom kann man wieder +schliessen, dass die Relationen +\[ +\alpha_0(z) + \alpha_1(z) + \alpha_2(z)=0 +\qquad\text{und}\qquad +\alpha_0(z) \alpha_1(z) \alpha_2(z) = z +\] +gelten. + +Wir können also oft keine Aussagen über individuelle Nullstellen +eines Minimalpolynoms machen, sondern nur über deren Summe oder +Produkt. + +\begin{definition} +\index{buch:integrale:def:spur-und-norm} +Sie $m(X)\in K[X]$ das Minimalpolynom eines über $K$ algebraischen +Elements und +\[ +m(X) = a_nX^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0. +\] +Dann heissen +\[ +\operatorname{Tr}(\alpha) = -a_{n-1} +\qquad\text{und}\qquad +\operatorname{Norm}(\alpha) = (-1)^n a_0 +\] +die {\em Spur} und die {\em Norm} des Elementes $\alpha$. +\index{Spur eines algebraischen Elementes}% +\index{Norm eines algebraischen Elementes}% +\end{definition} + +Die Spur und die Norm können als Spur und Determinante einer Matrix +verstanden werden, diese allgemeineren Definitionen, die man in der +Fachliteratur, z.~B.~in~\cite{buch:lang} nachlesen kann, führen aber +für unsere Zwecke zu weit. + +\begin{hilfssatz} +Die Ableitungen von Spur und Norm sind +\[ +\operatorname{Tr}(\alpha)' += +\operatorname{Tr}(\alpha') +\qquad\text{und}\qquad +\operatorname{Norm}(\alpha)' += +\operatorname{Tr}(\alpha)' +\] +XXX Wirklich? +\end{hilfssatz} \subsubsection{Logarithmen und Exponentialfunktionen} Die Funktion $z^{-1}$ musste im @@ -708,12 +839,392 @@ Funktionen. Im Folgenden ist es daher nicht mehr nötig, die trigonometrischen Funktionen speziell zu untersuchen. -\subsection{Erweiterungen einer differentiellen Algebra -\label{buch:integrale:section:erweiterungen}} +\subsubsection{Elementare Funktionen} +Damit sind wir nun in der Lage, den Begriff der elementaren Funktion +genau zu fassen. + +\begin{definition} +\label{buch:integrale:def:einfache-elementare-funktion} +Sie $\mathscr{D}$ eine differentielle Algebra über $\mathbb{C}$ und +$\mathscr{D}(\vartheta)$ eine Erweiterung von $\mathscr{D}$ um eine +neue Funktion $\vartheta$, dann heissen $\vartheta$ und die Elemente +von $\mathscr{D}(\vartheta)$ einfach elementar, wenn eine der folgenden +Bedingungen erfüllt ist: +\begin{enumerate} +\item $\vartheta$ ist algebraisch über $\mathscr{D}$, d.~h.~$\vartheta$ +ist eine ``Wurzel''. +\item $\vartheta$ ist ein Logarithmus einer Funktion in $\mathscr{D}$, +d.~h.~es gibt $f\in \mathscr{D}$ mit $f'=f\vartheta'$ +(Definition~\ref{buch:integrale:def:logexp}). +\item $\vartheta$ ist eine Exponentialfunktion einer Funktion in $\mathscr{D}$, +d.~h.