aboutsummaryrefslogtreecommitdiffstats
path: root/buch
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/chapters/010-potenzen/tschebyscheff.tex3
-rw-r--r--buch/chapters/070-orthogonalitaet/sturm.tex4
-rw-r--r--buch/papers/0f1/images/konvergenzNegativ.pdfbin18155 -> 18524 bytes
-rw-r--r--buch/papers/0f1/images/konvergenzPositiv.pdfbin18581 -> 18253 bytes
-rw-r--r--buch/papers/0f1/teil0.tex4
-rw-r--r--buch/papers/0f1/teil1.tex12
-rw-r--r--buch/papers/0f1/teil2.tex51
-rw-r--r--buch/papers/0f1/teil3.tex20
-rw-r--r--buch/papers/fm/00_modulation.tex15
-rw-r--r--buch/papers/fm/01_AM.tex52
-rw-r--r--buch/papers/fm/02_FM.tex62
-rw-r--r--buch/papers/fm/03_bessel.tex33
-rw-r--r--buch/papers/fm/Python animation/Bessel-FM.ipynb84
-rw-r--r--buch/papers/fm/Python animation/Bessel-FM.py72
-rw-r--r--buch/papers/fm/Python animation/m_t.pgf746
-rw-r--r--buch/papers/fm/Quellen/NaT_Skript_20210920.pdfbin0 -> 5455101 bytes
-rw-r--r--buch/papers/fm/main.tex17
-rw-r--r--buch/papers/sturmliouville/.gitignore1
-rw-r--r--buch/papers/sturmliouville/Makefile34
-rw-r--r--buch/papers/sturmliouville/Makefile.inc14
-rw-r--r--buch/papers/sturmliouville/beispiele.tex14
-rw-r--r--buch/papers/sturmliouville/eigenschaften.tex79
-rw-r--r--buch/papers/sturmliouville/einleitung.tex127
-rw-r--r--buch/papers/sturmliouville/main.tex36
-rw-r--r--buch/papers/sturmliouville/references.bib13
-rw-r--r--buch/papers/sturmliouville/teil0.tex22
-rw-r--r--buch/papers/sturmliouville/teil1.tex55
-rw-r--r--buch/papers/sturmliouville/teil2.tex40
-rw-r--r--buch/papers/sturmliouville/teil3.tex40
-rw-r--r--buch/papers/sturmliouville/tschebyscheff_beispiel.tex60
-rw-r--r--buch/papers/sturmliouville/waermeleitung_beispiel.tex675
31 files changed, 2049 insertions, 336 deletions
diff --git a/buch/chapters/010-potenzen/tschebyscheff.tex b/buch/chapters/010-potenzen/tschebyscheff.tex
index ccc2e97..6d21a68 100644
--- a/buch/chapters/010-potenzen/tschebyscheff.tex
+++ b/buch/chapters/010-potenzen/tschebyscheff.tex
@@ -102,7 +102,7 @@ die Sütztstellen so zu wählen, dass $l(x)$ kleine Funktionswerte hat.
Stützstellen in gleichen Abständen erweisen sich dafür als ungeeignet,
da $l(x)$ nahe $x_0$ und $x_n$ sehr stark oszilliert.
-\subsection{Definition der Tschebyscheff-Polynome}
+\subsection{Definition der Tschebyscheff-Polynome \label{sub:definiton_der_tschebyscheff-Polynome}}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{chapters/010-potenzen/images/lissajous.pdf}
@@ -199,6 +199,7 @@ T_0(x)=1.
\end{equation}
Damit können die Tschebyscheff-Polynome sehr effizient berechnet werden:
\begin{equation}
+\label{eq:tschebyscheff-polynome}
\begin{aligned}
T_0(x)
&=1
diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex
index 742ec0a..80bd5f4 100644
--- a/buch/chapters/070-orthogonalitaet/sturm.tex
+++ b/buch/chapters/070-orthogonalitaet/sturm.tex
@@ -15,7 +15,7 @@ Skalarproduktes selbstadjungierten Operators erkannt wurden.
%
% Differentialgleichungen
%
-\subsection{Differentialgleichung}
+\subsection{Differentialgleichung \label{sub:differentailgleichung}}
Das klassische Sturm-Liouville-Problem ist das folgende Eigenwertproblem.
Gesucht sind Lösungen der Differentialgleichung
\begin{equation}
@@ -405,7 +405,7 @@ L
%
% Beispiele
%
-\subsection{Beispiele}
+\subsection{Beispiele\label{sub:beispiele_sturm_liouville_problem}}
Die meisten der früher vorgestellten Funktionenfamilien stellen sich
als Lösungen eines geeigneten Sturm-Liouville-Problems heraus.
Alle Eigenschaften aus der Sturm-Liouville-Theorie gelten daher
diff --git a/buch/papers/0f1/images/konvergenzNegativ.pdf b/buch/papers/0f1/images/konvergenzNegativ.pdf
index 03b2ba1..07d2a44 100644
--- a/buch/papers/0f1/images/konvergenzNegativ.pdf
+++ b/buch/papers/0f1/images/konvergenzNegativ.pdf
Binary files differ
diff --git a/buch/papers/0f1/images/konvergenzPositiv.pdf b/buch/papers/0f1/images/konvergenzPositiv.pdf
index 2e45129..8e1e7e4 100644
--- a/buch/papers/0f1/images/konvergenzPositiv.pdf
+++ b/buch/papers/0f1/images/konvergenzPositiv.pdf
Binary files differ
diff --git a/buch/papers/0f1/teil0.tex b/buch/papers/0f1/teil0.tex
index 9aca368..335cf92 100644
--- a/buch/papers/0f1/teil0.tex
+++ b/buch/papers/0f1/teil0.tex
@@ -6,10 +6,10 @@
\section{Ausgangslage\label{0f1:section:ausgangslage}}
\rhead{Ausgangslage}
Die hypergeometrische Funktion $\mathstrut_0F_1$ wird in vielen Funktionen als Basisfunktion benutzt,
-zum Beispiel um die Airy Funktion zu berechnen.
+zum Beispiel um die Airy-Funktion zu berechnen.
In der GNU Scientific Library \cite{0f1:library-gsl}
ist die Funktion $\mathstrut_0F_1$ vorhanden.
-Allerdings wirft die Funktion bei negativen Übergabenwerten wie zum Beispiel \verb+gsl_sf_hyperg_0F1(1, -1)+ eine Exception.
+Allerdings wirft die Funktion bei negativen Übergabewerten wie zum Beispiel \verb+gsl_sf_hyperg_0F1(1, -1)+ eine Exception.
Bei genauerer Untersuchung hat sich gezeigt, dass die Funktion je nach Betriebssystem funktioniert oder eben nicht.
So kann die Funktion unter Windows fehlerfrei aufgerufen werden, beim Mac OS und Linux sind negative Übergabeparameter im Moment nicht möglich.
Ziel dieser Arbeit war es zu evaluieren, ob es mit einfachen mathematischen Operationen möglich ist, die hypergeometrische Funktion $\mathstrut_0F_1$ zu implementieren.
diff --git a/buch/papers/0f1/teil1.tex b/buch/papers/0f1/teil1.tex
index c0f857d..8d00f95 100644
--- a/buch/papers/0f1/teil1.tex
+++ b/buch/papers/0f1/teil1.tex
@@ -6,8 +6,7 @@
\section{Mathematischer Hintergrund
\label{0f1:section:mathHintergrund}}
\rhead{Mathematischer Hintergrund}
-Basierend auf den Herleitungen des Abschnittes \ref{buch:rekursion:section:hypergeometrische-funktion}, werden im nachfolgenden Abschnitt nochmals die Resultate
-beschrieben.
+Basierend auf den Herleitungen des Abschnittes \ref{buch:rekursion:section:hypergeometrische-funktion} werden im nachfolgenden Abschnitt nochmals die Resultate beschrieben.
\subsection{Hypergeometrische Funktion
\label{0f1:subsection:hypergeometrisch}}
@@ -59,7 +58,7 @@ Angewendet auf die Funktion $\mathstrut_pF_q$ ergibt sich für $\mathstrut_0F_1$
-\subsection{Airy Funktion
+\subsection{Airy-Funktion
\label{0f1:subsection:airy}}
Die Funktion $\operatorname{Ai}(x)$ und die verwandte Funktion $\operatorname{Bi}(x)$ werden als Airy-Funktion bezeichnet. Sie werden zur Lösung verschiedener physikalischer Probleme benutzt, wie zum Beispiel zur Lösung der Schrödinger-Gleichung \cite{0f1:wiki-airyFunktion}.
@@ -70,8 +69,8 @@ Die Funktion $\operatorname{Ai}(x)$ und die verwandte Funktion $\operatorname{Bi
heisst die {\em Airy-Differentialgleichung}.
\end{definition}
-Die Airy Funktion lässt sich auf verschiedene Arten darstellen.
-Als hypergeometrische Funktion berechnet, ergibt sich wie in Abschnitt \ref{buch:differentialgleichungen:section:hypergeometrisch} hergeleitet, folgende Lösungen der Airy-Differentialgleichung zu den Anfangsbedingungen $\operatorname{Ai}(0)=1$ und $\operatorname{Ai}'(0)=0$, sowie $\operatorname{Bi}(0)=0$ und $\operatorname{Bi}'(0)=1$.
+Die Airy-Funktion lässt sich auf verschiedene Arten darstellen.
+Als hypergeometrische Funktion berechnet, ergeben sich wie in Abschnitt \ref{buch:differentialgleichungen:section:hypergeometrisch} hergeleitet, folgende Lösungen der Airy-Differentialgleichung zu den Anfangsbedingungen $\operatorname{Ai}(0)=1$ und $\operatorname{Ai}'(0)=0$, sowie $\operatorname{Bi}(0)=0$ und $\operatorname{Bi}'(0)=1$:
\begin{align}
\label{0f1:airy:hypergeometrisch:eq}
@@ -96,7 +95,6 @@ x\cdot\mathstrut_0F_1\biggl(
\qedhere
\end{align}
-Um die Stabilität der Algorithmen zu $\mathstrut_0F_1$ zu überprüfen, wird in dieser Arbeit die Airy Funktion $\operatorname{Ai}(x)$ \eqref{0f1:airy:hypergeometrisch:eq}
-benutzt.
+Um die Stabilität der Algorithmen zu $\mathstrut_0F_1$ zu überprüfen, wird in dieser Arbeit die Airy Funktion $\operatorname{Ai}(x)$ benutzt.
diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex
index ef9f55e..64f8d83 100644
--- a/buch/papers/0f1/teil2.tex
+++ b/buch/papers/0f1/teil2.tex
@@ -11,7 +11,7 @@ Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieb
\subsection{Potenzreihe
\label{0f1:subsection:potenzreihe}}
-Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:umsetzung:0f1:eq}.
+Die naheliegendste Lösung ist die Programmierung der Potenzreihe
\begin{align}
\label{0f1:umsetzung:0f1:eq}
@@ -23,7 +23,7 @@ Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:ums
\frac{1}{c}
+\frac{z^1}{(c+1) \cdot 1}
+ \cdots
- + \frac{z^{20}}{c(c+1)(c+2)\cdots(c+19) \cdot 2.4 \cdot 10^{18}}
+ + \frac{z^{20}}{c(c+1)(c+2)\cdots(c+19) \cdot 2.4 \cdot 10^{18}}.
\end{align}
\lstinputlisting[style=C,float,caption={Potenzreihe.},label={0f1:listing:potenzreihe}, firstline=59]{papers/0f1/listings/potenzreihe.c}
@@ -31,44 +31,64 @@ Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:ums
\subsection{Kettenbruch
\label{0f1:subsection:kettenbruch}}
Eine weitere Variante zur Berechnung von $\mathstrut_0F_1(;c;z)$ ist die Umsetzung als Kettenbruch.
-Der Vorteil einer Umsetzung als Kettenbruch gegenüber der Potenzreihe, ist die schnellere Konvergenz.
+Der Vorteil einer Umsetzung als Kettenbruch gegenüber der Potenzreihe ist die schnellere Konvergenz.
+\subsubsection{Grundlage}
Ein endlicher Kettenbruch \cite{0f1:wiki-kettenbruch} ist ein Bruch der Form
\begin{equation*}
-a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}}
+a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}},
\end{equation*}
in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind.
-Nimmt man nun folgenden Gleichung \cite{0f1:wiki-fraction}:
+\subsubsection{Rekursionsbeziehungen und Kettenbrüche}
+Will man einen Kettenbruch für das Verhältnis $\frac{f_i(z)}{f_{i-1}(z)}$ finden, braucht man dazu eine Relation der analytischer Funktion $f_i(z)$.
+Nimmt man die Gleichung \cite{0f1:wiki-fraction}:
\begin{equation*}
f_{i-1} - f_i = k_i z f_{i+1},
\end{equation*}
wo $f_i$ analytische Funktionen sind und $i > 0$ ist, sowie $k_i$ konstant.
Ergibt sich folgender Zusammenhang:
\begin{equation*}
- \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}}
+ \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}}.
\end{equation*}
+Geht man einen Schritt weiter und nimmt für $g_i = \frac{f_i}{f_{i-1}}$ an, kommt man zur Formel
+\begin{equation*}
+ g_i = \cfrac{1}{1+k_izg_{i+1}}.
+\end{equation*}
+Setzt man dies nun für $g_1$ in den Bruch ein, ergibt sich folgendes:
+\begin{equation*}
+ g_1 = \cfrac{f_1}{f_0} = \cfrac{1}{1+k_izg_2} = \cfrac{1}{1+\cfrac{k_1z}{1+k_2zg_3}} = \cdots
+\end{equation*}
+Repetiert man dies unendlich, erhält man einen Kettenbruch in der Form:
+\begin{equation}
+ \label{0f1:math:rekursion:eq}
+ \cfrac{f_1}{f_0} = \cfrac{1}{1+\cfrac{k_1z}{1+\cfrac{k_2z}{1+\cfrac{k_3z}{\cdots}}}}.
+\end{equation}
-Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies:
+\subsubsection{Rekursion für $\mathstrut_0F_1$}
+Angewendet auf die Potenzreihe
\begin{equation}
\label{0f1:math:potenzreihe:0f1:eq}
\mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots
\end{equation}
-Durch Substitution kann bewiesen werden, dass die nachfolgende Formel eine Relation zur obigen Potenzreihe \eqref{0f1:math:potenzreihe:0f1:eq} ist:
+kann durch Substitution bewiesen werden, dass
\begin{equation*}
- \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z).
+ \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z)
\end{equation*}
+eine Relation dazu ist.
Wenn man für $f_i$ und $k_i$ folgende Annahme trifft:
\begin{align*}
- f_i =& \mathstrut_0F_1(;c+1;z)\\
- k_i =& \frac{1}{(c+1)(c+i-1)}
+ f_i =& \mathstrut_0F_1(;c+i;z)\\
+ k_i =& \frac{1}{(c+i)(c+i-1)}
\end{align*}
-erhält man:
+und in die Formel \eqref{0f1:math:rekursion:eq} einsetzt, erhält man:
\begin{equation*}
\cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{\cfrac{z}{(c+2)(c+3)}}{\cdots}}}}.
\end{equation*}
-Mit weiteren Relationen ergibt sich nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch
+\subsubsection{Algorithmus}
+Da mit obigen Formeln nur ein Verhältnis zwischen $ \frac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)}$ berechnet wurde, braucht es weitere Relationen um $\mathstrut_0F_1(;c;z)$ zu erhalten.
+So ergeben ähnliche Relationen nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch
\begin{equation}
\label{0f1:math:kettenbruch:0f1:eq}
\mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}},
@@ -92,7 +112,7 @@ lässt sich zu
\cfrac{A_k}{B_k} = \cfrac{b_{k+1}}{a_{k+1} + \cfrac{p}{q}} = \frac{b_{k+1} \cdot q}{a_{k+1} \cdot q + p}
\end{align*}
umformen.
-Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken:
+Dies lässt sich auch durch die folgende Matrizenschreibweise
\begin{equation*}
\begin{pmatrix}
A_k\\
@@ -112,6 +132,7 @@ Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken:
\end{pmatrix}.
%\label{0f1:math:rekursionsformel:herleitung}
\end{equation*}
+ausdrücken.
Wendet man dies nun auf den Kettenbruch in der Form
\begin{equation*}
\frac{A_k}{B_k} = a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{k-1}}{a_{k-1} + \cfrac{b_k}{a_k}}}}}
@@ -166,7 +187,7 @@ Und schlussendlich kann der Näherungsbruch
berechnet werden.
-\subsubsection{Lösung}
+\subsubsection{Algorithmus}
Die Berechnung von $A_k, B_k$ gemäss \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise \cite{0f1:kettenbrueche} aufschreiben:
\begin{itemize}
\item Startbedingungen:
diff --git a/buch/papers/0f1/teil3.tex b/buch/papers/0f1/teil3.tex
index b283b07..2afc34b 100644
--- a/buch/papers/0f1/teil3.tex
+++ b/buch/papers/0f1/teil3.tex
@@ -13,23 +13,21 @@ Ebenso kann festgestellt werden, dass je grösser der Wert $z$ in $\mathstrut_0F
\subsection{Konvergenz
\label{0f1:subsection:konvergenz}}
-Es zeigt sich in Abbildung \ref{0f1:ausblick:plot:airy:konvergenz}, dass nach drei Iterationen ($k = 3$) die Funktionen genaue Resultate im Bereich von $-2$ bis $2$ liefert. Ebenso kann festgestellt werden, dass der Kettenbruch schneller konvergiert und im positiven Bereich sogar mit der Referenzfunktion $\operatorname{Ai}(x)$ übereinstimmt. Da die Rekursionsformel eine Abwandlung des Kettenbruches ist, verhalten sich die Funktionen in diesem Fall gleich.
+Es zeigt sich in Abbildung \ref{0f1:ausblick:plot:airy:konvergenz}, dass nach drei Iterationen ($k = 3$) die Funktionen genaue Resultate im Bereich von $-2$ bis $2$ liefert. Ebenso kann festgestellt werden, dass der Kettenbruch schneller konvergiert und im positiven Bereich mit der Referenzfunktion $\operatorname{Ai}(x)$ übereinstimmt. Da die Rekursionsformel eine Abwandlung des Kettenbruches ist, verhalten sich die Funktionen in diesem Fall gleich.
-Erst wenn mehrerer Iterationen gemacht werden, um die Genauigkeit zu verbessern, ist der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen.
-Interessant ist auch, dass die Rekursionsformel nahezu gleich schnell wie die Potenzreihe konvergiert, aber sich danach, wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} zu beobachten ist, einschwingt. Dieses Verhalten ist auch bei grösseren $z$ zu beobachten, allerdings ist dann die Differenz zwischen dem ersten lokalen Minimum von $k$ bis zum Abbruch kleiner.
-Dieses Phänomen ist auf die Lösung der Rekursionsformel \eqref{0f1:math:matrix:ende:eq} zurück zu führen. Da im Gegensatz die ganz kleinen Werte nicht zu einer Konvergenz wie beim Kettenbruch führen, sondern sich noch eine Zeit lang durch die Multiplikation aufschwingen.
+Erst wenn mehrerer Iterationen gerechnet werden, ist wie Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen. Bei der Rekursionsformel muss beachtet werden, dass sie zwar erst nach 35 Approximationen gänzlich konvergiert, allerdings nach 27 Iterationen sich nicht mehr gross verändert.
+
+Ist $z$ negativ wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies zu aufgrund des Vorzeichens zu alternierenden Termen. So steigt bei allen Algorithmen zuerst die Differenz zum erwarteten Endwert. Erst nach genügend Iterationen sind die Terme so klein, dass sie das Endresultat nicht mehr signifikant beeinflussen. Während die Potenzreihe zusammen mit dem Kettenbruch nach 34 Approximationen konvergiert, braucht die Rekursionsformel noch zwei Iterationen mehr.
-Ist $z$ negativ wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies zu aufgrund des Vorzeichens zu alternierenden Termen. So steigt bei allen Algorithmen zuerst die Differenz zum erwarteten Endwert. Erst nach genügend Iterationen sind die Terme genügend klein, so dass sie das Endresultat nicht mehr signifikant beeinflussen.
-Auch hier konvergiert der Kettenbruch am schnellsten von allen Algorithmen. Ebenso bricht die Rekursionsformel nahezu gleichzeitig mit der Potenzreihe ab.
\subsection{Stabilität
\label{0f1:subsection:Stabilitaet}}
-Verändert sich der Wert von $z$ in $\mathstrut_0F_1(;c;z)$ gegen grössere positive Werte, wie zum Beispiel $c = 800$ liefert die Kettenbruch-Funktion (Listing \ref{0f1:listing:kettenbruchIterativ}) \verb+inf+ zurück. Dies könnte durch ein Abbruchkriterien abgefangen werden. Allerdings würde das, bei grossen Werten zulasten der Genauigkeit gehen. Trotzdem könnte, je nach Anwendung, auf ein paar Nachkommastellen verzichtet werden.
+Verändert sich der Wert von $z$ in $\mathstrut_0F_1(;c;z)$ gegen grössere positive Werte, wie zum Beispiel $c = 800$ liefert die Kettenbruch-Funktion (Listing \ref{0f1:listing:kettenbruchIterativ}) \verb+inf+ zurück. Dies könnte durch ein Abbruchkriterien abgefangen werden. Allerdings würde das bei grossen Werten zulasten der Genauigkeit gehen. Trotzdem könnte, je nach Anwendung, auf ein paar Nachkommastellen verzichtet werden.
Wohingegen die Potenzreihe (Listing \ref{0f1:listing:potenzreihe}) das Problem hat, dass je mehr Terme berechnet werden, desto schneller wächst die Fakultät im Nenner. Dies führt zu einer Bereichsüberschreitung des \verb+double+ Bereiches \cite{0f1:double}, der spätesten ab $k=167$ eintritt. Schlussendlich gibt das Unterprogramm das Resultat \verb+-nan(ind)+ zurück.
Die Rekursionformel \eqref{0f1:listing:kettenbruchRekursion} liefert für sehr grosse positive Werte die genausten Ergebnisse, verglichen mit der GNU Scientific Library. Wie schon vermutet ist die Rekursionsformel, im positivem Bereich, der stabilste Algorithmus. Um die Konvergenz zu gewährleisten, muss wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, die Iterationstiefe $k$ genug gross gewählt werden.
-Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Grund dafür ist die Potenz von $z$, was zum Phänomen der Auslöschung \cite{0f1:SeminarNumerik} führt. Schön zu beobachten ist dies in der Abbildung \ref{0f1:ausblick:plot:airy:stabilitaet} mit der Airy-Funktion als Test. So sind sowohl die Potenzreihe, der Kettenbruch, als auch die Rekursionsformel bis ungefähr $\frac{-15^3}{9}$ stabil. Dies macht auch Sinn, da alle Algorithmen auf der gleichen mathematischen Grundlage basieren. Danach verhält sich allerdings die Instabilität unterschiedlich. Diese programmiertechnischen Unterschiede sind auch in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} und \ref{0f1:ausblick:plot:konvergenz:negativ} festzustellen.
+Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Grund dafür ist die Potenz von $z$, was zum Phänomen der Auslöschung \cite{0f1:SeminarNumerik} führt. Schön zu beobachten ist dies in der Abbildung \ref{0f1:ausblick:plot:airy:stabilitaet} mit der Airy-Funktion als Test. So sind nach Abbildung \ref{0f1:ausblick:plot:airy:stabilitaet} die Potenzreihe, der Kettenbruch, als auch die Rekursionsformel, bis ungefähr $\frac{-15^3}{9}$ stabil. Dies macht auch Sinn, da alle Algorithmen auf der gleichen mathematischen Grundlage basieren. Danach verhält sich allerdings die Instabilität unterschiedlich. Diese programmiertechnischen Unterschiede sind auch in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} und \ref{0f1:ausblick:plot:konvergenz:negativ} festzustellen.
\begin{figure}
\centering
@@ -41,21 +39,21 @@ Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Gru
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzPositiv.pdf}
- \caption{Konvergenz mit positivem z; Logarithmisch, vorzeichenlose dargestellte Differenz vom erwarteten Endresultat.
+ \caption{Konvergenz mit positivem $z$; Logarithmisch dargestellter absoluter Fehler.
\label{0f1:ausblick:plot:konvergenz:positiv}}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzNegativ.pdf}
- \caption{Konvergenz mit negativem z; Logarithmisch, vorzeichenlose dargestellte Differenz vom erwarteten Endresultat.
+ \caption{Konvergenz mit negativem $z$; Logarithmisch dargestellter absoluter Fehler.
\label{0f1:ausblick:plot:konvergenz:negativ}}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=1\textwidth]{papers/0f1/images/stabilitaet.pdf}
- \caption{Stabilität der 3 Algorithmen verglichen mit der Referenz Funktion $\operatorname{Ai}(x)$.
+ \caption{Stabilität der drei Algorithmen verglichen mit der Referenz Funktion $\operatorname{Ai}(x)$.
\label{0f1:ausblick:plot:airy:stabilitaet}}
\end{figure}
diff --git a/buch/papers/fm/00_modulation.tex b/buch/papers/fm/00_modulation.tex
index e2ba39f..982d63c 100644
--- a/buch/papers/fm/00_modulation.tex
+++ b/buch/papers/fm/00_modulation.tex
@@ -3,11 +3,22 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+
+Durch die Modulation wird ein Nachrichtensignal \(m(t)\) auf ein Trägersignal (z.B. ein Sinus- oder Rechtecksignal) abgebildet (kombiniert).
+Durch dieses Auftragen vom Nachrichtensignal \(m(t)\) kann das modulierte Signal in einem gewünschten Frequenzbereich übertragen werden.
+Der ursprünglich Frequenzbereich des Nachrichtensignal \(m(t)\) erstreckt sich typischerweise von 0 Hz bis zur Bandbreite \(B_m\).
+Beim Empfänger wird dann durch Demodulation das ursprüngliche Nachrichtensignal \(m(t)\) so originalgetreu wie möglich zurückgewonnen.
+Beim Trägersignal \(x_c(t)\) handelt es sich um ein informationsloses Hilfssignal.
+Durch die Modulation mit dem Nachrichtensignal \(m(t)\) wird es zum modulierten zu übertragenden Signal.
+Für alle Erklärungen wird ein sinusförmiges Trägersignal benutzt, jedoch kann auch ein Rechtecksignal,
+welches Digital einfach umzusetzten ist,
+genauso als Trägersignal genutzt werden kann.\cite{fm:NAT}
+
\subsection{Modulationsarten\label{fm:section:modulation}}
Das sinusförmige Trägersignal hat die übliche Form:
\(x_c(t) = A_c \cdot \cos(\omega_c(t)+\varphi)\).
-Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert wird.
+Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert werden können.
Der Parameter \(\omega_c\), die Trägerkreisfrequenz bzw. die Trägerfrequenz \(f_c = \frac{\omega_c}{2\pi}\),
steht nicht für die modulation zur verfügung, statt dessen kann durch ihn die Frequenzachse frei gewählt werden.
\newblockpunct
@@ -25,6 +36,8 @@ die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omeg
\item PM
\item FM
\end{itemize}
+Um modulation zu Verstehen ist es am Anschaulichst mit der AM Amplitudenmodulation,
+da Phasenmodulation und Frequenzmodulation den gleichen Parameter verändert vernachlässige ich die Phasenmodulation ganz.
To do: Bilder jeder Modulationsart
diff --git a/buch/papers/fm/01_AM.tex b/buch/papers/fm/01_AM.tex
index 21927f5..714b9a0 100644
--- a/buch/papers/fm/01_AM.tex
+++ b/buch/papers/fm/01_AM.tex
@@ -11,19 +11,61 @@ Nun zur Amplitudenmodulation verwenden wir das bevorzugte Trägersignal
\[
x_c(t) = A_c \cdot \cos(\omega_ct).
\]
-Dies bringt den grossen Vorteil das, dass modulierend Signal sämtliche Anteile im Frequenzspektrum inanspruch nimmt
-und das Trägersignal nur zwei komplexe Schwingungen besitzt.
+Dies bringt den grossen Vorteil das, dass modulierend Signal sämtliche Anteile im Frequenzspektrum in Anspruch nimmt
+und das Trägersignal nur zwei komplexe Schwingungen besitzt.
Dies sieht man besonders in der Eulerischen Formel
\[
x_c(t) = \frac{A_c}{2} \cdot e^{j\omega_ct}\;+\;\frac{A_c}{2} \cdot e^{-j\omega_ct}.
+ \label{fm:eq:AM:euler}
\]
Dabei ist die negative Frequenz der zweiten komplexen Schwingung zwingend erforderlich, damit in der Summe immer ein reellwertiges Trägersignal ergibt.
Nun wird der Parameter \(A_c\) durch das Modulierende Signal \(m(t)\) ersetzt, wobei so \(m(t) \leqslant |1|\) normiert wurde.
-\newline
-\newline
+
+Dabei entseht wine Umhüllende kurve die unserem ursprünglichen signal \(m(t)\) entspricht.
+\[
+ x_c(t) = m(t) \cdot \cos(\omega_ct).
+\]
+
+\begin{figure}
+ \centering
+ \input{papers/fm/Python animation/m_t.pgf}
+ \caption{modulierende Signal \(m(t)\)}
+ \label{fig:bessel}
+\end{figure}
+%
TODO:
+Bilder
Hier beschrieib ich was AmplitudenModulation ist und mache dan den link zu Frequenzmodulation inkl Formel \[\cos( \cos x)\]
so wird beschrieben das daraus eigentlich \(x_c(t) = A_c \cdot \cos(\omega_i)\) wird und somit \(x_c(t) = A_c \cdot \cos(\omega_c + \frac{d \varphi(t)}{dt})\).
Da \(\sin \) abgeleitet \(\cos \) ergibt, so wird aus dem \(m(t)\) ein \( \frac{d \varphi(t)}{dt}\) in der momentan frequenz. \[ \Rightarrow \cos( \cos x) \]
+\subsection{Frequenzspektrum}
+Das Frequenzspektrum ist eine Darstellung von einem Signal im Frequenzbereich, das heisst man erkennt welche Frequenzen in einem Signal vorhanden sind.
+Dafür muss man eine Fouriertransformation vornehmen.
+Wird aus dieser Gleichung \eqref{fm:eq:AM:euler}die Fouriertransformation vorggenommen, so erhält man
-\subsection{Frequenzspektrum} \ No newline at end of file
+%
+%Ein Ziel der Modulation besteht darin, mehrere Nachrichtensignale von verschiedenen Sendern gleichzeitig
+%in verschiedenen Frequenzbereichen über den gleichen Kanal zu senden. Um dieses Frequenzmultiplexing
+%störungsfrei und mit eine Vielzahl von Teilnehmern durchführen zu können, muss die spektrale Beschaffen-
+%heit der modulierten Signale möglichst gut bekannt sein.
+%Dank des Modulationssatzes der Fouriertransformation lässt sich das Spektrum eines gewöhnlichen AM Si-
+%gnals sofort bestimmen:
+%A c μ
+%F
+%·(M n (ω−ω c ) + M n (ω+ω c )) (5.5)
+%A c ·(1+μm n (t))·cos(ω c t) ❝ s A c π (δ(ω−ω c ) + δ(ω+ω c )) +
+%2
+%Das zweiseitige Spektrum des Nachrichtensignals M (ω) wird mit dem Faktor A 2 c μ gewichtet und einmal
+%nach +ω c und einmal nach −ω c verschoben. Dies führt im Vergleich zum Basisbandsignal zu einer Verdop-
+%pelung der Bandbreite mit je einem Seitenband links und rechts der Trägerfrequenz. Weiter beinhaltet das
+%Amplitudendichtespektrum je eine Deltafunktion mit Gewicht A c π an den Stellen ±ω c , d.h. ein fester, nicht-
+%modulierter Amplitudenanteil bei der eigentlichen Trägerfrequenz.
+%Das Amplitudendichtespektrum ist im nachfolgenden Graphen für A c = 1 und μ = 100% dargestellt.5.3. Gewöhnliche Amplitudenmodulation
+%47
+%Abbildung 5.12: Amplitudendichtespektrum von gewöhnlicher AM
+%Für das Nachrichtensignal wurde in diesem Graph mit einem Keil symbolhaft ein Amplitudendichtespektrum
+%|M (ω)| gewählt, bei welchem der Anteil auf der positiven und jener auf der negativen Frequenzachse visuell
+%gut auseinandergehalten werden können. Ein solch geformtes Spektrum wird aber in der Praxis kaum je
+%auftreten: bei periodischen Testsignalen besteht das Nachrichtensignal aus einem Linienspektrum, bei einem
+%Energiesignal mit zufälligem Verlauf aus einem kontinuierlichen Spektrum, welches jedoch nicht auf diese
+%einfache Art geformt sein wird \ No newline at end of file
diff --git a/buch/papers/fm/02_FM.tex b/buch/papers/fm/02_FM.tex
index fedfaaa..a01fb69 100644
--- a/buch/papers/fm/02_FM.tex
+++ b/buch/papers/fm/02_FM.tex
@@ -6,9 +6,65 @@
\section{FM
\label{fm:section:teil1}}
\rhead{FM}
-\subsection{Frequenzspektrum}
-TODO
-Hier Beschreiben ich FM und FM im Frequenzspektrum.
+\subsection{Frequenzmodulation}
+(skript Nat ab Seite 60)
+Als weiterer Parameter, um ein sinusförmiges Trägersignal \(x_c = A_c \cdot \cos(\omega_c t + \varphi)\) zu modulieren,
+bietet sich neben der Amplitude \(A_c\) auch der Phasenwinkel \(\varphi\) oder die momentane Frequenzabweichung \(\frac{d\varphi}{dt}\) an.
+Bei der Phasenmodulation (Englisch: phase modulation, PM) erzeugt das Nachrichtensignal \(m(t)\) eine Phasenabweichung \(\varphi(t)\) des modulierten Trägersignals im Vergleich zum nicht-modulierten Träger. Sie ist pro-
+%portional zum Nachrichtensignal \(m(t)\) durch eine Skalierung mit der Phasenhubkonstanten (Englisch: phase deviation constant)
+%k p [rad],
+%welche die Amplitude des Nachrichtensignals auf die Phasenabweichung des
+%modulierten Trägersignals abbildet: φ(t) = k p · m(t). Damit ergibt sich für das phasenmodulierte Trägersi-
+%gnal:
+%x PM (t) = A c · cos (ω c t + k p · m(t))
+%(5.16)
+%Die modulierte Phase φ(t) verändert dabei auch die Momentanfrequenz (Englisch: instantaneous frequency)
+%ω i
+%, welche wie folgt berechnet wird:
+%f i = 2π
+%ω i (t) = ω c +
+%d φ(t)
+%dt
+%(5.17)
+%Bei der Frequenzmodulation (Englisch: frequency modulation, FM) ist die Abweichung der momentanen
+%Kreisfrequenz ω i von der Trägerkreisfrequenz ω c proportional zum Nachrichtensignal m(t). Sie ergibt sich,
+%indem m(t) mit der (Kreis-)Frequenzhubkonstanten (Englisch: frequency deviation constant) k f [rad/s] ska-
+%liert wird: ω i (t) = ω c + k f · m(t). Diese sich zeitlich verändernde Abweichung von der Kreisfrequenz ω c
+%verursacht gleichzeitig auch Schwankungen der Phase φ(t), welche wie folgt berechnet wird:
+%φ(t) =
+%Z t
+%−∞
+%ω i (τ ) − ω c dτ =
+%Somit ergibt sich für das frequenzmodulierte Trägersignal:
+%
+%Z t
+%−∞
+%x FM (t) = A c · cos  ω c t + k f
+%k f · m(t) dτ
+%Z t
+%−∞
+%
+%m(τ ) dτ 
+%(5.18)
+%(5.19)
+%Die Phase φ(t) hat dabei einen kontinuierlichen Verlauf, d.h. das FM-modulierte Signal x FM (t) weist keine
+%Stellen auf, wo sich die Phase sprunghaft ändert. Aus diesem Grund spricht man bei frequenzmodulierten
+%Signalen – speziell auch bei digitalen FM-Signalen – von einer Modulation mit kontinuierlicher Phase (Eng-
+%lisch: continuous phase modulation).
+%Wie aus diesen Ausführungen hervorgeht, sind Phasenmodulation und Frequenzmodulation äquivalente Mo-
+%dulationsverfahren. Beide variieren sowohl die Phase φ wie auch die Momentanfrequenz ω i . Dadurch kann
+%man leider nicht – wie vielleicht erhofft – je mit einem eigenen Nachrichtensignal ein gemeinsames Trägersi-
+%gnal unabhängig PM- und FM-modulieren, ohne dass sich diese Modulationen für den Empfänger untrennbar
+%vermischen würden.
+%
+%Um die mathematische Behandlung der nicht-linearen Winkelmodulation etwas zu verkürzen, ist es aufgrund
+%dieser Äquivalenzen gerechtfertigt, dass PM und FM gemeinsam behandelt werden. Jeweils vor der Modu-
+%lation bzw. nach der Demodulation kann dann noch eine Differentiation oder Integration durchgeführt wird,
+%um von der einen Modulationsart zur anderen zu gelangen.
+%\subsection{Frequenzbereich}
+%Nun
+%TODO
+%Hier Beschreiben ich FM und FM im Frequenzspektrum.
%Sed ut perspiciatis unde omnis iste natus error sit voluptatem
%accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
%quae ab illo inventore veritatis et quasi architecto beatae vitae
diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex
index 5f85dc6..3c2cb71 100644
--- a/buch/papers/fm/03_bessel.tex
+++ b/buch/papers/fm/03_bessel.tex
@@ -67,7 +67,7 @@ Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal
=
\cos(\omega_c t + \beta\sin(\omega_mt))
=
- \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_ct)\sin(\beta\sin(\omega_m t)).
+ \cos(\omega_c t)\cos(\beta\sin(\omega_m t)) - \sin(\omega_ct)\sin(\beta\sin(\omega_m t)).
\label{fm:eq:start}
\]
%-----------------------------------------------------------------------------------------------------------
@@ -89,23 +89,34 @@ mit hilfe der Besselindentität \eqref{fm:eq:besselid1} zum
\end{align*}
%intertext{} Funktioniert nicht.
wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) ersetzt wurden.
+Nun kann die Summe in zwei Summen
\begin{align*}
c(t)
&=
- J_0(\beta) \cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \underbrace{\cos((\omega_c - 2k \omega_m) t)} \,+\, \cos((\omega_c + 2k \omega_m) t) \}
+ J_0(\beta) \cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \cos((\omega_c - 2k \omega_m) t) \,+\, \cos((\omega_c + 2k \omega_m) t) \}
\\
&=
- \sum_{k=-\infty}^{-1} J_{2k}(\beta) \overbrace{\cos((\omega_c +2k \omega_m) t)}
- \,+\,J_0(\beta)\cdot \cos(\omega_c t+ 2\cdot0 \omega_m)
+ \sum_{k=\infty}^{1} J_{2k}(\beta) \underbrace{\cos((\omega_c - 2k \omega_m) t)}
+ \,+\,J_0(\beta)\cdot \cos(\omega_c t)
\,+\, \sum_{k=1}^\infty J_{2k}(\beta)\cos((\omega_c + 2k \omega_m) t)
\end{align*}
-wird.
-Das Minus im Ersten Term wird zur negativen Summe \(\sum_{-\infty}^{-1}\) ersetzt.
-Da \(2k\) immer gerade ist, wird es durch alle negativen und positiven Ganzzahlen \(n\) ersetzt:
+aufgeteilt werden.
+Wenn bei der ersten Summe noch \(k\) von \(-\infty \to -1\) läuft, wird diese summe zu \(\sum_{k=-1}^{-\infty} J_{-2k}(\beta) {\cos((\omega_c + 2k \omega_m) t)} \)
+Zudem kann die Besselindentität \eqref{fm:eq:besselid3} gebraucht werden. \(n \) wird mit \(2k\) ersetzt, da dies immer gerade ist so gilt: \(J_{-n}(\beta) = J_n(\beta)\)
+Somit bekommt man zwei gleiche Summen
+\begin{align*}
+ c(t)
+ &=
+ \sum_{k=-\infty}^{-1} J_{2k}(\beta) \cos((\omega_c + 2k \omega_m) t)
+ \,+\,J_0(\beta)\cdot \cos(\omega_c t+ 2 \cdot 0 \omega_m)
+ \,+\, \sum_{k=1}^\infty J_{2k}(\beta)\cos((\omega_c + 2k \omega_m) t)
+\end{align*}
+Diese können wir vereinfachter schreiben,
\begin{align*}
\sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n \omega_m) t),
\label{fm:eq:gerade}
\end{align*}
+da \(2k\) für alle negativen, wie positiven geraden Zahlen zählt.
%----------------------------------------------------------------------------------------------------------------
\subsubsection{Sin-Teil}
Nun zum zweiten Teil des Term \eqref{fm:eq:start}, den Sin-Teil
@@ -157,14 +168,14 @@ jedoch so \(-1 \cdot J_{-n}(\beta) = J_n(\beta)\) und daraus wird dann:
\sum_{n=- \infty}^{-1} J_{n}(\beta) \cos((\omega_c + n \omega_m) t)
\,+\, \sum_{n=1}^\infty J_{n}(\beta) \cos((\omega_c + n\omega_m) t)
\end{align*}
-Da \(n\) immer ungerade ist und \(0\) nicht zu den ungeraden zahlen zählt, kann man dies so vereinfacht
+Da \(n\) immer ungerade ist und \(0\) nicht zu den ungeraden Zahlen zählt, kann man dies so vereinfacht
\[
s(t)
=
- \sum_{n\, \text{ungerade}} -1 \cdot J_{n}(\beta) \cos((\omega_c + n\omega_m) t).
+ \sum_{n\, \text{ungerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t).
\label{fm:eq:ungerade}
\]
-schreiben.
+, mit allen positiven und negativen Ganzzahlen schreiben.
%------------------------------------------------------------------------------------------
\subsubsection{Summe Zusammenführen}
Beide Teile \eqref{fm:eq:gerade} Gerade
@@ -179,7 +190,7 @@ ergeben zusammen
\[
\cos(\omega_ct+\beta\sin(\omega_mt))
=
- \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t).
+ \sum_{k= -\infty}^\infty J_{n}(\beta) \cos((\omega_c+ n\omega_m)t).
\]
Somit ist \eqref{fm:eq:proof} bewiesen.