~es bit $f\in\mathscr{D}$ mit $\vartheta'=\vartheta f'$ +(Definition~\ref{buch:integrale:def:logexp}). +\end{enumerate} +\end{definition} + +Einfache elementare Funktionen entstehen also ausgehend von einer +differentiellen Algebra, indem man genau einmal eine Wurzel, einen +Logarithmus oder eine Exponentialfunktion hinzufügt. +So etwas wie die zusammengesetzte Funktion $e^{\sqrt{z}}$ ist +damit noch nicht möglich. +Daher erlauben wir, dass man die gesuchten Funktionen in mehreren +Schritten aufbauen kann. + +\begin{definition} +Sei $\mathscr{F}$ eine differentielle Algebra, die die differentielle +Algebra $\mathscr{D}$ enthält, also $\mathscr{D}\subset\mathscr{F}$. +$\mathscr{F}$ und die Elemente von $\mathscr{F}$ heissen einfach, +wenn es endlich viele Elemente $\vartheta_1,\dots,\vartheta_n$ gibt +derart, dass +\[ +\renewcommand{\arraycolsep}{2pt} +\begin{array}{ccccccccccccc} +\mathscr{D} +&\subset& +\mathscr{D}(\vartheta_1) +&\subset& +\mathscr{D}(\vartheta_1,\vartheta_2) +&\subset& +\; +\cdots +\; +&\subset& +\mathscr{D}(\vartheta_1,\vartheta_2,\dots,\vartheta_{n-1}) +&\subset& +\mathscr{D}(\vartheta_1,\vartheta_2,\dots,\vartheta_{n-1},\vartheta_n) +&=& +\mathscr{F} +\\ +\| +&& +\| +&& +\| +&& +&& +\| +&& +\| +&& +\\ +\mathscr{F}_0 +&\subset& +\mathscr{F}_1 +&\subset& +\mathscr{F}_2 +&\subset& +\cdots +&\subset& +\mathscr{F}_{n-1} +&\subset& +\mathscr{F}_{n\mathstrut} +&& +\end{array} +\] +gilt so, dass jedes $\vartheta_{i+1}$ einfach ist über +$\mathscr{F}_i=\mathscr{D}(\vartheta_1,\dots,\vartheta_i)$. +\end{definition} + +In Worten bedeutet dies, dass man den Funktionen von $\mathscr{D}$ +nacheinander Wurzeln, Logarithmen oder Exponentialfunktionen einzelner +Funktionen hinzufügt. +Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion} kann +jetzt so formuliert werden. + +\begin{aufgabe} +\label{buch:integrale:aufgabe:existenz-stammfunktion-dalg} +Gegeben ist eine Differentielle Algebra $\mathscr{D}$ und eine +Funktion $f\in \mathscr{D}$. +Gibt es eine Folge $\vartheta_1,\dots,\vartheta_n$ und eine Funktion +$F\in\mathscr{D}(\vartheta_1,\dots,\vartheta_n)$ derart, dass +$F'=f$. +\end{aufgabe} + +Das folgende Beispiel zeigt, wie man möglicherweise mehrere +Erweiterungsschritte vornehmen muss, um zu einer Stammfunktion +zu kommen. +Es illustriert auch die zentrale Rolle, die der Partialbruchzerlegung +in der weiteren Entwicklung zukommen wird. + +\begin{beispiel} +\label{buch:integrale:beispiel:nichteinfacheelementarefunktion} +Es soll eine Stammfunktion der Funktion +\[ +f(z) += +\frac{z}{(az+b)(cz+d)} +\in +\mathbb{C}(z) +\] +gefunden werden. +In der Analysis lernt man, dass solche Integrale mit der +Partialbruchzerlegung +\[ +\frac{z}{(az+b)(cz+d)} += +\frac{A_1}{az+b}+\frac{A_2}{cz+d} += +\frac{A_1cz+A_1d+A_2az+A_2b}{(az+b)(cz+d)} +\quad\Rightarrow\quad +\left\{ +\renewcommand{\arraycolsep}{2pt} +\begin{array}{rcrcr} +cA_1&+&aA_2&=&1\\ +dA_1&+&bA_2&=&0 +\end{array} +\right. +\] +bestimmt werden. +Die Lösung des Gleichungssystems ergibt +$A_1=b/(bc-ad)$ und $A_2=d/(ad-bc)$. +Die Stammfunktion kann dann aus +\begin{align*} +\int f(z)\,dz +&= +\int\frac{A_1}{az+b}\,dz ++ +\int\frac{A_2}{cz+d}\,dz += +\frac{A_1}{a}\int\frac{a}{az+b}\,dz ++ +\frac{A_2}{c}\int\frac{c}{cz+d}\,dz +\end{align*} +bestimmt werden. +In den Integralen auf der rechten Seite ist der Zähler jeweils die +Ableitung des Nenners, der Integrand hat also die Form $g'/g$. +Genau diese Form tritt in der Definition eines Logarithmus auf. +Die Stammfunktion ist jetzt +\[ +F(z) += +\int f(z)\,dz += +\frac{A_1}{a}\log(az+b) ++ +\frac{A_2}{c}\log(cz+d) += +\frac{b\log(az+b)}{a(bc-ad)} ++ +\frac{d\log(cz+d)}{c(ad-bc)}. +\] +Die beiden Logarithmen kann man nicht durch rein rationale Operationen +ineinander überführen. +Sie müssen daher beide der Algebra $\mathscr{D}$ hinzugefügt werden. +\[ +\left. +\begin{aligned} +\vartheta_1&=\log(az+b)\\ +\vartheta_2&=\log(cz+d) +\end{aligned} +\quad +\right\} +\qquad\Rightarrow\qquad +F(z) \in \mathscr{F}=\mathscr{D}(\vartheta_1,\vartheta_2). +\] +Die Stammfunktion $F(z)$ ist also keine einfache elementare Funktion, +aber $F$ ist immer noch eine elementare Funktion. +\end{beispiel} + +\subsection{Partialbruchzerlegung +\label{buch:integrale:section:partialbruchzerlegung}} +Die Konstruktionen des letzten Abschnitts haben gezeigt, +wie man die Funktionen, die man als Stammfunktionen einer Funktion +zulassen möchte, schrittweise konstruieren kann. +Die Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion-dalg} +ist eine rein algebraische Formulierung der ursprünglichen +Aufgabe~\ref{buch:integrale:aufgabe:existenz-stammfunktion}. +Schliesslich hat das Beispiel auf +Seite~\pageref{buch:integrale:beispiel:nichteinfacheelementarefunktion} +gezeigt, dass es im allgemeinen mehrere Schritte braucht, um zu einer +elementaren Stammfunktion zu gelangen. +Die Lösung setzt sich aus den Termen der Partialbruchzerlegung. +In diesem Abschnitt soll diese genauer studiert werden. + +In diesem Abschnitt gehen wir immer von einer differentiellen +Algebra über den komplexen Zahlen aus und verlangen, dass die +Konstanten in allen betrachteten differentiellen Algebren +$\mathbb{C}$ sind. \subsubsection{Monome} +Die beiden Funktionen $\vartheta-1=\log(az+b)$ und $\vartheta_2=(cz+d)$, +die im Beispiel hinzugefügt werden mussten, verhalten sich ich algebraischer +Hinsicht wie ein Monom: man kann es nicht faktorisieren oder bereits +bekannte Summanden aufspalten. +Solchen Funktionen kommt eine besondere Bedeutung zu. + +\begin{definition} +\label{buch:integrale:def:monom} +Die Funktion $\vartheta$ heisst ein Monom, wenn $\vartheta$ nicht +algebraisch ist über $\mathscr{D}$ und $\mathscr{D}(\vartheta)$ die +gleichen Konstanten enthält wie $\mathscr{D}$. +\end{definition} + +\begin{beispiel} +Als Beispiel beginnen wir mit den komplexen Zahlen $\mathbb{C}$ +und fügen die Funktion $\vartheta_1=z$ hinzu und erhalten +$\mathscr{D}=\mathbb{C}(z)$. +Die Funktionen $z^k$ sind für alle $k$ linear unabhängig, d.~h.