\newpage
diff --git a/buch/papers/fm/Python animation/Bessel-FM.ipynb b/buch/papers/fm/Python animation/Bessel-FM.ipynb
index 74f1011..4074765 100644
--- a/buch/papers/fm/Python animation/Bessel-FM.ipynb
+++ b/buch/papers/fm/Python animation/Bessel-FM.ipynb
@@ -11,11 +11,12 @@
"from scipy.fft import fft, ifft, fftfreq\n",
"import scipy.special as sc\n",
"import scipy.fftpack\n",
+ "import matplotlib.pyplot as plt\n",
"import matplotlib as mpl\n",
"# Use the pgf backend (must be set before pyplot imported)\n",
- "mpl.use('pgf')\n",
- "import matplotlib.pyplot as plt\n",
- "from matplotlib.widgets import Slider\n",
+ "# mpl.use('pgf')\n",
+ "\n",
+ "\n",
"def fm(beta):\n",
" # Number of samplepoints\n",
" N = 600\n",
@@ -27,7 +28,7 @@
" #beta = 1.0\n",
" y_old = np.sin(fc * 2.0*np.pi*x+beta*np.sin(fm * 2.0*np.pi*x))\n",
" y = 0*x;\n",
- " xf = fftfreq(N, 1 / 400)\n",
+ " xf = fftfreq(N, 1 / N)\n",
" for k in range (-4, 4):\n",
" y = sc.jv(k,beta)*np.sin((fc+k*fm) * 2.0*np.pi*x)\n",
" yf = fft(y)/(fc*np.pi)\n",
@@ -42,12 +43,24 @@
},
{
"cell_type": "code",
- "execution_count": 114,
+ "execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD6CAYAAACxrrxPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcIUlEQVR4nO3de5Bc5Xnn8e+jGd01uqEBZI2EBAgbOQ4LjLmEmFDYiQV2oVR8KXA5xolj1a6N1y6zu8bxFuslySZA7TqbMjHROk5CYlsW9m6sxYpl7OBy1gZZEheBJCCDBLoije7SzGiuz/7Rp3vO9PT0nJFOd59++/epmuo+F/W8b2vm1+885z3nmLsjIiL1b1KtGyAiIulQoIuIBEKBLiISCAW6iEggFOgiIoFQoIuIBGLcQDezb5jZYTN7aYztZmZ/YWYdZrbNzK5Jv5kiIjKe5gT7/C3wVeCxMbbfBiyPvq4HvhY9lrVgwQJfunRpokaKiEjO1q1bj7h7a6lt4wa6u//MzJaW2WUV8JjnzlB6xszmmtlCdz9Y7nWXLl3Kli1bxvv2IiISY2ZvjLUtjRr6ImBvbHlftE5ERKqoqgdFzWy1mW0xsy2dnZ3V/NYiIsFLI9D3A4tjy23RulHcfY27t7t7e2tryRKQiIicozQCfT3wsWi2yw3AyfHq5yIikr5xD4qa2beBW4AFZrYP+C/AZAB3fxTYANwOdADdwO9VqrEiIjK2JLNc7hpnuwOfTq1FIiJyTnSmqIhIIBTokknuzne37uNs/2Ctm1I1P95xiEOnzta6GVLHFOiSST/ZeZj/8PgL/PcfvVLrplTNHzy2hd/5y1/UuhlSxxTokkmnzvYDcORMX41bUl37T/TUuglSxxToIiKBUKCLZIBu1i5pUKCLiARCgS6SARqgSxoU6CIigVCgi2SABuiSBgW6iEggFOgiGaBZLpIGBbqISCAU6CIZoPG5pEGBLpmmUoRIcgp0kQzQ55akQYEumWZmtW5CVbiKLpICBbqISCAU6CIZoJKLpEGBLiISCAW6iEggFOgiIoFQoItkgGrokgYFuohIIBToIhmgeeiSBgW6iEggFOgiGaAauqRBgS4iEggFukgGaIAuaVCgi2SALhMsaVCgi4gEQoEukgEan0saEgW6ma00s1fMrMPM7iuxfYmZPWVmz5nZNjO7Pf2miohIOeMGupk1AY8AtwErgLvMbEXRbv8ZWOfuVwN3An+ZdkNFQqYSuqQhyQj9OqDD3Xe5ex+wFlhVtI8Ds6Pnc4AD6TVRRESSaE6wzyJgb2x5H3B90T5fBn5kZp8BZgLvSaV1Io1CI3RJQVoHRe8C/tbd24Dbgb83s1GvbWarzWyLmW3p7OxM6VuLiAgkC/T9wOLYclu0Lu4TwDoAd38amAYsKH4hd1/j7u3u3t7a2npuLRYJkC7OJWlIEuibgeVmtszMppA76Lm+aJ89wLsBzOxKcoGuIbiISBWNG+juPgDcA2wEdpKbzbLdzB4wszui3e4FPmlmLwDfBj7uOvVNJDH9tkgakhwUxd03ABuK1t0fe74DuCndpok0DuW5pEFnioqIBEKBLpIBqlBKGhToIiKBUKCLZIDG55IGBbpkmkoRIskp0EUyQJ9bkgYFumSamdW6CSJ1Q4EukgE69V/SoEAXEQmEAl0kCzRAlxQo0EUyQHkuaVCgi4gEQoEukgGatihpUKCLiARCgS6SAZq2KGlQoEum6dR/keQU6CIZoM8tSYMCXTJNp/6LJKdAF8kADdAlDQp0EZFAKNBFMkAHfyUNCnSRDFCeSxoU6CIigVCgi4gEQoEumabaskhyCnSRDNDnlqRBgS4iEggFukgG6OJckgYFumSaTv0XSU6BLpIBqqFLGhToIiKBUKCLZIAG6JKGRIFuZivN7BUz6zCz+8bY58NmtsPMtpvZt9JtpoiIjKd5vB3MrAl4BPhNYB+w2czWu/uO2D7LgS8CN7n7cTO7sFINFgmRTqCSNCQZoV8HdLj7LnfvA9YCq4r2+STwiLsfB3D3w+k2UyRsinNJQ5JAXwTsjS3vi9bFXQFcYWY/N7NnzGxlWg2UxqaRq0hy45ZcJvA6y4FbgDbgZ2b2Dnc/Ed/JzFYDqwGWLFmS0rcWqX/63JI0JBmh7wcWx5bbonVx+4D17t7v7ruBV8kF/Ajuvsbd2929vbW19VzbLA1EJxaJJJck0DcDy81smZlNAe4E1hft84/kRueY2QJyJZhd6TVTJHQaosv5GzfQ3X0AuAfYCOwE1rn7djN7wMzuiHbbCBw1sx3AU8B/dPejlWq0iIiMlqiG7u4bgA1F6+6PPXfg89GXiEyQauiSBp0pKiISCAW6SAZogC5pUKCLiARCgS6Z4O4NfRJRqa43+nsiE6dAl0y4/r/9hBv+9Ce1bkbNlLpj0df/ZTfLvriBk939NWiR1KO0zhQVOS+HT/eWXN/II9S1m/cA0HnmLHNmTK5xa6QeaIQumdRoOd5o/ZXKUKBLJuXzrZFP/VfGy0Qp0EUyQCN0SYMCXTKpkWvneY37t4mcKwW6SAaUmuUiMlEKdMkkxZvIxCnQRTJAFSZJgwJdsqlEwH1n8x7uXfdC9dtSAd9/fj+f/taztW6GBEaBLpkWPzj6he+9yPee3VfD1qTns2uf5wfbDta6GRIYBbpkUqMdJCx5LZfqN0PqnAJdJPM0gVGSUaBLJjXaQcJG+4tEKkOBLpmkU/9FJk6BLpIB5f8i0ehdklGgSyY1WsmlFP1tIhOlQBfJAH1+SRoU6JJJOkgoMnEKdJEMKHV1SX2kyUQp0CWTVEMXmTgFumRao1wXvXwvdXhUklGgSyY1RowPf2A1yOeWVJgCXbKpQRJuKFE3G+O9kPOnQBepoeGS0tih3SCfbZICBbpkUqOc+p8kq5XnkpQCXaSGhhLU0DVCl6QU6JJJjRJiSfqpk6wkqUSBbmYrzewVM+sws/vK7PcBM3Mza0+viSLhU2RLGsYNdDNrAh4BbgNWAHeZ2YoS+7UAnwU2pd1IaTyNMv98KEE/G+StkBQkGaFfB3S4+y537wPWAqtK7PdHwIPA2RTbJxK0fFirhi5pSBLoi4C9seV90boCM7sGWOzuP0ixbdLAGiXDEo3QG+bdkPN13gdFzWwS8D+AexPsu9rMtpjZls7OzvP91tIAQi+9FGahl+ln4G+BpChJoO8HFseW26J1eS3ArwA/NbPXgRuA9aUOjLr7Gndvd/f21tbWc2+1BK9RQqxR+inVkSTQNwPLzWyZmU0B7gTW5ze6+0l3X+DuS919KfAMcIe7b6lIi6UhlDuxKKRRe+FaLmX3qU5bpP6NG+juPgDcA2wEdgLr3H27mT1gZndUuoEixUIKuEQHRVVDl4Sak+zk7huADUXr7h9j31vOv1nS6MrWlKvYjkrTvaElTTpTVOpOkpkh9aJw6r8uziUpUKBL3Qkp4JKd+i+SjAJd6k5INeVCaalUl6xoH5FxKNAlkxrlzEldPlfSpECXTAt9dFpugF68j8h4FOiSSY1ykDDZAd6AOiwVpUCXuhNUDT3/2CAlJqksBbpkUrkQS3Zj5fpQtqQUUD+lOhTokkmNc+p/9FiuxFSltkj9U6BL3Qkp4HQ9dEmTAl0yqVECLtkdiwLqsFSUAl3qT0D55kWP5fYRGY8CXTKpfE05nIhLMvrWAF2SUqBL3Qkp4IYKNfQSncqf+h/QB5hUlgJdMqn8tMWQAk5X55L0KNAl00qNXEPKt8IIvdTGkDoqVaFAl7oT0gBdl8+VNCnQpe6EVFMu9KVBpmlKZSnQJZMa5ZT4oaHx9wnpA0wqS4EumZTP85Kn/le5LZWUD+tGubqkVJYCXepOSAGX6NT/6jRFAqBAl0wqF2IhTVtMdFA0oP5KZSnQpe6EFG+FkotG6JICBbpkUvmLc4UTceWu7e6jnoiUp0CXTCt5YlFAAZfvX0BdkhpSoEsmNcpUvXK9tMI+jfFeyPlToEvdCXKEXqZTIfVXKkuBLplU/iBhOAmXbJZL5dshYVCgS90J6ibRRY/l9hEZjwJdMqlswAU0ZB1K8OkUUn+lshTokk1lZn+EFG+FEbrmoUsKFOhSd0IasA6f9aqDonL+EgW6ma00s1fMrMPM7iux/fNmtsPMtpnZT8zskvSbKo2k/Mg1oITTyFxSNG6gm1kT8AhwG7ACuMvMVhTt9hzQ7u6/CnwXeCjthorkhTRiTVJyUbRLUklG6NcBHe6+y937gLXAqvgO7v6Uu3dHi88Abek2UxrF8LzsaLnUPtVrTsUludBYSB9gUllJAn0RsDe2vC9aN5ZPAP90Po0SySs1wyPEqy1q2qKkoTnNFzOzjwLtwG+MsX01sBpgyZIlaX5rqWPx0HYHs8a54UOiU/8D6q9UVpIR+n5gcWy5LVo3gpm9B/gScIe795Z6IXdf4+7t7t7e2tp6Lu2VAMUDqzi7SpZcAgq4oaISUykhnRkrlZUk0DcDy81smZlNAe4E1sd3MLOrgb8iF+aH02+mhCweV8U19NL7BxRwOvVfUjRuoLv7AHAPsBHYCaxz9+1m9oCZ3RHt9jAwC3jczJ43s/VjvJzIKCNKLkWPpQIvpIArjNDLlZiq1Ripe4lq6O6+AdhQtO7+2PP3pNwuaVAhhXUSOkNU0qQzRaXmRpRcim7JVmrkGtQsl/xjg9yhSSpLgS41N+KgaIPVlEP6cJLaU6BLzZUahZe7eXJIEZhoHnpIHZaKUqBLzSUZoY+cqx5Owg0OJbhjUVAfYVJJCnTJlEJ45R+ix/7B0TNhQjAwNDTuPgF9fkmFKdCl5pLMOY8HX0gBF/+gGktI/ZXKUqBL1bk7e452Dy8TL6fk143UPzByLkwo+gfHHqEXTv2PrTt6ppczvQMVbZPULwW6VN0/bNrDzQ8/xfN7T4zaNurU/3zJJTZCD+Geohal9UAU6EkP/l77xz/mlod/WrF2SX1ToEvVbXn9GAC7j5wBig+Klj5IGB/JhlCCaJ6US/S+RCWXkfscOVPyUkkiCnSpvVLFlOLSy0D8oGgAid48KferVxih69R/SYECXWqu+PK5pYwYoVe6QVWQH6EPJKkfhdBhqQoFulSdFS17iYXikfqIaYsBBFxTU1RyGRi7hp6neeiSlAJdqs5sZKSPvB566fAaOUIf3mfrG8c4fbY/3QZWwC9eO1II7zjNQ5c0KdCl6kbdiafEmaLDIZZ7MmJ6X7Tt1Nl+PvC1p/nMt5+rUEvTsePAKT7yvzbxJz/YUVhX/JeHrrooaVCgS82NmIdevC1aEa8155929w4CucDMsvxfEDsODrczf1Gu/sJB0bFphC5JKdCl5kpNWyy+CmH/wOiSS09/LtAnN2X7x3hyc659I0ouhRH62CWXwhROjdEloWz/JkiYoppLuZFn78DIkWt/iRF6V3TG5NTmbP8YN0XHDHoH4idHRZc0KJRcxg/toRDOqJKKyvZvgjSEUvPQe6PRd+9A7nEgNpI9G23r7ss9Tsl4oOcPfBbKK+6cHcivy/W4t8QB0/zB41JlJ5FSsv2bIEEbnpo4ekri2SjIu6I6ebw00dOX35YboWc90Pui69D0RX3oGxwqXDY336/uvuHrsxSP1vNLgwp0GUe2fxMkSBbVXPIlhFK3oDvbPzLo4vPQu6J1+ces19DzoZ2voecP5sLw6L0rtm7UaD1fnkkwxVEaW7Z/EyRoA4WbO8RWRs97JzJCz3ig54O4EOj9w+GdH73HR+jFgV7q8gcipWT7N0GCNjg0+jom+WfFI/T4JWO7+0aGfb2UXPJ/ZfTEwvtMb25KY1dfbIQeC3xQDV2Sy/ZvggQpf6JooYxS4sSi/IHPfNAdPdMHQNMkKwR6d72WXKL2N08yjnflAr079oGV/zDLy9fUVUOX8TTXugHSuAbL1tBzodc3MET/4BDHu/uYO2My7sMj3DPRCN2KLw6TMYWSy+DIQF80bzpHu3IfVPERev6A8PA89Jxyc9ZFQCN0qYF8/pYqIXihhj4cXt29gxzt6mP+jCnMmNI0aoSe9aAbebel4WMAbfOmc7y7D3cfWUPvL90fjdBlPAp0qZlSd+uJ19BnTc39AXno9FmOnull/swptExr5mRPrkyRr6tnPdD7itqXb/+S+TMZHHJOdPfz5smztET9zY/Q84Zr6Nnup9SeAl2qrjBro1ByGX3zip6+Aa5c2ALA7iNddBw+w7IFM1k4ZzoHTvYAw9P/ktxouZbiJ0UNDjn7T+Taf9PlFwDw8pun2XushysXzgaGZ+/kFb9fImNRoEvV5eefD5aYtuieu5hVV98g71w6H4CfvdrJkTN9XLlwNovmTefAibPA8Dz0rI/Q4x84Pf2DHDjRw7wZk7n2knkAPLHtAH2DQ7xzWW758KmRt5jzossEiIxFgS5Vlx9p9hemLY508GQusN96cQtXtc3hm5v2AHDzFa20zZvOsa4+Tvb0F0ayWQ/0eMmlq3eAN4520zZvBhfPnsZbL2op9O+D1y4GKPwFUkwjdBmPAl2qLj8yH+vCVPmSxFvmTudzv3kFLdOaufvGS7j8wln8m7a5QO7GFnuO9Yx4nayKt29XZxfP7TnOVYvnYGZ84ba30jK1mY//2lKWLZhJa8tUDkT9H3Utl4x/cEntadqiVNwvdx9j4ZxpLJ4/Axg+uHc8mrIXz/OTPf1s23sSM7jiwhbmzJjMi19+b2H71Uvm0TK1mT/5wU6OnMmVJrr7Rh5EzJru/uGa+Jf+8UW6+ga5eXkrALe+7SJe/K/D/XvrRS1s23cSGL6Oev4Yw7Ho/YJc2WrSJGNgcIgNL73J+9+xkEmTMj5/UypOI3SpuA//1dP8xsNPFZbzI9b8SDxu58FTPLnzTVYsnM2cGZNHbZ8+pYnVN1/Ka51dzJjSxO9cs4gDJ3oKZZdXD53m4Bgli2rpGxjiFx1HCst7j3Vz6YKZ/PrlC9jV2cXb3zKbW992Ycl/e+NlF/Dym6d5af9JjpwZ+YGXL0XBcBnnr//fbv79t5/j/247UKHeSD1JFOhmttLMXjGzDjO7r8T2qWb2nWj7JjNbmnpLpS7l51zHy7+vH+0CSgf6/d/fzkv7T3H3jUvHfM17br2cx37/Otbf8+v82mULGBhy9h7rBuC3vvIzbvzTf67pnO17H3+Bj3x9Ey/tz420d3V2sWzBTL720Wt49KPX8K1P3kDzGGe3fujaNqZPbuJDjz49atuB2Pu1J+pv/jEf/tLYxg10M2sCHgFuA1YAd5nZiqLdPgEcd/fLga8AD6bdUKlPxQf4jnX1setIF9MmT2Lf8R46Dp/h8Olc6eQj1y/hyoUtfPbdy/lQe9uYr2lm3HxFa66mvngOABu3H+JU7GbR+Q+NWvjR9jeB3K3xdh/p4pVDp7lq8Vxapk1m5a8sZM700X955F04exprPnYtb3/LbFbffClTmifRebqXoSHnX/71SOFmHlvfOA4MH4+IXx9GGleSGvp1QIe77wIws7XAKmBHbJ9VwJej598Fvmpm5kluwyJ1zd3pHRiiu2+Qnv5BDp06y67OLtovmceBkz08se1gYd/vP7+f72zeC8DXP/ZOPvXNrXz8b37JZa2zAPjMrZezcM70CX3/yy9s4eYrWnlo48s8vnVvYf1TLx+mbd50DOPnrx3hxksvYNrkphR6PJK7s/WN47TNm0Fry1T2HOsunOX64A9fZsidWVOay35AFXvX8lbeFdXYN+0+xhPbDrL3eDc7Dp7ioQ/8Kt/4+W4e+uHLTG6axHN7TgCw4cU3uXLhbJbMn8G+Ez0MDDpXLZ7DrKnNNE0ymidNYpINH2iVMNl4mWtmHwRWuvsfRMu/C1zv7vfE9nkp2mdftPxatM+RUq8J0N7e7lu2bJlwg5/fe4LffuTnE/53ki2XXDCDN452j1i3ZP6Mc7ouy+mzAyMOGGbRJRfMOKd/V+o9ypdZpH798HPv4m0Xzz6nf2tmW929vdS2qs5yMbPVwGqAJUuWnNNrzJ8xJc0mScom2XC9vLVlKpe1zuTi2dPYfuAUB070cONlFxRO6b968Vz6B52ndx3l6sVzaZmWzo/jmd4BfrzzcCqvdS7esWgOl7XOTOW1rmqby6bdR7n8wlm0zpoKwDVL5jLk8Oye4xzv6uPWKy+ip2+QVw+dZt/xbjRdPfvKld3OR5LfoP3A4thyW7Su1D77zKwZmAMcLX4hd18DrIHcCP1cGrzkghm8/mfvO5d/KiIStCSzXDYDy81smZlNAe4E1hftsx64O3r+QeCfVT8XEamucUfo7j5gZvcAG4Em4Bvuvt3MHgC2uPt64K+BvzezDuAYudAXEZEqSlS0dPcNwIaidffHnp8FPpRu00REZCJ0pqiISCAU6CIigVCgi4gEQoEuIhIIBbqISCDGPfW/Yt/YrBN4oybf/PwsAMa8pEGg1OfGoD7Xh0vcvbXUhpoFer0ysy1jXUchVOpzY1Cf659KLiIigVCgi4gEQoE+cWtq3YAaUJ8bg/pc51RDFxEJhEboIiKBUKCPw8zuNTM3swXRspnZX0Q3xN5mZtfE9r3bzP41+rp77FfNJjN72Mxejvr1f8xsbmzbF6M+v2Jm742tL3sD8XoTWn/yzGyxmT1lZjvMbLuZfTZaP9/Mnox+Zp80s3nR+jF/zuuNmTWZ2XNm9kS0vCy6mX1HdHP7KdH6+r/Zvbvra4wvcjft2EhuvvyCaN3twD8BBtwAbIrWzwd2RY/zoufzat2HCfb3t4Dm6PmDwIPR8xXAC8BUYBnwGrlLKTdFzy8FpkT7rKh1P86j/0H1p6hvC4FrouctwKvR/+tDwH3R+vti/+clf87r8Qv4PPAt4IloeR1wZ/T8UeDfRc8/BTwaPb8T+E6t2z7RL43Qy/sK8J+A+IGGVcBjnvMMMNfMFgLvBZ5092Pufhx4ElhZ9RafB3f/kbvnbx//DLm7U0Guz2vdvdfddwMd5G4eXriBuLv3AfkbiNer0PpT4O4H3f3Z6PlpYCewiFz//i7a7e+A346ej/VzXlfMrA14H/D1