~es +gibt keinen Ausdruck +\[ +a_nz^n + a_{n-1}z^{n-1}+\cdots+a_1z+a_0=0. +\] +Dies ist gleichbedeutend damit, dass $z$ nicht algebraisch ist. +Das Monom $z$ ist also auch ein Monom im Sinne der +Definition~\ref{buch:integrale:def:monom}. +\end{beispiel} + +\begin{beispiel} +Wir beginnen wieder mit $\mathbb{C}$ und fügen die Funktion +$e^z$ hinzu. +Gäbe es eine Beziehung +\[ +b_m(e^z)^m + b_{m-1}(e^z)^{m-1}+\dots+b_1e^z + b_0=0 +\] +mit komplexen Koeffizienten $b_i\in\mathbb{C}$, +dann würde daraus durch Einsetzen von $z=1$ die Relation +\[ +b_me^m + b_{m-1}e^{m-1} + \dots + b_1e + b_0=0, +\] +die zeigen würde, dass $e$ eine algebraische Zahl ist. +Es ist aber bekannt, dass $e$ transzendent ist. +Dieser Widersprich zeigt, dass $e^z$ ein Monom ist. +\end{beispiel} + +\begin{beispiel} +Jetzt fügen wir die Exponentialfunktion $\vartheta_2=e^z$ +der differentiellen Algebra $\mathscr{D}=\mathbb{C}(z)$ hinzu +und erhalten $\mathscr{F}_1=\mathscr{D}(e^z) = \mathbb{C}(z,e^z)$. +Gäbe es das Minimalpolynom +\begin{equation} +b_m(z)(e^z)^m + b_{m-1}(z)(e^z)^{m-1}+\dots+b_1(z)e^z + b_0(z)=0 +\label{buch:integrale:beweis:exp-analytisch} +\end{equation} +mit Koeffizienten $b_i\in\mathbb{C}(z)$, dann könnte man mit dem +gemeinsamen Nenner der Koeffizienten durchmultiplizieren und erhielte +eine Relation~\eqref{buch:integrale:beweis:exp-analytisch} mit +Koeffizienten in $\mathbb{C}[z]$. +Dividiert man durch $e^{mz}$ erhält man +\[ +b_m(z) + b_{m-1}(z)\frac{1}{e^z} + \dots + b_1(z)\frac{1}{(e^z)^{m-1}} + b_0(z)\frac{1}{(e^z)^m}=0. +\] +Aus der Analysis weiss man, dass die Exponentialfunktion schneller +anwächst als jedes Polynom, alle Terme auf der rechten Seite +konvergieren daher gegen 0 für $z\to\infty$. +Das bedeutet, dass $b_m(z)\to0$ für $z\to \infty$. +Das Polynom~\eqref{buch:integrale:beweis:exp-analytisch} wäre also gar +nicht das Minimalpolynom. +Dieser Widerspruch zeigt, dass $e^z$ nicht algebraisch ist über +$\mathbb{C}(z)$ und damit ein Monom ist\footnote{Etwas unbefriedigend +an diesem Argument ist, dass man hier wieder rein analytische statt +algebraische Eigenschaften von $e^z$ verwendet. +Gäbe es aber eine minimale Relation wie +\eqref{buch:integrale:beweis:exp-analytisch} +mit Polynomkoeffizienten, dann wäre sie von der Form +\[ +P(z,e^z)=p(z)(e^z)^m + q(z,e^z)=0, +\] +wobei Grad von $e^z$ in $q$ höchstens $m-1$ ist. +Die Ableitung wäre dann +\[ +Q(z,e^z) += +mp(z)(e^z)^m + p'(z)(e^z)^m + r(z,e^z) += +(mp(z) + p'(z))(e^z)^m + r(z,e^z) +=0, +\] +wobei der Grad von $e^z$ in $r$ wieder höchstens $m-1$ ist. +Bildet man $mP(z,e^z) - Q(z,e^z) = 0$ ensteht eine Relation, +in der der Grad des Koeffizienten von $(e^z)^m$ um eins abgenommen hat. +Wiederholt man dies $m$ mal, verschwindet der Term $(e^z)^m$, die +Relation~\eqref{buch:integrale:beweis:exp-analytisch} +war also gar nicht minimal. +Dieser Widerspruch zeigt wieder, dass $e^z$ nicht algebraisch ist, +verwendet aber nur die algebraischen Eigenschaften der differentiellen +Algebra. +}. +\end{beispiel} + +\begin{beispiel} +Wir hätten auch in $\mathbb{Q}$ arbeiten können und $\mathbb{Q}$ +erst die Exponentialfunktion $e^z$ und dann den Logarithmus $z$ von $e^z$ +hinzufügen können. +Es gibt aber noch weitere