aNmAW8ndzB5G9zn/XnwXeLfV2V21FehjMLNVwH53f6Fo0yJgb2x5X7RurPX16vfJjdCgcfocWn9KikoJVwObgIvc/WC06U3gouh5KO/Fn5MblA1FyxcAJ2IDl3i/Cn2Otp+M9q8bVb1JdNaY2Y+Bi0ts+hLwh+RKEEEp12d3/360z5eAAeCb1WybVJ6ZzQK+B3zO3U/FB6Du7mYWzLQ3M3s/cNjdt5rZLTVuTlU0dKC7+3tKrTezd5CrFb8Q/cC3Ac+a2XWMfdPs/cAtRet/mnqjz9NYfc4zs48D7wfe7VExkfI3Ch/vBuL1JMkN0euWmU0mF+bfdPf/Ha0+ZGYL3f1gVFI5HK0P4b24CbjDzG4HpgGzgf9JrnzUHI3C4/1KdLP7TKt1Eb8evoDXGT4o+j5GHiz6ZbR+PrCb3AHRedHz+bVu+wT7uRLYAbQWrX87Iw+K7iJ3ALE5er6M4YOIb691P86j/0H1p6hvBjwG/HnR+ocZeVD0oeh5yZ/zev0iN9jKHxR9nJEHRT8VPf80Iw+Krqt1uyf61dAj9HO0gdwMgA6gG/g9AHc/ZmZ/BGyO9nvA3Y/Vponn7KvkQvvJ6C+TZ9z933rupuDryIX9APBpdx8EKHUD8do0/fz5GDdEr3Gz0nIT8LvAi2b2fLTuD4E/A9aZ2SfIzeb6cLSt5M95IL4ArDWzPwaeI3eTewjgZvc6U1REJBCa5SIiEggFuohIIBToIiKBUKCLiARCgS4iEggFuohIIBToIiKBUKCLiATi/wO3Cq7Lzsky6gAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAeIUlEQVR4nO3dfZAc9X3n8fdXu3pCqwfQrh7QAxKRMAiDDbXGduGzsU3OQlDS5ezYECd2HCe6OhtffHYlh487nOBLlR+uEh8XYoJ9rsQ+wqPPjuLIkTGGghgjkBACJCG0EhIroefn593Vfu+P6dntGU3P9O7O9Mx0f15VW5rp6Z35Tu/qM7/99q+7zd0REZHmN6reBYiISHUo0EVEUkKBLiKSEgp0EZGUUKCLiKSEAl1EJCUqBrqZfd/M9pnZqxGPm5ndY2ZdZvaymV1b/TJFRKSSOCP0vwMWl3n8JmBh8LUc+M7IyxIRkaGqGOju/jRwqMwqy4AfeM5zwBQzm1mtAkVEJJ7WKjzHLKA7dH9nsGx3uW9qb2/3efPmVeHlRUSyY+3atQfcvaPUY9UI9NjMbDm5tgxz585lzZo1Sb68iEjTM7MdUY9VY5bLLmBO6P7sYNl53P1+d+90986OjpIfMCIiMkzVCPQVwKeC2S7vAY66e9l2i4iIVF/FlouZPQjcALSb2U7gq8BoAHe/D1gJLAG6gFPAZ2pVrIiIRKsY6O5+W4XHHfh81SoSEZFh0ZGiIiIpoUAXEUkJBbqISEoo0KVu1u44zMa3jtW7jKZw4mwfP1lXcjawyIBEDywSCfvod54FYPvXb65zJY3vv//kVX68bhfz2ifwzjlT6l2ONCiN0EWawO6jpwE41dNX50qkkSnQRURSQoEuIpISCnQRkZRQoIuIpIQCXUQkJRToIiIpoUAXEUkJBbqISEoo0EVEUkKBLiKSEgp0EZGUUKCLiKSEAl1EJCUU6CIiKaFAFxFJCQW6SDPxehcgjUyBLiKSEgp0kWZi9S5AGpkCXUQkJRToIiIpoUAXEUkJBbqISEoo0EWaiaYtShkKdBGRlFCgizQTTVuUMhToIiIpoUAXEUmJWIFuZovNbLOZdZnZHSUen2tmT5rZOjN72cyWVL9UEREpp2Kgm1kLcC9wE7AIuM3MFhWt9t+AR9z9GuBW4G+qXaiIiJQXZ4R+HdDl7tvcvQd4CFhWtI4Dk4Lbk4G3qleiiAzQtEUpozXGOrOA7tD9ncC7i9b5M+DnZvYFYAJwY1WqExGR2Kq1U/Q24O/cfTawBPihmZ333Ga23MzWmNma/fv3V+mlRUQE4gX6LmBO6P7sYFnYZ4FHANz918A4oL34idz9fnfvdPfOjo6O4VUsIiIlxQn0F4CFZjbfzMaQ2+m5omidN4EPA5jZFeQCXUNwkWrTgUVSRsVAd/c+4HZgFbCJ3GyWDWZ2t5ktDVb7MvBHZrYeeBD4fXfX7hsRkQTF2SmKu68EVhYtuyt0eyNwfXVLExGRodCRoiIiKaFAFxFJCQW6SDPRnikpQ4EuIpISCnQRkZRQoIuIpIQCXaSZ6MAiKUOBLiKSEgp0EZGUUKCLNBNNW5QyFOgiIimhQBcRSQkFuohISijQRZqJpi1KGQp0EZGUUKCLiKSEAl2kmWjaopShQBcRSQkFuohISijQRURSQoEuIpISCnQRkZRQoIs0EU1ykXIU6CJNxJXoUoYCXUQkJRToIk3E1XSRMhToIiIpoUAXaSLqoUs5CnQRkZRQoIs0EQ3QpRwFuohISijQRZqIq4kuZcQKdDNbbGabzazLzO6IWOfjZrbRzDaY2T9Ut0wRAbVcpLzWSiuYWQtwL/CbwE7gBTNb4e4bQ+ssBL4CXO/uh81sWq0KFhGR0uKM0K8Dutx9m7v3AA8By4rW+SPgXnc/DODu+6pbpogAGqJLWXECfRbQHbq/M1gWdhlwmZn9ysyeM7PF1SpQRETiqdhyGcLzLARuAGYDT5vZVe5+JLySmS0HlgPMnTu3Si8tkh069F/KiTNC3wXMCd2fHSwL2wmscPded38DeJ1cwBdw9/vdvdPdOzs6OoZbs4iIlBAn0F8AFprZfDMbA9wKrCha5yfkRueYWTu5Fsy26pUpIqBD/6W8ioHu7n3A7cAqYBPwiLtvMLO7zWxpsNoq4KCZbQSeBP7E3Q/WqmiRrFKgSzmxeujuvhJYWbTsrtBtB74UfImISB3oSFGRJqIBupSjQBcRSQkFukgT0blcpBwFutTc4ZM9rN1xuN5lpNKuI6d5bc+xepchDUKBLjV323ef46PfebbeZaRC8fj8+q//ksXffqYutUjjUaBLzb2253i9S0gNdVykHAW6iEhKKNBFmoqG6BJNgS6J0QwNkdpSoIs0EX0mSjkKdEmMwkikthTokhjl+chpG0o5CnRJTLiHrn760BgG6K8cKU+BLolRFg2frlQkcSjQJTHh0aVGmsOjYJdyFOiSmDhhdK7f+S+PvcyWvdk8ujT//rv2ZfP9y8go0CUxBSP0iHW27j/Bw2u6+dwDLyZSU6PZsu84D6/p5vMPrCv5uP6ykXIU6CIiKaFAl7qImuWiEWhOVHtKm0fKUaBLYoYS1ma1q6OR5acnigyHAl0SEx51RmW7ZnHkRH34af6+lKNAl8Ro2uLwaeQucSjQJTHK8OHTXy4ShwJdElNw6H+FgMrqiLTSvgP9ZSPlKNAlMXGySIGVo80gw6FAl7qoFNzZneVSnlovUo4CXRITZ/StEbrI8CnQJTkK6xHTB56Uo0CXxBTMQ1cwlVU831znQ5c4FOiSGIVRZVH7DtQ7lzgU6JIYL7gdda4SBVc52jpSjgJdEjOUw9Yto9Nc9FeMjESsQDezxWa22cy6zOyOMut91MzczDqrV6KkUfS5SpKto9FUevs6l4uUUzHQzawFuBe4CVgE3GZmi0qsNxH4Y2B1tYuUdFAUVZbPa20rGY44I/TrgC533+buPcBDwLIS630N+AZwpor1SYrEuWJR1lXah6DtJuXECfRZQHfo/s5g2QAzuxaY4+7/XMXaJGUKpy2Wv8BFNjvooQ+9os0zcG4bJbqUMeKdomY2CvhL4Msx1l1uZmvMbM3+/ftH+tLSbOIcKZrxxFKLXEYiTqDvAuaE7s8OluVNBN4OPGVm24H3ACtK7Rh19/vdvdPdOzs6OoZftTQlj7gd1p8foWd0iF655aLEl2hxAv0FYKGZzTezMcCtwIr8g+5+1N3b3X2eu88DngOWuvuamlQsTSveuVw89rppFDn7R0EuMVQMdHfvA24HVgGbgEfcfYOZ3W1mS2tdoKRHnEP/+zOeW5VmuWT1g07iaY2zkruvBFYWLbsrYt0bRl6WZFcusdRyERk6HSkqifEYTfSsj0AHRuhRs4ASrEWajwJdEhPnXC7aKVqazrYocSjQJTFxDlvP+qHt/Z5vOWX0E01GRIEuiSk4UlQ7RUuq3HLJ+AaSshTo0lAUWApyGT4FuiQmzrlcBg/9z2bLQdMWZSQU6JKYOKPMrAdWxt++jJACXeoiqkc8uFMwyWoaR3+FnQgKfClHgS6JidVySaSSxlXx/Wf9TxgpS4EuiYkTRf0ZD6zBWS71rUOakwJdEhNus0QGVsaDLGo/w8CBRUkWI01HgS6JGcoIPaMt9IGNpGmKMhwKdElMYQ+9/BWLsqryRaKjlmd8wwmgQJdEVQ6dgR56Rqe5RO1DqHjhC+W5oECXBMU622IilTSuSsGsszBKOQp0aShZbx0M991nfbtJjgJdEhPnmqJZz6VKl+DT5CApR4EuiYk622J4dDlwPvSEamo0Oh+6jIQCXRIT61wuGR9rDrd1oqAXUKBLgqKmLYaXZ/6KRZV2ikYuV6KLAl0SFKcvXKmHnHZRh/5r2qLEoUCXxESNygvWyXgwVT6wKOMbSMpSoEti4hzlmA/97LZc1EOX4VOgS11o2mJpw72mqnroAgp0qZPCUfmgrE9bjPqo07RFiUOBLomJE0ZZ7xEP9+1nfLNJQIEuiYnaKRp1O4vybz/6nC06l4tEU6BLYmKN0DMeTcMfoWd7u0mOAl0SE+egmMEDi7LZRR/ufHPFuYACXRIU2UZQy2VA1CwXHVgkcSjQpS6iAijrl6Cr1DqJfFSBLijQJUGFp8/Vzr1yireDpi1KHAp0SYymLVY27J2i+igUYga6mS02s81m1mVmd5R4/EtmttHMXjazJ8zskuqXKs1P0xYrqdgr18W1pYyKgW5mLcC9wE3AIuA2M1tUtNo6oNPdrwYeA75Z7UKl+cUJnYEeekab6P39w/s+5blAvBH6dUCXu29z9x7gIWBZeAV3f9LdTwV3nwNmV7dMSYOoS9DFOQtjVgweWBTxeIwTnEl2xQn0WUB36P7OYFmUzwI/G0lRkk5DGqFndJ7LsM+2WOU6pDm1VvPJzOx3gU7gAxGPLweWA8ydO7eaLy1NoOCEXK5ReSkDI/QhRrS2oUC8EfouYE7o/uxgWQEzuxG4E1jq7mdLPZG73+/une7e2dHRMZx6JSWi2i/9WU+mSpegy/r2kbLiBPoLwEIzm29mY4BbgRXhFczsGuBvyYX5vuqXKWkQJ4qynlfD/UDTtEWBGIHu7n3A7cAqYBPwiLtvMLO7zWxpsNq3gDbgUTN7ycxWRDydZFj0VMXzz+WS0RZ6jEvQDfMbJRNi9dDdfSWwsmjZXaHbN1a5LkmhOKPIrLdc8m9/qFcuyvZWkzwdKSrJ8dJ3wov7zuXujW7J5hA9/6HXH5HounSflKNAl8TEyZxzwZE12Z22mPu3b4hDdPXQBRTokqA4h/v3BkGW1dZL/l1HjtCHeMCRZIsCXRITOYoMLe47lxuhZzWg8juIzxVtAI3AJQ4FutRFVDz1Bj30rAZYpZaLTjss5SjQJTGRLZdQHPX1a4QOcK4o0CudD10HHAko0KWKTp7t408eXc/RU70lH4+3UzQ/Qs+m/PsuDvSK31e0+j1PbOH5Nw5VpyhpGgp0qZoHn3+TR9fu5N6nuko+XnD+logzLOZbLllN9OiLQA/tg+4vH3+dj//tr6tTlDQNBbpUTT6MIi8GHeM58jtFszrLZdiH/mdzc0kRBbpUTcWLUoRCJ3whh3AW9Wa85RJl4AjSIe4slWxRoEtiwqHTc670pXkGpy1mM6CiznGT1xux3cKiQl/ST4EuVRfn4JdwMIWDSztFB9/5wP4EBrdH1AdheNsWz2GX7FCgS1309IUCPbR8YB56USa5OwdOlDzNftM6cbaP0z3nCpaF33dfib5UeLsVfF/o9lBnyEh6KNAlMeGwCgdTeLQ+OA+9MJS+98wbdP6PX9B96BRp8favruK9X3+iYFmpDzcYHJlHtVzC22uo54GR9FCgS9XFOWV3uHUQHqUOHilaaNWGPQDsOXamChU2jiNFc/bDs1z6QtvoTG9uG8UaoZ9ToGeVAl2qLs7RjOFgOtMbGqFHTFvMfwCMbkn3r2xBLzw00h4I9Bg99IJWjWRKuv93SEMpGKGHAv107+AIPR9i4ZAPrz8q5WfVPRPaFr2hQD89MEKv/PePeujZpUCXxBT00Eu0E2Cw5VK8szAf6L0pbyecCr3vvhJtqagReph66NmlQJcEhafklQ70fLsgPGqHwSDrixFozSbcijpd4sMN4EzwgdbTV7hdBp9j8HZfyj/0JJoCXarGgkNFI0/xGjHLpVSInerpK/jeNI/Qw+8//JdJ/j2f6/eK77/gMn7qoWeWAl3q4mxf6VkuR0/nZn2c6e0vOOKxt8K0vWZ24uzgh1d4Wxw/k98W54d8saidqZItCnSpmkqH6xfOsT6/5dLf7xw51TNwgegzfecHWZwecrMJh/ip3nOMCWbyHAk+3Ar/gomatqh56KJAlyoaOGw/xqH/pVouJ3r66HeYOXl8bnm4/ZCyEXp4FB3eEXqm5xwzp4wD4MipntyyiBF6wemINUIXFOhSRZVGhgUn5+rrZ9zoUYxpGcXBk7ngyl8YY8bkXKCdKnHAUVoCPfw+ThWM0PuYMSkf6LntcfBEbvtMHj+6oFUVdQUojdCzS4EuVVPpLH/h0Dlxto+2saOZPnkse4/mjv48HIxILy4R6Hlp2SnaV+KgIci95/a2sYxuMQ4Hgb472D4LprUV9NujtsQ57RTNLAW6VE3fQMul8kyMAyd6aG8bw8xJ4wcC683gPC1Xz54SrHP+ybhSM0LvKz1CP3D8LO1tY7h4yni6D+e2x56jpwF4+8WTOHq6d6DtEnUFKE1bzC4FulRNvncbdfrWcAAdPHmW9raxzLpwPNsPngSga98JzOD6Be3A4Mg03BPujZjl0WwKWy65UffJs30cO9PHjMnjWdDRxtZ9JwDYfvAU40aPYsH0iQAcClpU4a2sHrqAAl2qKD9CjxMoB0/0MLVtDO+YPZm9x86y68hpXuo+wvypE7hk6gXA4Mg0PCc9LS2XUicny594bObkcVw+cyJd+05w7Ewv6948zNWzp9DRNhYY/MslauezeujZpUCXqsn3biv9yX+u39l3/AwdbWN538IOAP7nqs0823WQD14+jXGjW5g2cSzb9udG7ifPnj/bpdmFP5jyLZf8+51z0Xg+dPl0+vqdv/jpJtbvPMq/WdBOx8RcoO85ev4ZJzVCF1CgSxVVGqHnQ2fHwZOc6e3nshkTWTCtjSVXzeDH63YxtnUUn7l+HpDro6/rPgLA7mCkDunpD4dPYbA3GJm/1H2YllHGopmTuXbuFN63oJ2H13QzdcIYbnv3XBZObwNg897jQGHfXPPQBaC13gVIc/pV1wHmtU9g1pTxA8vys1wiT/EahM7LO48CsGjmJAD+6hPv5Jar93HlxZOYfWGu3XL9gqn8YtNeXttzjA1vHRt4jmNnekmD8Pt49a2j9Pc7//LqHq6dO4XxY1oA+O6nOnnitb1cO/dC2oN2y5yLxrM++KCLmrYYteO4v99Zsf4tbrl6Jq0pPw1xVumnKkPm7nzye6u55Z5nCpbnR4a7S7QEct+X+3flK7tpbxvLFUGgj21tYclVM7lk6oSBdZe+42LaxrZyx49e4f8+t4NZU8Zz2fQ2dgQ7UPPWbD80cIh8o3J3nt16oGB64vYDuRksH7p8Gqu3HeJPf/QyW/ef5JPvvmRgnfFjWrjl6ou5OPSh+YHLOnhmy4GBHaOlvHXkdMnlj63dyRcffokfPrdjpG9JGlSsQDezxWa22cy6zOyOEo+PNbOHg8dXm9m8qlcqDSN/wMvhoqvt5A96eePAyfO+B3KB/sSmvTy+aS+3vmsOLWVObj61bSzf/NjVvLbnGFv3n+DOm69gfvuEgT4z5A5E+th9v+aW//2vI31LNfXwC938zndX8+ia7oFlbxw4ySiDP196JTMmj+OxtTv5eOdslr7j4rLP9an3zqPnXD93/9OGgtZWuMmS3/5tY1sLZhbtCoJ+//F0XZtVBlVsuZhZC3Av8JvATuAFM1vh7htDq30WOOzuC8zsVuAbwCdqUbDUX9QIfGPQGjl0soenX9/P+y/rKHj8a/+8kWOne1k0cxKf++BvVHydJVfN5P2XdXCu35k8fjS7Dp9m1Ya9bNp9jCtmThroJe84eIpz/V72A6Kent16EICtwYdR37l+Vm3YwzvmTGHORRfwyy/fwNHTvQM7Pcu5bPpEPv/BBdzzxJaBfQwwOCX00Mkent6yH8gdvNV96DRzg1lDadmhLNHi9NCvA7rcfRuAmT0ELAPCgb4M+LPg9mPAX5uZeaWzNUlDc3de23OcE2f7eNe8i+jvdw6e7OHJzfsG1tl77AxTLhjNyld2s3H3Mf7DBy7lZ6/s4VPff545F41n4bSJA+vOmjKeT7xrDl/40EIuGBNv903b2MH1/v21s/ibp7r43e+t5reumcXG3YO99cc37uH6Be1cMKaVw6d6WL3tEB+5cnriveLn3zjEpPGtvG36RM729bP/+FnW7jgM5FpNbWNbeWbLfrbsO8Ff/841AIxpHRUrzPP+840Lmd9+AQ+u7mbHwVzrZvkP1zJ5/GjePHiKfnfuXnYld/3jBr79xOvcdcsiJo8fzYtBHS++eZjuQ6eYMXkco1tGsefoGV7ddZQPXj6tYT8UJR6rlLlm9jFgsbv/YXD/94B3u/vtoXVeDdbZGdzfGqxzIOp5Ozs7fc2aNUMueH33EZbd+6shf58ko2PiWNydAyfO7/Fe2jGhxHcMTbjl0uxquT0u7ZiQqm2VNqu++H7eNmNi5RVLMLO17t5Z6rFEZ7mY2XJgOcDcuXOH9RxTLhhdzZJkGCaNa+W9vzGVbftPsiU4mnHc6FHccNk0WlvOH+Ft2n2MaRPHMbVtzIhfOz8zJj8MMeDYmT6efn3/iJ+7Vi4PpmdCru5qjoEvnzGRF7Yf5l3zLmSUFT7zopmT2PDWsYJ9GjdfNTPYL6Gwr6eJ42oTvXGedRcwJ3R/drCs1Do7zawVmAwcLH4id78fuB9yI/ThFHzJ1Als//rNw/lWEZFUi9NgfAFYaGbzzWwMcCuwomidFcCng9sfA36p/rmISLIqjtDdvc/MbgdWAS3A9919g5ndDaxx9xXA/wF+aGZdwCFyoS8iIgmK1chx95XAyqJld4VunwF+u7qliYjIUOhIURGRlFCgi4ikhAJdRCQlFOgiIimhQBcRSYmKh/7X7IXN9gPDPY9nOxB5WoE6Ul1D16i1qa6hUV1DM5K6LnH3jlIP1C3QR8LM1kSdy6CeVNfQNWptqmtoVNfQ1KoutVxERFJCgS4ikhLNGuj317uACKpr6Bq1NtU1NKpraGpSV1P20EVE5HzNOkIXEZEiTRPoZvZlM3Mzaw/um5ndE1yY+mUzuza07qfNbEvw9enoZx1RPV8LXvclM/u5mV3cIHV9y8xeC177x2Y2JfTYV4K6NpvZR0LLy14EvEp1/baZbTCzfjPrLHqsbnWVqDPx1wy99vfNbF9wBbD8sovM7PHgd+ZxM7swWB75e1aDuuaY2ZNmtjH4Gf5xI9RmZuPM7HkzWx/U9efB8vmWu1h9l+UuXj8mWJ7oxezNrMXM1pnZTxOry90b/ovcxTNWkZu33h4sWwL8jNwFYN4DrA6WXwRsC/69MLh9YQ1qmhS6/Z+A+xqkrn8LtAa3vwF8I7i9CFgPjAXmA1vJnQ65Jbh9KTAmWGdRDeq6Angb8BTQGVpe17qKakz8NYte//3AtcCroWXfBO4Ibt8R+nmW/D2rUV0zgWuD2xOB14OfW11rC56/Lbg9GlgdvN4jwK3B8vuA/xjc/lzo/+mtwMM1/nl+CfgH4KfB/ZrX1Swj9L8C/pTBK49B7sLUP/Cc54ApZjYT+AjwuLsfcvfDwOPA4moX5O7HQncnhGqrd10/d/e+4O5z5K4wla/rIXc/6+5vAF3kLgA+cBFwd+8B8hcBr3Zdm9x9c4mH6lpXkXq85gB3f5rc9QTClgF/H9z+e+DfhZaX+j2rRV273f3F4PZxYBMwq961Bc9/Irg7Ovhy4EPkLlZfqq58vY8BHzazmlwV28xmAzcD3wvuWxJ1NXygm9kyYJe7ry96aBbQHbq/M1gWtbwWtf2FmXUDnwTy54eve10hf0BupNRodYU1Ul313halTHf33cHtPcD04HZdag3aAdeQGw3XvbagrfESsI/cIGkrcCQ0qAm/9kBdweNHgam1qAv4NrlBaH9wf2oSdSV6kegoZvYLYEaJh+4E/iu5NkLiytXl7v/o7ncCd5rZV4Dbga82Ql3BOncCfcADSdQUty4ZPnd3M6vbtDQzawN+BHzR3Y+FB5H1qs3dzwHvDPYV/Ri4POkaipnZLcA+d19rZjck+doNEejufmOp5WZ2Fbm+6vrgl2c28KKZXUf0xat3ATcULX+qmnWV8AC5Kzp9tRHqMrPfB24BPuxBY65MXZRZXtW6ItS8rirVUi97zWymu+8O2hb7guWJ1mpmo8mF+QPu/v8aqTYAdz9iZk8C7yXX4mkNRrvh1451MfsquB5YamZLgHHAJOB/JVJXLXcKVPsL2M7gTtGbKdzx8nyw/CLgDXI7Hi8Mbl9Ug1oWhm5/AXisQepaDGwEOoqWX0nhzsdt5HYCtga35zO4I/DKGv4Mn6Jwp2hD1BXUkvhrlqhhHoU7Rb9F4Y7Hb5b7PatRTQb8APh20fK61gZ0AFOC2+OBZ8gNZB6lcOfj54Lbn6dw5+MjCfw8b2Bwp2jN60rsF7VKG2c7g4FuwL3kemavFIXEH5DbudYFfKZGtfwIeBV4GfgnYFaD1NVFrh/3UvB1X+ixO4O6NgM3hZYvITdzYSu59kgt6votcn3Ds8BeYFUj1FWizsRfM/TaDwK7gd5gW32WXC/1CWAL8AuCQUC537Ma1PU+cjsbXw79Xi2pd23A1cC6oK5XgbuC5ZcCzwf/Fx4FxgbLxwX3u4LHL03gZ3oDg4Fe87p0pKiISEo0/CwXERGJR4EuIpISCnQRkZRQoIuIpIQCXUQkJRToIiIpoUAXEUkJBbqISEr8f7DBJ3GnZJ8oAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "<Figure