Logarithmen von $e^z$ zum Beispiel $z+2\pi i$. +Offenbar ist $\psi=z+2\pi i\not\in \mathbb{Q}(z,e^z)$, wir könnten also +auch noch $\psi$ hinzufügen. +Zwar ist $\psi$ auch nicht algebraisch, aber wenn wir $\psi$ hinzufügen, +dann wird aber die Menge der Konstanten grösser, sie umfasst jetzt +$\mathbb{Q}(2\pi i)$. +Die Bedingung in der Definition~\ref{buch:integrale:def:monom}, +dass die Menge der Konstanten nicht grösser werden darf, ist also +verletzt. + +Hätte man mit $\mathbb{Q}(e^z, z+2\pi i)$ begonnen, wäre $z$ aus +dem gleichen Grund kein Monom, aber $z+2\pi i$ wäre eines im Sinne +der Definition~\ref{buch:integrale:def:monom}. +In allen Rechnungen könnte man $\psi=z+2\pi i$ nicht weiter aufteilen, +da $\pi$ oder seine Potenzen keine Elemente von $\mathbb{Q}(e^z)$ sind. +\end{beispiel} + +Da wir im Folgenden davon ausgehen, dass die Konstanten unserer +differentiellen Körper immer $\mathbb{C}$ sind, wird es jeweils +genügen zu untersuchen, ob eine neu hinzuzufügende Funktion algebraisch +ist oder nicht. \subsubsection{Ableitungen von Polynomen und rationalen Funktionen von Monomen} +Fügt man einer differentiellen Algebra ein Monom hinzu, dann lässt +sich etwas mehr über Ableitungen von Polynomen oder Brüchen in diesen +Monomen sagen. +Diese Eigenschaften werden später bei der Auflösung der Partialbruchzerlegung +nützlich sein. + +\begin{satz} +Sei +\[ +P += +A_nX^n + A_{n-1}X^{n-1} + \dots A_1X+A_0 +\in\mathscr{D}[X] +\] +ein Polynom mit Koeffizienten in einer differentiellen Algebra $\mathscr{D}$ +und $\vartheta$ ein Monom über $\mathscr{D}$. +Dann gilt +\begin{enumerate} +\item +Falls $\vartheta=\log f$ ist, ist $P(\vartheta)'$ genau dann ein +Polynom vom Grad $n$ in $\vartheta$, wenn der Leitkoeffizient $A_n$ +nicht konstant ist. +\item +Falls $\vartheta = \exp f$ ist, ist $P(\vartheta)'$ ein Polynom +in $\vartheta$ vom Grad $n$. +\end{enumerate} +\end{satz} + +\begin{proof}[Beweis] +Für Exponentialfunktion ist $\vartheta'=\vartheta f'$, die Ableitung +fügt also einfach einen Faktor $f'$ hinzu. +Terme der Form $A_k\vartheta^k$ haben die Ableitung +\[ +(A_k\vartheta^k) += +A'_k\vartheta^k + A_kk\vartheta^{k-1}\vartheta' += +A'_k\vartheta^k + A_kk\vartheta^{k-1}\vartheta f' += +(A'_k + kA_k f)\vartheta^k +\] +Damit wird die Ableitung von $P(\vartheta)$ +\[ +P(\vartheta)' += +(A'_n+nA_nf')\vartheta^n ++ +(A'_{n-1}+(n-1)A_{n-1}f')\vartheta^{n-1} ++ \dots + +(A'-1+A_1f')\vartheta + A_0'. +\] +Der Grad der Ableitung kann sich also nur ändern, wenn $A_n'+nA_nf'=0$ ist. +\end{proof} \subsubsection{Partialbruchzerlegungen} diff --git a/buch/chapters/references.bib b/buch/chapters/references.bib index ecea4c3..17ef273 100644 --- a/buch/chapters/references.bib +++ b/buch/chapters/references.bib @@ -103,4 +103,11 @@ language = { english }, } +@book{buch:lang, + title = {Algebra}, + author = {Serge Lang}, + year = {1984}, + isbn = { 0-201-05487-6 }, + publisher = { Addison-Wesley } +} |