size 432x288 with 1 Axes>"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABGbUlEQVR4nO29eZwjV3nv/X2qtPS+zfTsM+7xigdjwJ54AcJusCGxAwRiEt/ADQkhCTcJITeBS14gLG+C74VwSeDNJUCIkwtO4hBiiIkxBC8sxp4xxtt4Fo/Hnp6lZ+t9kVRV5/2jFlWru6cl1Wl1qft859OfkUpS6ZR06qenfuc5zxGlFAaDwWBYHVjL3QCDwWAwNA4j+gaDwbCKMKJvMBgMqwgj+gaDwbCKMKJvMBgMq4jMcr3x2rVr1cDAwHK9vcFgMDQlu3fvPqWU6q/39csm+gMDA+zatWu53t5gMBiaEhF5Jsnrjb1jMBgMqwgj+gaDwbCKMKJvMBgMqwgj+gaDwbCKMKJvMBgMqwgj+gaDwbCKMKJvMBgMqwgj+k2K8jwe+95duE5puZtiMCxKqTDD4/d8F1PKffkxot+knDh0kDv/+n/z7GOPLHdTDIZFOfjQLv7jc3/ByPGjy92UVY8R/SbFdRwAPNdZ5pYYDIvjBVeknusuc0sMRvSbFv8yWXnmctmQfkJbx9g7y48R/SYlFHulvGVuicGwOEb004MR/SYlEntzDhmagEj0PROkLDdG9JuUcuRkTiJD+gn7qYn0l5+qRF9ErhWRvSJyQETeN8/jbxeRkyLycPD36/qbapiFuVw2NBHR2JPpr8vOovX0RcQGPgtcAwwCD4rI7UqpJyqe+o9KqXcvQRsN82Aulw1NhQlSUkM1kf4VwAGl1EGlVBG4FbhhaZtlWIzyQK45iQzpp2zvmCBlualG9DcDh2P3B4NtlbxJRB4RkdtEZOt8OxKRd4rILhHZdfLkyTqaawhRGNE3NA9RNzXdddnRNZD7DWBAKXUpcBfwd/M9SSn1eaXUTqXUzv7+upd4NACEto4RfUMTYCL99FCN6B8B4pH7lmBbhFLqtFKqENz9AnC5nuYZFsLkPRuaiciONJMJl51qRP9B4AIR2S4iOeBG4Pb4E0RkY+zu9cAefU00zEdk75iBXEMzEEb6xt9ZdhbN3lFKOSLybuBOwAa+pJR6XEQ+AuxSSt0O/K6IXA84wBng7UvYZgNmINfQXET91ET6y86iog+glLoDuKNi2wdjt98PvF9v0wxnw0zOMjQT4RWp6a/Lj5mR26SYMgyGZiJK3jFXpsuOEf1mxUT6hiaiHOkb0V9ujOg3KeUZueYkMqQfk22WHozoNymmtLKhqYgGck1/XW6M6DctJnIyNA+RvbPM7TAY0W9aopPI2DuGJqBcNsRE+suNEf0mRZliJoYmwszITQ9G9JsVU1rZ0ESYICU9GNFvUkw2hKGpUMaOTAtG9JsUI/qGZsLMIE8PRvSbFLNylqGZiPqpiVGWHSP6TYpZaNrQTJTLMJggZbkxot+kmIWmDc2EKcOQHozoNyvG0zc0EcaOTA9G9JsUMzBmaCqUmZGbFozoNykme8fQTER2pIn0lx0j+k2KMnnPhibCBCnpwYh+s9IE9k7xmWfwCoXlbsaqwJuepjg4uNzNWBAj+unBiH6TEp08KT2JVLHIwV94AyP/8i/L3ZRVwZl/+AcOvekXl7sZC2JEPz0Y0W9S0r4wulcsoaan8cbGl7spqwJvbAx3dDS1/SEayE3xlelqwYh+05Ju0cd1AFCeu8wNWR0oNxDTlA6UlueVLG87DEb0m5ZyPf2UnuRuIPZmoLkxhP3BTeePrDKRfmowot+kpN0jVY4f6ac18lxxhGIafu4pIxqCMkHAsmNEv0lJ/eQsx9g7jSS0d1RqRd+UYUgLRvSblHL2zvK2YyGMvdNgUm7vkPJss9WEEf1mJeWRftneSakIrTCiK6q0Rvqe8fTTghH9JiX1C6MHEWdq27fSCFN4Uxrpp30MajVhRL9JUaQ80o/snXS2b8UReuZOukXf2DvLjxH9JiXtk7OUGchtKFGevptSe8dE+qmhKtEXkWtFZK+IHBCR953leW8SESUiO/U10TAfqY+cIk8/pe1baXhpz94x9fTTwqKiLyI28FngOmAH8FYR2THP8zqB3wN+rLuRhvlId+Rk7J0Gk3J7J/pRWuZmGKqL9K8ADiilDiqlisCtwA3zPO+jwCeAGY3tMyxAZO+kNJI29k5jaRp7xwQBy041or8ZOBy7PxhsixCRy4CtSql/P9uOROSdIrJLRHadPHmy5sYayqR+WrvJ028sKc/TN5Oz0kPigVwRsYBPAe9d7LlKqc8rpXYqpXb29/cnfevVTcoHxkKbwUT6jUGl3tOvvGFYLqoR/SPA1tj9LcG2kE7gEuBuETkEXAXcbgZzl5a0Xy4r1wzkNpSwH5hI37AI1Yj+g8AFIrJdRHLAjcDt4YNKqVGl1Fql1IBSagC4H7heKbVrSVpsAJrg5DEF1xqLSnekn/YZ5KuJRUVfKeUA7wbuBPYA/6SUelxEPiIi1y91Aw3zk/rSysbeaSjlgmvp/LxTP4N8FZGp5klKqTuAOyq2fXCB5748ebMMi5NyT9/YO43Fa47sHZO0ufyYGblNSnlGbjoj/XL2Tjojz5VGeEWV3uyddAcpqwkj+k1KeSA3nSdR2d5JZ/tWHGEQkFJPP+39dTVhRL9JSXvkVLZ3UnolstJIefZOtLKXsXeWHSP6TUrqPVIzI7ehpD5P30t3ivFqwoh+s6KaI3vHDOQ2CC/l2TspvzJdTRjRb1LSfhIZe6fBpD57x0zOSgtG9JuUtIt+eeWsdEaeKw2V+kg//D+l/XUVYUS/SUm7R2rsnQYTFVxLd6RPWlOMVxFG9JuUtF8ul+2ddEaeKw2V9uydlJcCX00Y0W9W0l61MMreSWn7VhphpF9Kd6Sv0ppttoowot+kpD7Sd8zKWQ0l9fX0TaSfFozoNykq5VULQ3vHDOQ2BpX27B0v5YkHqwgj+s1K2iMnM5DbWNKevUOUvrO8DTEY0W9W0p6yGdkMKbUbVhrlgmvpjPSjH6WUXpmuJozoNynR5XxqRT+wd1LavhVHeEWV0h/ZtAcpqwkj+k1KOXknpZGTWTmrsaQ+e8fYO2nBiH6z4jVH9o4ZyG0MKu3ZOynvr6sJI/pNStpT4MzKWQ0m7dk7Ke+vqwkj+k1K2lM2MXn6jSXl2TsxQ3JZW2Ewot+0pH1gTJmCaw1Fpb32TsprRa0mjOg3KeUCVmkVfWPvNJRQTFMa6ad9Bvlqwoh+s5LySJ8wiySlA4srjdSvnJX2/rqKMKLfpJQHxtJ5uRzZO+Ykbwypz94xop8WjOg3KWmPnMzKWQ0m7dk7pLu/riaM6Dcpqc97Nnn6DSXtK2dFP0omCFh2jOg3OylN2YxsBjOQ2xjSnr0TXpmalM1lx4h+k5L2SD8Sn5R6zCsNlfrsHTM5Ky0Y0W9S0u7ph9k7qW3fSiPt2TspD1JWE0b0m5WUR05leyed9tOKI+3ZO5HYp7O/riaqEn0RuVZE9orIARF53zyPv0tEHhWRh0Xk+yKyQ39TDXHSXobB2DuNpWzvpDPSJ+UpxquJRUVfRGzgs8B1wA7grfOI+leUUs9TSr0AuBn4lO6GGmaT+hmOjsnTbyhNEumb/rD8VBPpXwEcUEodVEoVgVuBG+JPUEqNxe62Y67hlpzI1klp5GTsnQaTetFPeZCyishU8ZzNwOHY/UHgysonicjvAH8A5IBXzrcjEXkn8E6Abdu21dpWQ4xosssyt2MhygujG9FfamZ9xim1d6IgxYj+sqNtIFcp9Vml1HnAHwN/ssBzPq+U2qmU2tnf36/rrVcnaa9aWDIzchtG7DNObfaOsXdSQzWifwTYGru/Jdi2ELcCv5CgTYYqSPvlslkYvXHEf/jTau+Ygdz0UI3oPwhcICLbRSQH3AjcHn+CiFwQu/t6YL++Jhrmo7zkaLpFP63tW1E0g70TZZmZ/rDcLOrpK6UcEXk3cCdgA19SSj0uIh8BdimlbgfeLSKvBkrAMPC2pWy0IXYSpTVyMgujN44miPTNjNz0UM1ALkqpO4A7KrZ9MHb79zS3y7AIafdI49k7SilEZHkbtIJpBnvHlFZOD2ZGbrPSLKIPJmNjqWkieyet/XU1YUS/SUlzpK+UglIJwug+pdHnSiH6gRVJZfZOvI+msb+uNozoNynlAlYp9MyDtkkuB5gTfckJPl/J5dJp78wS/RT211WGEf1mJ4UDY6HwSDbrbzCDuUtL+CObzabS3pn1o28CgGXHiH6TkupIPxCeMNI39s7SotzylVUaI/14HzVXfcuPEf0mpezpL3ND5iGK9DXZO57y+NAPP8STZ55M3LY08fCJh/n4/R9PLoQqZqd5XuomQMXTNE3K5vJjRL9JKWdDpOsEh3IpAF32znhxnK/t/xo/OvqjpE1LFfcduY9b996KqxJG53F7B1J3ZTU70k9ff11tGNFvVtI8I7dC9JNaDo7n76/klZK1K2WEx5NU9FWF6Kctg2e2p7987TD4GNFvUqKISanUCX+lvZPUg/KCYy26xUT7SRslNxB9T1OkH9ppKYv0TfZOujCi36SkOSNCORWin1CEwkjYRPrzM+dHNsWRftoClNWIEf0mJdUnkhtm7wR2Q8LBu9DeWWmRfng8iSP9KE9fj52mm1nff9r66irEiH6TkmbRnzOQm/CSfqVG+kXPF31HJYzMU+/pm5TNNGFEv1nx0nsiKc15+mEkvNJEX5enH+bpW7m8f7+UNtGPp2waT3+5MaLfpMRlPm2DY6HoW5ry9MNIeMXZO0GknzhlU80eyA3ttdQQF/1lbIbBx4h+kzIrYkrbhJfI3tET6a/47B1dA7mptXfinn66ApTViBH9JkWlOA0usnfygd2Q8JJ+xdo7nq6UzWAgN/y80yb6cSsybQHKKsSIfoNQJZfx+47o6/RpHsgtVXj6uuwdb2VF+lH2jmZ7J9WeviaDRzke4/cNRuMZhuoxot8gxu4eZPTfDzL10JCW/TVF9k5e80CuuzIj/TAltV4ieyf8vJ10fU6zsnc0BT3j9x1h9N+fZvKB41r2t5owot8glON3fHdCzwmZ5jQ4FYhONJCb8ERf6SmbySN9//ONPu/U2Tv6rUh3rDBn34bqMKLfIKys/1Grop6JM8pTiBXsM21pcJUpmwlP9JU6OWvJyjCkTPTDnB2xLG0BiiqGaaq2lv2tJozoNwgJOmfYWZOjsALRT9ssx8oyDElniEbZOyvM09dXhqFS9NM5I9eyLG19VZXCPmYkrFbMJ9YgItEvaYz07WCfqRP9ipRNXfbOCvP0tQ/kZkPRT9fnFFo6YtvaI30sI2G1Yj6xRhEG5QVNoq/KkX7a7J1QdMIUQhLaFyu1tHLk6SeekRsO5Aafd8rsnVDoLcvS1lcjm9R4+jVjRL9RBJ3TK2kSaKWwrCDST9s8R6ey4Jqe2jsr1dNPXnunouBa2kQ/snf0+e9eIPpmILd2jOg3CjdY3lDXQK7yyvZOyjr+nNo7CS/pV+rkLF2Rftrz9KOBXNvWGOkH+3HT1febASP6DSIUZl0DuXF7J3UDuaXZtXeS5umvxNo7SqnIttJVhsFK+YxcS2v2Thjpp8vabAaM6DcIpT3Sj6Vsasp99jw9q3Apd3akn/RKZCVm78SvWnTl6essuKaUwtN0BRn2KdGZvWM8/boxot8oPP2ib2m0dwrTDl94z70M7hlOvK85efoJ7YvQ/nA8J3WZSvUSv2rRNpCrMU//4MMn+dJ/vw9HQ3+NBnI1Zu94wRWzMvZOzVQl+iJyrYjsFZEDIvK+eR7/AxF5QkQeEZHvisg5+pva3ISd09N1EmmO9GcmSpQKLmOnpxPvq+zp6ym4Fh/oXCm+vtZIPxzIzerz9MdPz1CYdChpyDaLFm63LH3FAR3j6dfLoqIvIjbwWeA6YAfwVhHZUfG0nwA7lVKXArcBN+tuaNMTRvozGiJ9NTsbQkfwFI05aLhqmFNwLWmefiwSXimiH4/0k9bemTOQqyHS98IgRUd/iPVXLf0rVmQtbUkMzUA1kf4VwAGl1EGlVBG4Fbgh/gSl1PeUUlPB3fuBLXqb2fxEolryojo8de+L8uUy6In0tZ7kjgO2jdhWuPNE+4tHwitlMDc+PqGtnn5e3+SssB94OiLpuL2jIb3YiwdOJtKvmWpEfzNwOHZ/MNi2EO8AvjXfAyLyThHZJSK7Tp48WX0rVwKxzunNJKyqGF7Oa8ze0XmSK6eEZDIQXokktXdikfBKEf1Z9o6mevpRtpSGSF/rlV98IFfH/qbLx2ci/drROpArIjcBO4H/Od/jSqnPK6V2KqV29vf363zr9OPFRT9hZKdmi76OtLXw5NGSseG4/hwCS4Kd68negZVj78RLSugrwxBOzkpuIUZXfjqCAKXX058VNBnRr5lMFc85AmyN3d8SbJuFiLwa+ADwMqVUQU/zVg6zfMjppB5upaevIdJ3NUZ2jgPZbPlHKWk9/bi9s0LSNnUO5EZ9y7Yhk9Hj6WsMAuIzcnWMP8VF30T6tVNNpP8gcIGIbBeRHHAjcHv8CSLyQuD/ANcrpU7ob+YKIL6kbVJ7J4iWLDvM3kmbvePMsneSRmNxe2elFF3TmbJJLDtGMhktnr7SGQTE+quWSH/aePpJWFT0lVIO8G7gTmAP8E9KqcdF5CMicn3wtP8JdAD/LCIPi8jtC+xu1RKP9PXZOzojfb99egZyfU9fQntH40DuSrF3tA7khp+vZfm2ms5IX4u9U+6vWib/xdJIzXKJtVONvYNS6g7gjoptH4zdfrXmdq04ZkVMSTtqlA2hfyBXy2SXMNK39QzkxiPhFTOQG7tiSZyyGfYty/YjfQ15+jrtnVn9VcuM7/hls4n0a8XMyG0UnoKMH/kmFdZ4qVrQNJCrM2WzFIi+hJF+QnsnNjlrpXj6OiP9aCDXEshmtXj6eu2div6aVPjDlOeMmBm5dWBEv0EoV0VLuyW9JC2nbGq0d3QO3DkOZDLllNKE9o4X+1FbKZ6+zuydaKA88vR12jv6MsPK/TVh/3fDFFXbRPp1YES/UXgKCdbJxUkY6VMZOembnKVnxqRbYe8knJG70rN3NOXph6Kvo+CaXk+/XGXT35Bwf+HykFnLZO/UgRH9BqFcVV4yMXGkX15+DjSXYdA4OUtEz0Duis/eSVx7J5iRG0b6Gjx9rXZfOJCraQa5csKqoibSrwcj+o3Ci4t+0lBnCSJ9nQN3oaevacxhJWbv6Iz0VTzSz+q2dzQO5Eb9IeE+XQW2ILbx9OvBiH6DUG7c3kkY6VRMztIR7WivvZPVl6e/ImvvxAuuJV4usZynj61J9JdkIFeXp+8htvgzvo3o14wR/UbhKSRjgaUve0fX5TLotnccJJPVlqfveA552y/TvFI8/fA48nZeQ6RfOZCrYXKW0mnvzLYjE9dccxXYFtjG068HI/oNQnkKLEFsK7mnXzEwlsbsHZ15+p7yaMm0ACvH0w/tnbyd11ZPH9vP09cyOUtn7R2vwt5J7On7kb5YYjz9OjCi3yjCS1JbkmfvVFTZ1BHt6LR3cBw/qtOUp+96Li22L/orJdIvuSVsscnZOX15+iJBpK9j4RP9ZRhEU5CiXOWX7baMp18PRvQbRRjpZ5JH+lTW09dQo1y3vUNWX56+oxxaM63AyhnILbpFcnYOW2xtyyViWaB7IFenp2/rmVeiXA/J+AO5JtKvHSP6DcKPToKMA02RfnkgN32LqEgmqy9P33MjgVxJ9k7GypCxMvrsHctCMnpm5Oq0d7RXhQ09fUuMp18HRvQbROjpY1uJa+/MqaefUk9fV56+q9zIClkx2TtekZzl/5Alrb2jPBdEYvaOhoHcpVpEheRjPJGnb0vyOlarECP6jcJViKUpt1jz5TIszeQsXXn6jnLIWBmyVnbFePqRvWPZeiL94LOWjA06Cq5pHcgNSyvbifcFQR/NGE+/XozoNwg1y9NPmrJZOTCWLnuHkoNky9k7SX1Xz/OwxKLFblk5kb5bJG/nscWetTJYXXheefwkjYuo6F7pLR7pG3unZqoqrWzQgKei7J3EC6PPOYk02ju6BnJte0nsnYK7MhZlK7iFaO6BFnsnivQ1VdlcSntHR/ZO1nj69WIi/QYRppmJDk/fq7B3NGTvhNUU9RVcy2rL03c8397J2/kVJ/ra7J3gs5ZMBqWj4NpSDOTqqr3jxvL0jb1TM0b0G4UbTs7S4UPqL8Ogc2H0aHJWGOkn/JFbqZF+zs6RkYyGKptudFUlmYweT38pUjYtTTNyHT97R8yM3Lowot8glOcXiUKHpx8NjC2Bp68jciqVkGyQvSOSuH2u52Jb9oqK9CNP37IT195R8YFcTXn6Wu0dzf01zNPHwkT6dWBEv1F4XpS9o6vgWppTNskEw0V28vK3YaSft/MrZiA3tHcssbQsjK59IDdcM1nrGrl6xqDiVqmJ9GvHiH4DUEqBh7YZuXOqFmpcLjH5CemCUr7NgF8aQNdAbj6z8iL9jGQSZ+/MGsjVVWVTq70T1ooKUzaTTs7y/Ktm4+nXhRH9RhDVygmyd3RV2VyKSD9p2wLBEbsc6etYGD20d1ZKpD/jzkR5+slLK1cM5OpcI1djwTVtkb4Ty4QzkX7NmJTNRhBVQfSrbCYtuFa5KIWOpbO0RXah6GeDrmVZWuydjGSwLIsZZyZZ+1JCPE9fi70TDuRmNVXZ1LmojublPX1P3wqqbJoZubViIv0GEEZLYgmSEX32js4ZubrsnVD0Ndo7juesuEg/zN7RkbIZt3fIZECpchG2OtFq71SmGCfdZaz2Dp6e/r+aMKLfAKJL5CDST1xwrWJRCp32ji7Rjw/k6lgY3RabnJWj4Gny9L9yIzzxb7W95uGvwm2/puXtC26BlkwLGckknpzl2zvlyVlAYotH6SzDMKe/asrTt/WU7l5tGNFvBKGnGdbT1zU5S9e0dpbA0w/ER0QgYdSp3dNXCvZ9Cw4/UNvrnv0R7L8r8du7novjOeTsnJ+9o2FhdJFQ9P0f26SLo0dBgIaCZkqjHak8PykiWi4RPeMOqwkj+g2gvHC1nto7oUeqcyBXaaq9E4pNKD46Uggrs3cSH28YWdf6A+IWa3/NPIQZSGGefuLsnZIDmfJALgAJK20uhb2jpb+GP0IZy0T6dWJEvxG45U4fFolKYnlU1tNPk70Tio0EImR1tONNTCTaZTxP31Ne8mwXJ7CI6hF9p5DYlA6vVsKUzaT2jjs5gd3e4d8JPndt9o7Wgdzk/TUaH7OtaA1mE+nXhhH9BqBi2Tuh95okv7iyyqbW7B1N9k7o6dudXbgT44n26XpuVHsHoOAk9PVDsXdqFH2nAKjylUKdhJG+roFcb3wCq6sLiNk7CURfeSrqUnpSNiuqwiawI8NihZIJrFIwkX6NGNFfhOnp6eQ7ccNOXx58SuKVVmbveBonZyW2dwL/PvT0rc4OvPFkkb6jnKj2DpB8glYU6de4n+jHItn7xyN9HSmb3vg4dqcf6ZcHcuvfpxcLInRE+mH/tLTYO7GkCI1VZrWc501CVaIvIteKyF4ROSAi75vn8ZeKyEMi4ojIL+pv5vJw7Ngxbr75Zk6ePJloP5FlG3j6kDCCCk6abN5fLNwpJs9oKQ/cafL0gzx9u6MTd3ws0T5dz8WyrCjSTzyYG4p9reJdry1UwSxPX5JH+u74OFZHJxCbH5HA04/3AR3ZO07R/7wyLS3BGyS4yg0j/TBlExLPyj169Cg333wzp0+fTrSfZmFR0RcRG/gscB2wA3iriOyoeNqzwNuBr+hu4HIyMjKCUoqxsWSiFUX6duySNEH9nTBSyrW2AVDUEKXEF1FJFIlFnr4vPlZnZ+JIP5ycpS3SD9fZrcfTr+d1FVQO5Cb19L3xcawo0k9u78Sjex1RdHFmmmy+Ra+nn4ldNSdsY3iej46OJtpPs1DNjNwrgANKqYMAInIrcAPwRPgEpdSh4LEVNT2uGEQopVKyTIi4py928ki/PNnFIpPPU5xJLvrxE0epclXkmvdTMTnL7uzEG6/f01dK+QO5QcomaLR36o30E9o7szz9hCtnKdfFm5zE7vQ9fXSIvqvX3ilNT5NtaYlmDSfJ048P5EbrSCRMK3WCzyo831c61dg7m4HDsfuDwbaaEZF3isguEdmV1DJpBGEncJJOa4/V3pGMBk8/TNkUi1xLKyUNkb4bO9ET/SBVDORanZ14U1N1i1AoiGH2Dmi0d9waf8zrvUKoIB7pZ6xMInvHm5wEmBvpJ8jTjwcAOuyd4sw0udbW8kpqSXYZnjd2PNJP1r4wqDOivwQopT6vlNqplNrZ39/fyLeuC22RfnjiWDF7J8nJ5JUHhnMtrdoj/STRXSRCgfUUDjDWm7YZCmI8e2fGTVh/J8zaqXkgV0+kXzmQm8Teccf8qyi70/f0rbZ2oPw91MNS2Du5ljY9kf68nr6J9GuhGtE/AmyN3d8SbFvxaI/04/aOBk8fhGyrHtHXdUnvDg8DkOnrBcAKbAe3TtEPBdGSpRjIrSdlk9p/LCqIR/pJZ+R6QTqsFYi+3dvjN3FkuP59LpG9E3qGieaoxDx9NHn6JtKfy4PABSKyXURywI3A7UvbrHSwFJG+juydyN6xhFxLixZ7Z1Z0l6BtTiD6dl8fULYdvDoHw0NB1JqyGdk0daZs1moLVVBp73jKq9vXD8dLwkg/0+v/2IY/vvWwdPZO0PeT+DtRymZ5clbSPH0T6VeglHKAdwN3AnuAf1JKPS4iHxGR6wFE5GdEZBB4M/B/ROTxpWx0owjFXqenH0UnSSL9cH+Bp1+cSV5uWJe9454ZRlpasFpbgbIYuXVm8IQ57HF7J3Gkn7KBXKDuaD/8XMOUTbunx2/imTN1t0+/vTNDrqVVi0iX7R19tXfC8zxpcNcsVFVPXyl1B3BHxbYPxm4/iG/7rCi0R/q2hdiB2CeakRuKvpBtbaN4YihR+6C8PJ5/O5m9YwfRJpTFyKtzVu7SRPoJyjDU87oKKlM2gQSRvn8FFU3Oymaxurpwh0fqbp+uACCkND1FrrUV0Ji9k7GQMHAykX5NmBm5Z2FJPP2MDk8/eK1IkL0zlax9zD65k8zw9UW/J7pvdwWR/lhC0bdsWmx/ck/ylM06xXsJZuRmxI+76p2VG0X6QRkG8H39JPaOp3lyVnFmmmws0tdScE1T+jMYT98QQ3uevlWuvaNjRq6I7+lryd5xFVYm+cCYMzJMprcvuh8OMNabqx/ZO1onZ9VRe0cp7ZF+WHsHqLuIXHgFZXd0RNsyPb3JRD+cB5JJvhyhUsq3d2Ipm4kmZznlPH00efpG9A0R2iL9eWrvJEkzi9s7uVbf009aadPzFJngKiSRvXNmtr0TilG9RddCMYxn72gT/Vr2Exd6DaKfkQwZK4MVDG7WH+mPI/k8kstF2+y+vmhAvR5Coc9krMSRvlPwq5LmWlpj2TtJ7J1ywbVyHStj79SCEf2zsDQzcpN31LDsQjbfQralFZTyT64EeJ7CzlrR7Xqp9PQlm0VaWuouxRCKoW2VPX1tA7lusfo6MHFLR8NAbngskb1T50CuNzYeXU2F2L0JI/2gb9pZK7GnH16FZltafeEHSkkSD2LjYybSrw8j+mdBW6QfXZLq8fSnx/waIW3d3eX6OwktHuWWRb/eS3pVLOJNTEQ5+iF2Z/1F16LJWeJHxVkrq28gF6qP2jVG+uGi6EDZ3qlzgpY7MR5lSIWEnn69V3+h0NtZK7G9UwzGm3KtrbQG4w5TY/XXuImXVhYNmXBgIn1DDF2RvjtRBAGrLatlRu7U2Ch2NhtET/7gZlLR9zxFJhsUxKrzHHKCjJF4pA/Jiq6FYhiKo5YlE+NefrVR+1JF+pYf6Ze8+vqYNz4xJ9LP9PaiCgXUVH0D/OFVaCZrJ7Z3wnTiXEsrrZ3dAEyNjdS9v3jtHavDLyPtTSQ7P02kb4jQJvpjRayOHGIJVj5I0Zup/+phemyUtq6eIGXTv2ROWmnT8xR2Qk8/nAVq98wW/cyaNThD9aWVnp7xy9325v195u28Pk8fqp9opdnTDyP98LiGZ+qzY5wTJ8isWTNrW/ij69SZthlF+pnk9k44cTDb0kImmyXf1s50gqq1asYJFiMSrHwGydm4Y8n6g4n0DQC4rht1hqT2jjdexO7yIzvJ2lhtGdzR+jvq1NhodKkc+aQJRT9u79R7orvRbNzZop8bGKD4zDN17fPU9CkA+tv8Wk36Rb/KfekUfadAPuOLfnhcJ6drL0CoPI/iM8+QGxiYtd0Osqfq9fXj9k7ySN/vl7kgOGnt6kpk77ijBezufJQJZHflcMeTfR8m0jcAs6N7HZG+3RnLrujO447W38GmRkdp6/IvlUPRT2LvhMvjZSJPvz5/J6q701sp+ufgDg/j1lGv/OSUL4b9rb445uwcM07Sgmt1WDU67R2vQM7y+0N4XKemTtW8H2doCFUokDvnnFnbk9bfKds7GgZyQ0+/xR97au3qZjqBveOMFrC7y+eS1ZlNLPphUFcqlbSsQpd2jOgvQPxXP2mk78YifQhFv37hmB6PiX5rctEPl8eLIv06o7vi4CAAmfXrZ20PI9F6ov2T0ydpy7TRlvVFo6+lL4r+62aZB3JPTZ2ir8WPxvta+rDE4sT0iZr3Uzx0CGBOpJ/dsAGAUvB91MqsgVxNnn42GHtq6+phKoG9444Wsbvz0X27K483pifSr7y9UjGivwCh6OdyuUQdQbkKb7KEFY/0e5KJvm/v+KKfbUnu6YcnduTp1xndFfbtJ7NhA3ZsdigkFP2pk6xrWxfd39K5hSMTCYu8LuNArlKKIxNH2NrpF661LbvuH7JI9LcPzNqe2bABq7OTmX376mqj52r09Cvsnbaurij7rFaUp3BHC2Tiot+px97JBfMcVoPFY0R/AcIvv62tLVGk700UQVER6efwphy8Yu252aWZGZxCgbbuHqB8MpWSRPqxy/n4/Vop7NtH/sIL5mzPbt0KlkXx6UM17/PU9CnWtq6N7m/p3MKJqRPJfP16ovZ6rg7mYbQwykRpgs0d5XWI+lv7IxurFoqHDiGtrWTWrZu1XUTIX3ABhX3762pjNDkrSNlMMvEvDEZCG7Ktu4epsdG6LERvsgSumh3pd+ZQRQ+vUN85qpTCcRza2oLUZyP6q5fwy29vb08U6bvBpWelpw/UFe2Hg2CVA7lJIv345TzUl6evSiUKBw/ScuGFcx6zcjmymzbVbe+EvjfAlo4tKBRHJ47WvK+IukQ/1gcSiP7ghG+5bOks1ydc27q2zkj/GXLnnFNekSpG/sILKOzbV5dg6+gPURtnpslkc1i2n7XW2tmN8jxmpmpf5CU8X+KibwXBlFunxRMGdO3t/uIzRvRXMfFI3/O8ugd4wktPfaI/4rcrsHcs2ybf1s6khkUzktg7haefhlKJ/EUXzft4bmCAwlNP1bRPpZQf6bfNjvQBBsfr86uBZR3IDdsdF/3+tv66sncKTz01x88PabnoIrzxcZxjx2rer47+EDI1MkxLzO5rCydojY7UvC93JBD9ntmRPiQXfRPpG2ZF+lD/AE8k+jF7JxOJfu0dLMxxbuvqibb1bdnK6SPP1tU+KEdySQZyQyshP0+kD9B62Qsp7N1bU02YydIk0870nEgfSObruwWwssHtGgdyrayeSL9jdqR/ZuZMTfV3SkeOUBocpO2yF877ePg91OPr6+gPIacGn2Xtlm3R/dbAlqzH1y9H+rEAKjivvDp9/fC8NpG+gUJQyybsDPX6+u5owZ+N2zFPpD+SxN7pjrat3bKNU4efTTztPpPgcn7m0UeQbJbc9u3zPt7x4heDUkz96EdV7zOMfuOe/trWteTtfLJI3y1BPpjFWmukn+9MJvrjg/S19EXZSADrWtfhKY8zM9UvfDLxwx8C0P6iF837eP7CC0GEmUcerbmNOvqDvx+XM4OHWRMT/fAKtZ4JWs5oETKC1Z6NtkWRfp0p0JX2TiFhDatmwIj+AowFnbInWImo3ki/dGSCTH9bubomIFkLuydP6XjtvuboiSEQoT1oF8DarecwMz5W1yUzzC6wBbVfziulGP/P79F29VVYsWqPcVouuQSrq4uJH/yg6v1WTswCf5ByS8eWKGKuC6dQFv1aB3LzncnsnYnBWVE+ENlXtVg8kz/4IZn168mdd968j9udnbRedhnj3/tezW1M2h9CRk8M4ZSKrN1ankfQ0efPHh45cbzm/ZWOT5JZ0zprDENabOzuHMUj9VVxDc/r3mBuyViCdNJmwYj+AoyOjtLZ2Uk+70fl9UT6ylMUnhkjP9A157H8ud0UDo7UHEUd2/8k/VvPIZtvibat2eKfVKcO1zfrVVVEdrVezhf27ad0+DCdr3r1gs8R26b9qquYvO/7KLc6G+PJM08CMNA1MGv7QPcAT555sv6sErdYR6Qf/Djku+qO9D3lsX94PwPdA7O2b+/yr472ntlb3X6KRSZ/9CPaX/SieQdxQzpf+UoKe/ZQHKzNCkvaH0LC/rhm6+xIv6t/Pcf2P1lbmxyP4tOj5M/tnrVdRMgNdFM4NFZXfwjP687OTnK5HKN1TCBsNozoL8Do6Cjd3d1ks/6lZD2Rfun4JGrGJbe9e85j+XN78CYdnBPVF8XyPJdj+/ey6aKLZ21fu80X/dOD9fn6lQN3tf4QjX/3OwB0vOLlZ31e1+tfj3PiBBNVRp+7h3azpWMLG9o3zNp+9carOTJxhKfHnq6pnRFOAXLBoiO1evr5jroj/SdOP8GZmTNcvenqWdu3d2+nN9/LrqFdVe1n7I478EZH6Xr968/6vM5XvRKAieD7qZak/SHk9GG/P8btHYBNFz6Ho3v31CTSxcFxVMmj5byeOY/lB7rwxoq4w7V/L+F5nc1m6e7uNqK/mglFP5MJqiDWIfrFZ/xLxfw580T65/k/BDNPjVS9v9ODhylOT7Hpwtmi39bdQ0tnFycOHay5jTDXw60lsvOKRUZu/UfarrySbEW+eCWdr3olmU0bOXPL3y+6X6UUu4d2c/n6y+c89tItLwXgvsH7zrqPgycnePjwyNwH3AT2Tq5j3tfsOnSGw2fO/gN+z+A9WGLxkk0vmbVdRLh8/eXsHtq9aDOUUgzf8vfkzjuP9hfP7+eH5AYGaLnkEs585SuoGq5Uw0y1pJH+yWeepqt/fZRWHLLpoouZHBlm7GT1s5ALT42CMG8AlRvwtxUO1S7Y4XmdyWSM6K9mlFJzIv167J2ZvcPY3Tns3vycxzK9LdhrWph54nTV+zu6dw/AHNEXEbY991IO7n4At04bCurzcEe/9q84J06w9jffuehzJZOh76b/wtQDDzBx3yKCPXqQkcLIvKK/sWMj5/ecz92H7z7rPv7sW0/y+7f+ZO4DdQ3kBkKfa59X9N/1Dw/xqbvOnilz7+C9XLr2UnpaeuY8dvn6yzkycYTjk2f3usfvvJOZJ56g71d/9azWTsiad/4GpWeeZew/7lz0uSFJ+kNIqTDD0w/vZtslz5/zWNh/j+7bU117lGJ6z2myG9qxY4O4Idn1bUhrhpl9tacth+e1ifRXOZOTk7ium8jecc7MMLP3DG2XrV/w5Oy4YgOFp0YpHq2u1vz+B35I55p+utdvmPPYxS95OdPjYzz76MM1tRPmDtxVeznvnD7Nyc98htbnP5+2q69e/AVA702/Qm77do5/+E9xJxY+7jCK37l+57yPv2bgNewa2hX5/vNx+MwUg8PTuJXHM2sgt9oqmwWw85DJz/mhmCo6nJooMDi8cKT/0NBDPHH6Ca4555p5H9+5wT/O+44s/GPoDA9z/OMfp2XHDnre9Maqmt356leTv+ACTnzyk7hVDlLqsHee2v0ApZlpLn7Jy+c81r9tgJaOTvb/+IdV7at4aIzS4ATtV87t9+AvQ9r+wnVMP3qq5pIMlfbO1NTUiq+/Y0R/HsJf+yT2zsQPj4JAx1UbF3xO+xUbkZzN+N2HF93fqcPP8MwjP+H511w374/I9hdeTkt7B4/d892a2gkxeycT1Pqv4nJeOQ7H/scH8MbH2fDRj1QVdYI/O3fjxz9GaWiII7/7e6h58qIdz+GrT36Vy9ZdxtaurfPu51cu/hU6c5385U/+csH3OjY6g+MpToxXVOV0i37EDtUvju4UfcG3c3Mi/SPD/mzooyPzV/9USvGZn3yGta1refNFb573ORf1XsSFvRfyf5/4v/N63d7MDIO/82680TE2fuyjSNAvF0Msi40f/xjOiRMc+9CHqip/4HkKEbDs+u2dJ+75Lh19a9i645I5j1m2zfNe9VoOPHi/n412FpRSjH3vMFZ7hrbL1i/4vParN4KrmLi/tslolfYOsOKjfSP68xAX/Z6eHizL4lgNMxtLxyeZ+NFR2p6/btaU8Uqs1gwdP7uZ6UdOMfXo2dP1Hvi328hkczzvVa+d93E7k+XSV1/Lvh/dV/Vlc8jEsC9WreFEl0UiO1UqcexP/h8m7rmHde9/37ylF85G22WXsfFPP8zkD3/I4Xe9a07J5W8f+jZHJ4/ytue+bcF9dOW6eMcl7+DewXu5bd9tcx6fKjqMTvsndCjKEU7BF287X2Okn5s30h8c8fc/NDYz96oCuOWJW9g9tJt3XfouWjOtcx4H36J7+3PfzlOjT82J9p0zZ3j2197B9EMPsekTf07Ljh3VtTmg9dJL6f/932P8W//B0Mc+tmj2lPIUYgutwcpU42dqK2V96KcP8fTDu3n+Na9DrPkl5gWveT0IPPiNr511X1O7hyjsG6bzZVuxcvaCz8v2t9GyYw0T9w7inKq+JMmxY8fIZrN0dHQY0V/NxEU/n8+zbds2Dhw4UNVr3ckSp7/6JFZrhu6fO3fR53e9civZLR0M37Z/wYGo/Q/8kD33fY/LXn9DNLllPq584y/RsWYtd/71Z5iZrH55wqP7RsjmbdZt8y0P9yxrjpaOHePZX/8NRr/+ddb+t3fT98u/XPX7xOl505vY+Gd/xuQDD3Lw+hsYu+MOlOdxavoUn3jwE1zYeyEv3/rys+7j7c99Oy/e9GI+/uOP882D35x9TLGoezAu+p4HXikWtdewclb0QzE70g/373iKUxOzfxBu23cbn9r9Ka455xrectFbzvoW1w5cy7bObXz0/o8yWvCLko1+8985+PPXM/PYY2z+9F/Qdd111bW3gjW//uv0/dqvMfyVr3L4t36L0omFB1HdksKyhHXbu7Bs4diBkarfZ2p0hO988XP0btzEzp97w4LP61rbz/OveR0//fa/c+inD837nJn9w4z821Pkz+2m4yWb531OnN4bzgPb4vStT1a1Mp1SigMHDrB9+3YT6a929uzZQ3d3N61BBcvzzz+foaGhRSduOKenOfWFR3FOT9N340XzDjpVIrbF2v+yA7szx6kvPsbE/cdmeaiHHvkJd/zVJ1l/7vm86M1nF9hcSyvX/tbvM3L8GF/78w9XXY/n6IERNp7XjZ216N3QNu9J7pw+zYlPfoqDr/85ph95hI1/9mf0/87vVLX/heh5wy8w8NWvYnd1ceQP3suBn/95vnjzTbgTE3ziZz+BJWfvnrZlc/PLbuYF/S/g/fe9nz/5/p9wbMK/Ijs2Whb6IyNx0Q9E3s5BJlfbQG4meM0C9g7A0eC9jk4c5Y/u+SP+9Ed/ytWbruZjL/7YohZY1s7yiZd+gsnhk9zy0bfy1PXXc/QP/5Ds+vUM/PM/03XttdW1dR5EhPV/9N/Z8KEPMnX/jzn4+p/j5Gf+ct6yGEcPjNC3qYNszmbdOV0c2TdS1XuMnz7Fbf/vB5kcHuba334PmQUm6oW89Ffezpot2/jGX/w5g08+Hm1XnmL8viOc+vLjZNa00vfLz0Gsxe1DuztP31supHR0klNffAxnkdpWp0+fZmRkhAsu8CvDdnV10dbWxp49tV0pNxvVGYOriCNHjvDss8/ymte8JjpJzz//fL7zne+wZ88errzyyjmv8Youk/cfY+y7z4LA2l99Li3n98553kLY3Xn6f/NSzvzTXka+foDJB4/TesVaHjnwPR74xm2s2bqNN/zxh7Azi/+InPO8F/Bzv/dH3PGX/4u//+Pf5Wd/+e0858Uvw17AA56eKHLm6CQXXuH7peddto7d3zrE1FiRlpzH5A9+wNi3/oPx73wHVSjQee1rWffe95LbsmXe/dVK6/MuYfvX/5Un/vkLHPnc57j+q0V+Ppcl/5NPc+aqq2n7mZ8hf965C3rYXbkuPn/N5/ncTz/Hlx/7Mt84+A1esfUV9HpXgZXBUq2zB1hDkc/k67B38uVIXykI+sfg8BSWgCczfOvpb/HlAz/m3sF7ERF++wW/zW887zeiBdDnwysWKezdy/TDP6Xr3nv5m/tdrNLTHNrcwpYP/j4DN/7GgjZJrfS+9a20XXkVJz71SU597nOc/vKX6XrNa+i67lrarr6aiTGXk8+O86I3ng/Apgt6ePiuZykVXLL5+e0V1ynx+D3f5b6v3oJbKnH9e//HnAyz+cjmW3jj+/+U2z72Af75Ix/g6l/4JXZsfynTPzhO6fgULRf30ffmC7HaFu/3Ia071rDmV57DmX/cy9CnH6LrVdtov2LDvNZQKO7nn+8fq23bXHHFFdx9992cPHmS/v7+Oa9ZCUiSWtlJ2Llzp9q1q7rJKI2iUChwyy23cOrUKd7znvfQEqz2o5Tib//2bzl+/Djvete76OvrQzkehadHmX70FFOPnkJNO7Rc1EvPDeeT6WtZ5J3mx3Ncjt31GIUfnSJXzFF0Z5jqnGTrqy+j/cJ+7L6WqiIe8HOk7/zrzzB0cD/tPb089+Wv5oIrXsS67ediWeUT4NG7B7n31n284T3PZ01ujOO7D/DN79hcMvV91v3kNiiVsLu76bz2Wvre9jby585fW6ceXM9l99Bubt17K3c9cxfrWvv5RO872PLjQ0z8539SOuqXT5Z8nvz555O/6CJy55xDdtMmsps2kt20iUx/f/SDcGziGP+49x/5l/3/wkhhBKWEnLuJDmsLN11+Bdu7t7POhbVf+SXWvOpjtDz4BVh7IfzyrYs39m9fj1ccY+Ki6xj9/v/izNtvZ7A4yuHxw9zy4G6mrWcoWccRUaxrXcd126/jph03RRPLvGIR98wZSkePUjp8mOKzhykNHqbw1EFm9u6FYEAxd845dLz85RzcuZH3nf4iw4URrh24ljde+EZ+Zv3PYFsL+9q1MrNvH2f+7u8Y//ZdeOPjSC7HkcveypMtV/CG18HaF5zPsZFWvvm5R3nV2y/mObGkBM91GTp4gH0//gGP3/NdpsdG2XTRDl7zm/+NNZvnH3yvRHkK58QUE/tPMPjdh+mY6iJr5SjmCrS+dAPrX7kDq84fu9LJKUa+foDCU6NI3qbtsnW0XrKW/DldSMZiaGiIv/mbv2FgYICbbropet3ExASf/vSn2bx5MzfddFOUvZcmRGS3Umr+tLZqXm9E3xf1gwcPcuedd3Ly5Ene8pa3cPHFF0ePqWmHU08P8cV/vQUbi5/tuJQtp7oQRyE5m5aL++i4eiP5gYX99kpcx2H0xBAjQ0c5+cwhhp7az5G9TzA1OoJYFs9/3mt4zrorkeMu3oQvCJKzyG5oJ7u+Hbs3j92dx+7Jk+nJY3XkkJw1y0JQnsdTDz3II3fdwaGfPoRSily+hf7eNXRncjDTylOF59FbmuCFD/01UiqigAd3vp+Z9n5ese0gm176fNqvuhLR0PmnnWn2De9jz+k9/PTkT/n+ke8zUhihM9fJjRfdyH+95L/SmeuMnl8cHGRq1y4Ke/dR2LuXmX37cE9V1J0Xwerqwu7pxu7uwe7pxuru5r7jQxwunULapxnNjDOTm6aYhUIWXMv/ExEyeGTausnm28hkcpw4/SwdHX205TvwHBfPdaBUoDh1hhmxEU9hKbA9yJegpQj5Ygu9bhfuaAvntq7lynXrUBOTOCPDuGeGcc+cwZucnNPuzIYN5M45h9ZLnkvLJc+j9XmXkN1c9q5HZkb40mNf4rZ9tzFeGmdd6zqu2nQVO9fv5Dl9z2Gge2DBgeFa8IpFf1D9nse59+h5dIw9y+U/+QsA3JZWdr/gt5nIZDiv9XFUS5HRUoGTp09SLBawLJtzL9vJpde8joHnX1bR/xTetIM3WcIdL+KNF3FOz+CcnsY5PUPp2ASq6I8fWR1ZvE3CvuMP8tPHvoPnOrR197Dl4ktYf+75rNmylTWbt9G1bt2soOVsKKUoPjPG5I+P+4kSjkLl4Jm+Ub4//giWbfPrb3ob3Zv7sNqzUdsfeeQRvva1r7Fx40Ze+9rXcs4CaxYsFw0RfRG5FvjfgA18QSn15xWP54FbgMuB08AvKaUOnW2fjRZ95XqokkdhcoaJ0XFGR0YZOj7E0MkhDh0/zNj0OJ25dl657Uq2Zdbhjhbxxgq4Y0VUye+YwzLBf+YeY1gm6ci2sX3zOQzsOI/evm662tuxlEdxepri9BSFqUkKU1MUp6eYmRhnanSEyZHh4G+E8dMnZ6XPdfevY8PWAbZdeDHbtp9PPpuDUgmvVMI5XcI57eAOu7hjCnfKAmeejq9clCqAO4MqTqIKE3gzk6jiFK5XZNJWjGVtJjMwLQUcVcT1Snh4eMoll8vS0tmB3dnFqaNFHNeiZ1MPa7b20buph7a+TjL5HJl8nkw+Tzafh4yNaysKUmLcm2TUnWC0OMpwYZjhmWGOTx7n2OQxjkwc4djkMTzlH3NvvpcXb34xL9vyMl629WVVi5c3NUXp2DFKR49ROnYUZ+gE7shI+W90FHdkhJHTI2RLRXLVpmQmRInFTCaHm8vTu6YLq72DTG8vdl8fdl8vmb4+7N4+/wplyxaymzcvWJyukhlnhrsH7+bbh77N7qHdUTVOQdjUsYltndvob+tnfdt6+tv66W/pp8Nup03ytOL/5VQG5bg4xQJuoYhTLOIUCkwNT3BmcJjTz55h5NgouZzH2g05nLExZiYmcYoOIhaWZLDFxiJDq8rR4Vp0l1zaXJuMnUfybUhLB5JvR+w8ZFoRaYF5xmUk62K1KuxOhd1rkVmbwe7NYufzSC7HTKnI0/v2cOTQUxw9uJ/xM+UJjJZt097TR0dvHx19a2jv7aO1s5N8W7v/195Ovq2DfHs7uZZWHKWYnJrmxNApjjx1mKcOP81EaYq1qpNXFC+hWwXVTjMWmR4/iLI6sjxdOMb3Bh9gsjRNd1snW9dvYcuGTfT1rqGnr4eeNT1kWnNI1p5VTLERLLnoi4gN7AOuAQaBB4G3KqWeiD3nt4FLlVLvEpEbgTcopX7pbPu9cP1m9dkbfwfEt0dBAEGJABb+Jv9/JVL+AzzKt5X4j3uAJ+AKuKJwgv9d8XBEUaDEtBQpyex0tbzKsMHrYcBdx3ZvHcotUXKnmXEmmHHGmQ7+xp1hRounGHPHKHb34nT14rR3gR3zal0HcRzEdRDPQVwXcV1QHuJ5ZFyXjOOScTxyJZe845EveuQdRcYDUQoQJDwwiG4LsW2AWFmsXCeZfBd2vgs704qVzWPbeexMC3Y2T8bOY0kGy7KwxSKDfyXgf9KxSoWxe+Gt+OPz4SkPhUIpD/xb/lURCoUXu+0/R/nfVvC/f2DR7XD7rLes7JcqtiX2OuXvFxW8g1L+D4vnYVsKWxTKcxClUAo8K4tnt4R2PJYzA+6ML05WlrzdT8mbwKMAygPP8f/PtODZef+dFVhuAUsV/W9DBBEbFws/pd3CssLPOngcgv8FYp/27P9V+Xb88FX5W4q/Ptoi1jy3y+8vWNF7n21wXM35zJnzmce/RU95OErhKBdXObieg+eWcL0CbrGA50zhlKZxSlO4zjRuaQqnMIF4RcDzP1f/bEaiPhC8jwieJSgBxxZmshYzOYtixqKUsXFswcnYOLaFsmywbJRto6zgz86gslmIXxW4DpnJcTKjp8iPjdKd6aE7u4a2TBdtmS5as920ZbrI2W1k7VawszxtD/GMdYoha4QZKWd6iYIcWfIqQ05lyGGRURa2Ev9KUAkWYCuwlGAp5WfNKOWrm1KIUtGxh/u0UNE3LMqfLxFuD7+HV3z6fYlEv5qB3CuAA0qpgwAicitwA/BE7Dk3AB8Obt8G/JWIiDrLL8qErfhB7/IvWFDC5bB1msPWae5joVF7C1gT/JWRytPEzvidbYG9LN3RFoI/Q3IWnyhnqId88Fd9goNuxMridfZR7OyjCIzjR7E+U8FfdfNxlECBEgVpvtm71Yj+ZmafCYNAZQpL9ByllCMio/gKOcuAFZF3Au8E2LJhM52l2ROXhHJkISoWyQSRrijBonx71r8wGo721FiqGRlRonwrRTw8UXgolKgocvJvR3GzfxUTRljxx6LDmxv9zgoQZYHt4Y302JSGZiK8WCP+v4RBesU1ZHArdpU6e3v8fnm7pcrntVXxvyDR45aKXzlVvv9yUj7jvOi8D8/F2ed3tDV2jhN/bJ6LvyQ0NGVTKfV54PPge/rv/fj7G/n2BoPB0PT80cc/kOj11eRDHQHiOVhbgm3zPkdEMkA3/oCuwWAwGFJENaL/IHCBiGwXkRxwI3B7xXNuB8JCKb8I/OfZ/HyDwWAwLA+L2juBR/9u4E78lM0vKaUeF5GPALuUUrcDXwT+XkQOAGfwfxgMBoPBkDKq8vSVUncAd1Rs+2Ds9gwwf81Yg8FgMKQGU3DNYDAYVhFG9A0Gg2EVYUTfYDAYVhFG9A0Gg2EVsWxVNkVkHNi7LG/eGNZSMSN5hbGSj28lHxuY42t2LlJKdS7+tPlZzkVU9iYpGpR2RGSXOb7mZCUfG5jja3ZEJFF5YmPvGAwGwyrCiL7BYDCsIpZT9D+/jO/dCMzxNS8r+djAHF+zk+j4lm0g12AwGAyNx9g7BoPBsIowom8wGAyriCUXfRF5s4g8LiKeiOyMbR8QkWkReTj4++vYY5eLyKMickBEPiNpWoq+goWOL3js/cEx7BWR18a2XxtsOyAi72t8q+tDRD4sIkdi39nrYo/Ne6zNRrN+N2dDRA4F59PDYbqfiPSJyF0isj/4f/nWMawREfmSiJwQkcdi2+Y9HvH5TPB9PiIily1fyxdngWPTe94ppZb0D7gYuAi4G9gZ2z4APLbAax4ArsJfKOxbwHVL3c4lOL4dwE/xFwbdDjyFX5raDm6fC+SC5+xY7uOo8lg/DPzhPNvnPdblbm8dx9e0380ix3UIWFux7WbgfcHt9wGfWO521nA8LwUui+vHQscDvC7QEAk05cfL3f46jk3rebfkkb5Sao9SquqZtyKyEehSSt2v/CO7BfiFpWpfUs5yfDcAtyqlCkqpp4ED+IvMRwvNK6WKQLjQfDOz0LE2Gyvxu1mIG4C/C27/HSk+xypRSt2Lv25HnIWO5wbgFuVzP9ATaEwqWeDYFqKu8265Pf3tIvITEblHRH422LaZ+CL1/u3NjW9aYuZbUH7zWbY3C+8OLpO/FLMEmv2YQlbKcVSigG+LyG4ReWewbb1S6lhw+ziwfnmapo2FjmelfKfazjstZRhE5DvAhnke+oBS6t8WeNkxYJtS6rSIXA58XUSeq6M9uqnz+JqSsx0r8P8BH8UXkY8CnwR+rXGtM9TJS5RSR0RkHXCXiDwZf1AppURkxeRur7TjQfN5p0X0lVKvruM1BaAQ3N4tIk8BF+Ivsr4l9tT5FmJvKPUcH2dfUH6xheaXjWqPVUT+BvhmcPdsx9pMrJTjmIVS6kjw/wkR+Vd8C2BIRDYqpY4FdseJZW1kchY6nqb/TpVSQ+FtHefdstk7ItIvInZw+1zgAuBgcIk2JiJXBVk7vwo0YzR9O3CjiORFZDv+8T1AdQvNp5IKL/QNQJhhsNCxNhtN+90shIi0i0hneBt4Df73djvwtuBpb6M5z7E4Cx3P7cCvBlk8VwGjMRuoKdB+3jVgNPoN+F5TARgC7gy2vwl4HHgYeAj4+dhrdgYH9hTwVwQzh9P4t9DxBY99IDiGvcQykPAzCvYFj31guY+hhmP9e+BR4JGgw21c7Fib7a9Zv5uzHM+5+BkePw3Otw8E29cA3wX2A98B+pa7rTUc01fx7eFScO69Y6Hjwc/a+WzwfT5KLMMujX8LHJvW886UYTAYDIZVxHJn7xgMBoOhgRjRNxgMhlWEEX2DwWBYRRjRNxgMhlWEEX2DwWBYRRjRNxgMhlWEEX2DwWBYRfz/1xncqxmjNuwAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
@@ -62,17 +75,17 @@
"# Number of samplepoints\n",
"N = 800\n",
"# sample spacing\n",
- "T = 1.0 / 1000.0\n",
+ "T = 1.0 / N\n",
"x = np.linspace(0.01, N*T, N)\n",
"\n",
"y_old = np.sin(100* 2.0*np.pi*x+1*np.sin(15* 2.0*np.pi*x))\n",
"yf_old = fft(y_old)/(100*np.pi)\n",
- "xf = fftfreq(N, 1 / 1000)\n",
+ "xf = fftfreq(N, 1 / N)\n",
"plt.plot(xf, np.abs(yf_old))\n",
"#plt.xlim(-150, 150)\n",
"plt.show()\n",
"\n",
- "fm(1)"
+ "fm(2)"
]
},
{
@@ -120,12 +133,12 @@
},
{
"cell_type": "code",
- "execution_count": 85,
+ "execution_count": 131,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAATwAAAElCAYAAAB53F5VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACz6ElEQVR4nOz9eZRk237XB372PlPMETlnVmbN860731ulJ+QntECDeeoWg0FChkZyQ7NYxt3CxsgPmYXbyBjJtrxkwA3GAiMs3G6EEBKDnniahcR77753h5rnIYfKOSJjPuPe/ceJiIzIzMrKqaZ747tW3VsVcWKfEyfO+Z7f+P0JrTV99NFHH58FyBd9AH300Ucfzwt9wuujjz4+M+gTXh999PGZQZ/w+uijj88M+oTXRx99fGZgPuX9fgq3jz762C/Eiz6ANvoWXh999PGZQZ/w+uijj88M+oTXRx99fGbQJ7w++ujjM4M+4fXRRx+fGfQJr48++vjMoE94ffTRx2cGfcLro48+PjPoE14fffTxmUGf8Proo4/PDPqE10cffXxm0Ce8Pvro4zODPuH10Ucfnxn0Ca+PPvr4zKBPeH300cdnBn3C66OPPj4z6BNeH3308ZlBn/D66KOPzwz6hNdHH318ZtAnvE8ZtNZo3R9F0kcfW+FpQ3z6eIWglMLzPFzXxbIsLMvCNE2klAjx0sxR6aOPF4Y+4X0KoLUmiiKCIEAphRCCKIoIwxCtNUIITNPsE2Afn3n0Ce8Vh9aaIAiIogghROePlLJnmzYBAriui2EY5HK5PgH28ZlCn/BeYSil8H2/Y8U9ibQ2vlcul4miCMuyOu+bptn50yfAPj6t6BPeKwitNWEYcufOHU6cONFjze2EqNrbGIbRWS8IAoIg6LzfdoENw+gTYB+fGvQJ7xWD1hrf91FKsbi4yMmTJ/e9phCiQ37tfWwkwHb8r0+AfbzK6BPeK4QwDHsSEXuFEGLb0pWtCND3fTzPA0BK2SFA0zS3daf76ONlQp/wXgG0XdgwDDclJJ4HtiPANtm1y2AMw+gTYB8vLfqE95JDKdVTbnIQRPI0C28nn++O/wH4vo/v+0BsAW6MAfbRx8uAPuG9pOiurQMOlDT2S3gb1wL6BNjHK4E+4b2E2Kq27lXBTggwDENM0ySdTvcJsI/nij7hvWTYaW3dfnCQFt5O9gW9BLi0tIQQgomJCaA3CdInwD6eJfqE95LgRScmnhe6O0EMw+iIHXie18kCG4bRcX/bWeA++jgI9AnvJUB3bd3zcGGfp4X3NGz8vlprlFK4rtuxctsE2LYA+wTYx17RJ7wXjHZi4iBc2DAMuXHjBmtra2SzWQYGBhgYGCCRSBzgET9bbEeAbfQJsI+9ok94LwgH7cJWq1WuXr3K1NQUp0+fpl6vUyqVuHXrFp7nkcvlOgT4oi283ey7T4B9HCT6hPcCcJC1dVpr5ubmmJmZ4Y033iCVShEEAdlslmw2y5EjR1BKUa1WKRaLPH78GNd1MU2TXC5HoVDoiAg8T+z1Oz+JAJvNZk+CpE+AfWyFPuE9R2ysrTsIsrt8+TKGYXDp0iUMw0AptWk7KSX5fJ58Pg/AysoKCwsLVCoVpqen0VpTKBQYGBigUCj0dFW87Ngoh7UVAXYrwfQJ8LONPuE9J2itKZVKaK1Jp9P7vukqlQqNRoNjx44xOTm5aV/brS+lJJFIdIQHwjBkbW2NYrHIgwcPkFJ2CDCfz79SGeOtCLD9kOkmwHYWuE+Any30Ce85oF1bt7S0hGVZZDKZPa+ltWZmZoa5uTlSqRTj4+ObtnnaDbwxhmeaJsPDwwwPDwNxkfDa2hpLS0vcuXMH27Y78b9sNrtvgnie8cMnEeAnn3zCmTNnOq5vXw36s4E+4T1DbLQu2nVne0UQBFy9ehXHcbh06RJf//rXN613EDerbduMjo4yOjoKgOd5lEol5ubmqFarJBKJDgHu1Vp9UaTSJsB2t4eUskcNui+G+ulGn/CeEbaqrZNSbhlj2wnK5TLXrl3jxIkTHatur9nW3X7OcRzGx8cZHx9Ha43ruhSLRR4+fEi9XiedTncIMJlMvhIE0V0GtDEJEobhJjHUPgF+OtAnvGeAJ7WHCSF2TXhaax49esTCwgJvv/02qVSq895+CG+vEEKQTCaZnJxkcnISrXWnBObu3bu4rksmk3npawCfFOfcigD7atCfHvQJ7wDxtNq63RKU7/tcvXqVZDLJpUuX9r3exmM9CAghyGQyZDIZDh8+jNaaarVKqVTi5s2b+L7fUwNo2/ZL0eWxUxHVvhr0pwt9wjsg7KQ9bDcubalU4vr165w+fboTS9uIF2Hh7WTtXC5HLpfj6NGjKKWoVCqdGGAURZ0ymXYc7UVhr7HHnYih9tWgX070Ce8AsDHm86QLfCeEp7XmwYMHLC8v8+6775JMJp+47ctg4T0N7RKXQqHA8ePHiaKI27dv02g0+OSTT9Bad6y/fD7/StUAQl8N+lVDn/D2gY0u7G7LQTbC932uXLlCJpPh4sWLT61/e15Ji4OEYRgkk0kGBwcZGxvr1ACurq5y7949DMPoEGAul3ulagChrwb9sqNPeHvEXtrDtrPwisUiN27c4MyZM4yMjOzoGF50T+x+0F0EvFUN4OLiIrdv3z7wGsDniaeJoTYaDaIoYmhoqE+Azwl9wtsl9iO9vhVBaa25d+8exWKR9957b1dZzVfRwnsaNtYAuq5LqVRidnaWarVKMpncdw3gi8JGAmw0GjSbTbLZbN8CfE7oE94usF/pdSllD9F4nsfly5cpFAq8//77u764X2biOigkEgkmJiaYmJhAa02z2aRUKr3SNYBtaK07Qqjtf7djgN0E2FeDPjj0CW+HOAjp9e46vJWVFW7dusXZs2c77txe1nsVLby97lsIQSqVIpVKPbUGcHBwEMdxDvjIDxZKqR4C26oGsK8GfbDoE95TcJC6de02pjt37rC2tsb777+/r5vyRRPXfnAQN+rGGkClFLVajVKpxI0bN/B9n3w+31GBsW37AI784LCR8DairwV48OgT3jY4aOl13/dZXV0lk8nw/vvv73u9V9XCe1aQUj6xBnB2dpYoijoqMC/D91dK7aoOsU+A+0ef8J6AMAx58OABo6OjOI6z7wtneXmZmzdvkk6nO7JM+8WnlbgOClvVAK6trVEqlWg0GnzjG9/okcF63jWAT7PwnoY+Ae4efcLbgG4XtlgsMjg4uK9+UKUUd+7coVar8eabb3Lv3r0DO9a+hbc7GIbB0NAQQ0NDlEol3nzzTdbW1lhZWXkhNYD7JbyNeBIB9tWg19EnvC5srK3br5xTs9nk8uXLjI6O8u6773bc44PCVsQ1NzfH/fv3yWazDA4OvpQN/DvtY33WsCyLkZGRTt2j7/uUSiUWFhZ6agAHBwfJZDIHfswHTXgbsZUW4GedAPuEx5Nr69pJhr1gcXGRu3fv8tprrzEwMAAcvGXVvV4URVy/fh2tNe+9916nfq3dwJ/P5xkcHKRQKHxmLbw2nvTdbdtmbGyMsbExYL0GcGZmhmq1SiqV6liAqVRq3+TQfrA+LzyJANskf/z48U+9GvRnnvC2q63bi36dUopbt27RbDa5ePFiT2ZwP3p4W6FNXPV6ncuXLzM1NcXk5OSWQ3zK5TLFYpHp6WmUUoRhSKlUeuUk3A8CO7Uwn1QD+ODBA+r1eo8M1nY9z9sdx4vsHW5f7+17YKMYKvCpU4P+TBPe02rrdktQjUaDy5cvMz4+zrlz5zat9ywsvGKxyO3bt3n99dfJ5/Nbri+l7NyYAPV6nevXr/dIuLfd32fhur1s2ItLvV0N4J07d3Bdt2cW8E7KjdoP2ReNKIq2FDZoez5tAgyCgL/5N/8mP/qjP/qiDnXf+EwS3k5r63ZDeAsLC9y/f58LFy50poPtZ72nQSnFysoKAJcuXdrVqEXLsrBtm7NnzwLrrtv09DS1Wq3TvTA4OLgny+VpeNExvIPY/1Y1gG0dwOvXrxMEQacGcGBgYMvfp91p8aLRJryN2EiAa2tr/PZv//bzPLQDx2eO8HZTW7cTgoqiiJs3bxIEARcvXtyWeA7qJnddl08++QTLspicnNy0z53sp9sS3Oi6tS2X27dvd4Z4ty3AFzHD9qDxLAi3exTmsWPHOmGErWoAC4UCpmk+86TFTrHT46jVavsaQPUy4DNFeO3ExE7bw55GeLVajStXrjA5Ocnhw4efi9XSbkk7f/48a2tre1pjO9d6K8ulu3hXKUWhUGBwcPCV1K+D52NhbgwjhGHYIcCHDx8ihMD3fSqVCrZtv9Dz+CQLbyPacctXGZ8Jwttre9h2hPf48WMePnzI66+/Ti6XO8jD3RJaa+7evdvTklYul595tnVj8e5G/TrTNDvu76si3/QiXGrTNDs1gBDHwz788MNOKKFdA9g+j8/T8tsp4TUaDdLp9HM4omeHTz3h7UW3ro2tCK9d/qGU4tKlS89Fotz3fS5fvkw+n+9pSXsRhccb9evaIxzb8k3t0o12/G+r8/1piOHtF+3M5+nTpzEMA8/zWFtb4/Hjx1SrVRzH6ViIzzqRFEXRjvqM2/HdVxmfWsLbWFu3l15YwzA6Mj0A1WqVq1evcvjwYSYnJ5/LTdMOgm8lDPok4nqeN/TGEY6NRqNHvaSduRwcHHxpmvdfBsKD3tiZ4zg9NYDtEph2IumgawC7sVMLrx/De0mxW+n1J6Ft4WmtmZubY2Zmhtdff51sNnvAR7wZ7fGMi4uLT5xt8bK1lgkhSKfTpNNppqamejKXV69e7QTuXdfdc0H3QeBlIbztjiOZTJJMJjl06FDPg+T+/fs0Go191wB2Y6dJi/Z+X2V86gjvIHTr2pBSEgQBly9fRkrJpUuXnktwOQgCrl69iuM42862eNk7JjZmLtvN+/fv3+fevXvMzMy8kLjVy0J4Oz2GjQ8SrXVHBqudSd9tDWA3+kmLVxDdLux+devacF2Xubk5zp07x6FDhw7gKJ+OSqXC1atXOX78OBMTE9tu2y0ouhu8KKJsN+8Xi0WGh4dJp9OUSiXm5+e5desWiUSiQ4AH7bZ142UhvL1CCLGpk6a7BjAMw04pUaFQeGop0W5c2vHx8YP6Gi8EnwrC01qzsrJCKpU6kP4/rTUzMzM8evSI4eHh50Z2s7OzzMzM8Oabb+7oSboVcXW3C73sN/XG3tVms0mxWOy0bnXH/w5SvfhVODe7wVaWdLuUaHp6Gq11jwzWxkTbbrK0fQvvBaPtwt65c4fz58+TSqX2tV4QBFy7dg3Lsrhw4QLz8/MHdKTr2HjDdTf+X7x4cceZ373etC+rK5xMJpmcnOy0btVqNYrFYsdq6e5c2E92/GXpcHhWv0G3zBX01gA+ePAAIUSPDJZSqu/SvuzYmJhoV67vB+VymWvXrnXcyUqlcqDN/sAm66u78X9qampXJPayEtdBoNttO3r0KFEUdW7aR48e9dy0uxVA+LRZeE/DVjWAa2trLC0tcffuXZrNJrOzswwPD28bS20PTXqV8UoS3lbtYfvpU21nRBcWFnj77bc7VuJBq5t0ryml7PTf7rV4eT9Z2heJvRCOYRgMDg4yODgIxDdtqVTakwDC85Zl2govknQ36gB+7WtfI5VKPbUGsG/hvQCEYbhlbZ1hGHsqdfB9n6tXr5JMJrl06VLP0+1ZEJ4QojPIx3Xdp/bfPm2tT6uF9zRYlrVpfm1b/qpdINsmwI1lGy+DhfcyHEMbQohOLzVsXQP4W7/1W3sqPP7Sl77EH/gDf+AWYAA/pbX+sSccw38A/FPgotb66/v7Rk/GK0N4T6utMwxj1+TUzmqdOnWqEzjvxrMgPK01H3744RMlpHaDzzLhbUQikeDQoUOdurV6vd6RzvI8ryf+9zKQzcsiHLAVNtYA1mo1vvSlL3Hjxg3+yB/5I7z33nt8//d/P1/4whe2XSeKIv78n//zAH8AmAU+EEL8otb6evd2Qogs8EPAV5/RV+rglSC8nbSH7UadWGvNgwcPWF5efmJRb3vNgyS85eVlKpUKb7zxxoGk919lwnuWhNMtgNAu26hUKhSLRWZmZgiCAMuyKBaLL0wA4WUmvG60Y6l/6S/9JX7lV36Ff/2v/zUPHjyg0Wg89bNf+9rXOHXqFPfu3bvfWuv/BP4gcH3Dpj8K/Djwlw76+DfipSa8J0mvb4WdurS+73PlyhUymcy2Rb3t/R0E4XU3/rczYweFrQjPdd2OTPduPve88Lz33S2AALF24erqamd4j2maHff3eQkgvCqE141ms0kmk+Gdd97Z0fZzc3McPny4+6VZ4Ju6XxBCvAsc1lr/KyHEZ5fwtpNe3wo7IadisciNGze27Evd65pPw8bG/08++eTAbngpZc9abct1fn4erTWO43QC/c+ykPdVg5SSdDrNsWPHgFgAoVgs9gggdMf/nsV5e1kIbzfX4kFL0gshJPA/Aj94YIs+BS8l4e2lPWw7C09rzf3791ldXeW9997b8RSvjYSyW2zV+H/QbnL7+MIw5MqVKyQSCd577z2EEJ1Afrv/slvI87OMjTE8x3F6BFC3EkBon7eDEkB4WQhvpxlrrfWu74XJyUlmZma6X5oC5rr+nQVeB36jdQzjwC8KIb7nWSUuXirC26tuHdCR2NkIz/O4fPkyhUKB999//7lcZNs1/u+XRLvRXqtWq3H58uVO/WD7YbGxkLdarbK6usrc3ByNRoN79+51hDyf9833sspDPUkAoVgsMjc31xFAaLdt7dXieRlKY9rHsZvvsJtjvnjxInfu3EEIcZyY6P448B+239dal4HhrrV/A/jPPxNZ2t1Ir2+FrbK0q6ur3Lx5k7Nnz3b025412o3/iURiyxjhXvtfn4R24fIbb7zRUXF5UstZLpcjl8tx/PhxvvrVr5LL5VheXubOnTvP1f190YmW3WRpu9u2jh8/3hFAaFvOexXufFm6PXbaVraX38w0Tf723/7bfPd3f/cvE5el/AOt9TUhxF8Dvq61/sVdL7pPvBSE17bq9qNw0p2lVUpx7969HnXg54GdNP4fVGZVKcXMzAz1ep3f83t+z65r+aSUPcWnG0cQtt24l0nH7qCwn7KUtgBCu2uhPby7XbS7UwGEKIpeKcLzPG9PMlRf+MIX0Fqf6X5Na/1Xt9pWa/1tu97BLvFCCW8/LuxGtGN4ruty+fJlBgcHe9SBnzV22vh/EDG8tpveDq4fxGCdjbVXbff36tWrPXMsCoXCS3Gj7gcHWYfXLYCgu2bXtuOmTxJAeFksvN0M8Nlvn/rLgBdGePuRXt8KhmFQr9f5xje+wfnz5zstSM8a3Y3/O9HL269Lu7a2xrVr1zhz5gyJRIKHDx/uea0nYaP7255jsbKywt27dzttXIODg6TT6V3/ds+y8Le6sMytf/NbrD1eRGjN8MljFA6PM/nu65gtwnlWZCPE5tm1G2Wb8vk8g4ODhGH4UhDeZ0ntGF4A4e2mtm6nUEoxPT1NtVrlW77lW56bC7aXxv+9Ji201szOzjI7O8s777xDKpWiWq0+l3jYxjkWbSvm4cOHL4X7uzb7mN/8H36Ku7/9NRqrJVQQIqQkdH2UEAggYZsUJsc4+v7rnPqP/ij5yWev69b94NgogLC0tNTJfA4ODpLL5V4IAX6WxD/hOROe1ppisdgZBH0QT/lms9nJwubz+QO/4doW2caLca+N/3shvLYVCfRYkS+q02Ir97dYLG5yf591F8PC1Vv80o/8D8xdu0nY9ImUwjIk9VqTfC5D1fMZyKbQSuNV6lTlEh//3C9z55d/i8MX3+D/8nf+BonC1kPTnwW6BRBSqRSe55FKpVhcXOT27dudpv29Ws57wWdpYhk8R8Jr19ZNT08zPj5+IImExcVF7t69y2uvvUYqleLq1asHcKS96FY3gfh73Lp1a8+N/7t1aZvNJp988gmHDh3aNPv2ZWgt67Zijh07duDu71bQWvOv/rO/xuV/+WsoPyRsNHHDiGw2TbNSJWcahCqikM9QKtcoDORAKRCCRNKhulrm8Vc/4R998x/kW37k/8WF/9sfOYAzsTsopTYJIGy0nNtzKwYHB3dcO7pb7Mal7RPeDrCVbt1+B7i0SafZbHLx4kVs2+50ZRw0upMMbWtydHR0z43/u7Hw2kO3L1y40GmL6sbLQHgbsdH9bRc/d7u/zWaTMAz3tP7K7fv8s//HF1m4N40EhCHxIkUCjed6GIkETc/HCUPMhM2QY7BaqmBIQUZHWNk0CJCGxK01+fW/9NdZ+q1/x7f+3R97rj21SqlNIqZbNe2XSiVu3ryJ7/s9AggHkahqH8dOXOm+S7sDbFVbt1cZpzYajQaXL1/epDay33WfhDbhLS8vc/v2bV577bV9dSrsxMLr7gzZrqxmP4T3vIhyo4pJtVrl5s2b3L17FyHErtzfy//4n/Pr/83fpFmpkXBsdKRw/YCBbBItJZW1KpZjY5oG1aaPY1s0hMFgxgQhKddd7FKVoaE81WIFhGBsOM+9X/5Nyt/8PXzHz/2vpA8/Hzn/pxUebzW3oh3/m5mZQWvdI4C6V7Le6UzaPuE9Be3ExMbaOsMw9vx0b8fNLly4QD7fG3s5yA6GbgghuH//PvV6/UBq+p5GeO0WsWQy+dTOkJfRwtsObfe3rWKSSCQ67u+9e/ewLOuJ7u/X/se/x1f/l3+M7/qg4u+8VqqSzKbwIkWz2iRnG+BYrFUaDA/nWFmpUMglUVrjiIhCIU3kB6yuVhgaymE2G5SLFVIJk2a1zq/+4f87/97f+W8ZvPjuMz8Xu+1wkFJukm0vlUqbBBAGBwd3Nbi779IeANpuLGzOwu7FpY2iqGPW70cwc7fwfZ9yuYzjOAdW07edjNXGFrGn4VUjvI3Yifs7ODjIrf/5Z7jyT/4lbsNFRwqZsCmXa6RyKbTn0Yw06UyKRtNFNppMDCSYXakwMpyltlYnUprceAHVaLDmBmRSFpHrksylaSxXSJiSUEVUllb5nT/7w3zTj/8Io9/5+57pd99va5lpmj2F420BhJmZGarVKul0uhP/265geDdZ2qmpqT0f78uCZ0J420muG4aB7/s7Xqtd+jE5ObkpaP8s0a6dymQyB7rf9qzbjWhbr90tYk/DkwjvZejR3A5PqsPbyv397R/5cR596TeRYUQqYcdhkqbH5MQA5apLNYJsJkG93sA0JMlkgqVig2MjKeaLNbSGQ6M5VpbKmJbB2IBDvRHihYowiJgYS1NZdaEZMjScRTUaXP6Rv8HbQjL8Hd/2TM/BQZahbCWAUCwWO8rauVyuYyF2u7A7tTT7Wdo9YjextsePH/Pw4cM9z3zYC7TWPHz4kKWlJd59910ePHhwoL2vG0lKKcXt27dpNBq7tl5fdQtvOwghuPm3/jdWfvMrmIZBqBRBGFKrNkmnHRqlKqZhMDk1yPxcEcs0sA1Jpdxg6ugwSzOrHJrII4Vmcb4KwNhoFq8ZIGSEk7RJGbCy3GRwIIFh2wQ1l0TSoLZa5vaP/09YAzny7z8b9/ZZqqV0CyAcPnx4kwBCu3RoYGBgxwXQbYv7VcczI7wnWRmmaT41hhdFETdu3CCKIi5durSvkXy7wVaN/wfd7N8da2y3iA0ODvLOO+/s2jL7NBPezb//f3D7//xFfC8gROOFiqYfUBjO0aw2iDQkpaKyUOLQRI7SWpNazePI0SEWZlaRUmBbJkEY/3ZHjg6yPFsCYOzYCM3lMs1GfB1amTSUqwRBRCVUjI+maTya59Zf/mtc+Hs/Sfr4sQP/fs9THmqjAEK7dKhYLLKyskKj0WB4eLgjgLrVcX0aJpbBS2jh1Wo1rly5wuHDh5mcnHxubUvtxv8TJ070yK/vRjp+J2gTaLtFbD9KLvshvJfZ7Z39pV/jo7/903hhBAKiMMDzPAqDWWo1F6RB0jFo1lwSaYeg6jKSd4jyDgszRUxTMjScZXmuRCJhcvzkKAsPlwEYnhyk9rjI4NQwyw+XOXRqnPKDRXIjOfBqDA4ncRsBCcfEXSly74f/Mq/9w5/CPOCb/UXq4XXHThuNBidOnKBer/cIILT1/9oCCJ+WLO1zP+NPIrx269Tly5d5/fXXdz2jtb32Xqyx2dlZrl27xptvvrlp1oRhGAdqRQkhWFtb4+bNm7zzzjv7kq16VS287R5Kq1eu88H/+ycwogArCpFhSFIYHD40iIhCJGCbAq/hYyctJNCo+yQSCSzLxk6YDA5lKS1VMC2D/FCW0ItjpuPHRqnNl4hCTWmuyJGz41QeLiGEoFFuMHFqHK/UJGj6yIyDaVt4K2Xu/vB/ceDn+WURAI2iiGQyyfj4OOfPn+fixYucOnUKgPv37/PVr36VP/2n/zQrKyu4rrurtb/0pS9x9uxZhBB3hRBf3Pi+EOI/E0JcF0JcFkL8qhDi6MF8qyfjmZ3x3bi07VKMUqnEpUuX9hwr2K01FkURV65coVgscunSpS2fYAepUBxFEY8ePcLzPC5evLhv9YntCG8nN+jebmIR/2mVGj3pD13/R7Q+04J8QpDcrzf48D//UZTrEoSKSCvMhEUyl2JtuYwjDcaG0gRBhGVLDA2Nqsuhw4Msz6yimh7jEwOsLVdIZBIMD2Uoz69RXihz+u2jlB4tAwIrYTE0miesxINonJTF8HCWyvQyTj6FlXIwIrBTFn6phvfoIY//57+5h3P1ZLwshLfxONoCCFNTU7zxxhtcunSJH/zBH6RUKvHDP/zDvP/++/zUT/3UU9dtTyz7pV/6JYDXgO8XQry2YbOPgPe11m8Sj2j87w7siz0BL9ylbbuSR48eZXJy8kDX3g7t7O/TXOeDcmnbBdPtOQkHUdW/1TGHYdhR5hgaGtokS/SElVp8JNoLb7+fHWQYtVKIJ2zzxhtvtpZpE65Ga/joP/nL1FeLhGiwTWzbIFKa0kKJ7HAWv+GhqhFHjg6zML9Gs+oydXKcpQeLZAYyGAJkEJEbSmNrWFuqIA3J1IlRVm/NkxlII6QgaUrqi2sAjJwZR69UcVcqACQGshjVGlG5QcM1yUwN4ZdrlH79t0i/9z6Fb/6Wp5zLneFlIbynZYullHz+85/HNE1+6Zd+CSklq6urT123PbHsxIkTaK39rSaWaa1/vesjXwH+5N6/yc7wwghPa83MzAxzc3NP1ZDbKXZqje2m8f8gLLx2l8aFCxeAeJrTs0Cj0eCTTz5hcnKSVCrVKa0xDIPR0THyhQKJZAIhJG+/+x7S3JwR3lkMNCaqrc6Lbv1HoxFPOG+u6+LYNqKVFALBzR//n1i6fpsgilCAkOA1POqVJoWRHPVyA9s2UWGEu1xhcDgHQxmWHiySH0yjg5B6zaMwkuXQWI6HNxewHJPRiQLL95cAmDw9RHlmhWalCcDQ0VHkWp2w9UBLD6VRxTKp0QKNiouZcjBESKQ0Qc1l+R/8XdIXXsfK7V9w4GUhvJ3Cdd3Og3onnslOJpZtwJ8Gfml/R/l0PPcsbZtAPvnkEyzL2pGG3E7xNAtvL43/+7Hw2i1ixWKx06VRqVQOfLg3rPfdvv7GG6RSKZTS5AoFjh4/0fktum+yJ7UTxZJFbUqL/x7/bf3/Ao1Q0SZLsHehJ18DdiKJbu1LClj5rd9l5he/RNIU2IZFGAa4QlJu+AxNDbO2UCKVTRI0fZyEQ6NcZ2JigMePSwyMFQhqLl7DY/jICN5qhVLNZfjoKEakKM4UARg7fYjq/QVyh4ZYqS8xfvYQzYeLhEozfGaC0FeolTKh69NYLpMYzSOIqC9WSU/ksZI2hBELP/HfcPi//u939dtshVeN8OBgpNy2ghDiTwLvA7/3meygC8/9jJfLZer1OmNjY1y4cOFAG7a3I7xms8kHH3xAIpHg7bff3nG9214tvCAI+OijjwjDkPfee6/jVh5koqE9inFpZYUgirj4TZ8jlc6AkEjDQAjZQzrdf48iRbPZpFyuUKnVaLheXIyrNaGGSEOkBYr4j2796Y7hbToepTt/lNYopbb8U61WW5L+Crdc4e6P/ySmDol8n7Dp4tdcLNfn+OkJio9XyQ5m8BseyUyCRrnO+JFhVu4uMDU1iFdu4DU8Dp2dxF0qEbo+6YEsY8NZKvMx2U29dYLagwVUqEDB2GuHadyb77SoCSGxfR/lxgXxZjpJZiSFasb/VoZFFPi4KxW8hQUW/vn/d99hjmcpgnrQeEYTywAQQnw78F8C36O13jyF64Dx3Fza9iSvhYUFUqnUjlqndosnZWn30/i/F8KrVqtcuXJlU4nLXtfrhtYaDTGhaM0bb8dDkbe7ddoXbKQ0WoiWdQXSTpCwe2WHatUqmWxu0+d7968RrT12W350HYkB6Cfc0Ml0pvUZxZ0f+a/xS2txkiJUhJHCySQxbIvKvXlOn5vkwZ15sgNZqstlxo+PsfpgkcGjI9RmVhk/NgKGweqdObTSDB8bJSjWWLr6iJHjYySzaYrXHiIAaRpkChkkCrd1bONvnqB67QEDpw7RWCqTOz4BlSq12TWsTAJpSozIJzE+iLuwgmFZuP/mX3A5MwhDo3vqX22fxxdNeLslsb1MLHvw4AEnTpyw2TCxrLXeO8D/Avz7WuulXR3MHvFcXNrugt5Lly7xla985Znsc6P7qbXm7t27+xrms1uCmp+f58GDB0+MS+7FwlNKoRGoFtl1rbb1B7QmarmmkQbVsspk12e2una11iSSSVzXxQ8ClNaYlo1pWcQzk+mss93Fr7VGi/g4Wq+s/1fHCaNEMsnqP/lZKldvEmhQaLAMEimLyAuozJUZODpK7dESh89MMnN9hvHjo6w+WGT4xDj1uVWiIGQ8n+HeJ/fQSjN+dpLao2WiIMS0TcbGB3j4wW0AnFyawnCOys2HJEcKGI7F6JkjVK8/iEuF7s0z8u5pmvdnIYyvoeTkYXSzQlht0JhbIX14GL9YIjU5yuErv036z/0Ia2tlpqenOxLobQJ8XoOj9oOdutV7Ief2xLLv+q7vArjB1hPL/nsgA/xsa/1prfX37PJr7O64nuXisD6D4dSpU4yNjQFPVhHeL7otvI3zaPf6NN0p4XXHB7frDtnpelprlKaL5LYnSaU0CghVe8stXM6uV4MwRLZKRuL9gEYgMRCWiWM9+YYNohDLMDuLxjYfndifRoDULRd487Ek0hmaj+d5/I9/ljAKY4vRMjClxKs08WtNBo+PU3m0SH5yCHe5xOSpMZbuLjJy+hDVR0uoMGLy9aOsXrnP4deOEiFYvf4ItCY5kCU/kGHlozsMnzmC13Cxw5D69AIAoRtw+L1zrHztWueYRt49h6GjDtk5IwNEtSpmOgHVBsIysXIZVK2Kt7yGlRBEX/5ZJr7nBzr9q7VajWKx2MmSH8T82meJnU5Oazabeyqh+sIXvsAXvvAFgJPt17onlmmtv33Xi+4Tz4zwtNY8ePCApaWlzgyGNtqxtoMmvLaF185OnjlzpqMmsZ81n0ZQnufxySefMDw8/FRh0KfVzmmIXc+nHJfWChBUag3sxLoaxtb7bmdVNQrdIjeDSLOJR7tJUWvd8/eo5RaHQQCJ7ktnq3geIDdkPFrE6Loei//dj2ObYCZNImFQaXjUVyoIKSkcHWXt3jyDx8cpP1xg+NQhlGXB2UnK9xfQkWLywlGKN6YByOWz3P/gBmhN/vAYVuBTa5FbYWSA5St38BpxZjZzeBwnivBmFkHGtYIj75yjcfMuAOnjU/FMDOURrFVwho8irSrJsQHqD2ZIjg5iJCyEYdD48Gsk3voc5tGzPfp17fkV3fNrN8o3vQzYjTTUp2FiGTxDwgvDEKXUlsOo24R30DJPUkqWlpbwfZ933313T3M0t1pzO8Jrk+tOW8S2Wq8dX9uWVrWm6bqEYYSVSHWsvm6yk6KbW2I2i5QmaFlvwBPdUa1jxzfScRZWQ+t4uq00gZDgOOtxv0hFBJ5HGIYYhhm7v4aBkCImvR7Ea639/M/iz82gwxAihfADMlqhBjJI02Dt3jxDJw+xdu8xI2enKN+ZY+DcEYLVCmjNodePUbzxCCEFE2+epvj160y9eQa34eLPLeI24o6AifcuUP3oOpmpCcr3Zxh4/SxMzxI2XUJg6P23EL7bITsAe2gAd/oRUauroP5wlqF3z9G4/yD+BpaFYYK/skby8ATur/wsqT/1w0irN+u9cX5tW76p7f56nsf8/PwLdX93qpTyaWkrg2dIeLZtc/LkyS3fexbqxEEQMDs7i2EYW5LsXvGkREi7jvDx48e7ItduC6+deFB6+6RDGEXUGk2cRArT3Ma5bbmXftRNnr0ry3gzwjBonSNBpCHsWtQSbAryxdZefKDt440tRYnhJDG67lkN1Gs1nFQKCUghaRuT7uwsjV/+N6hQo8MI5YeoSGGnEwxaBjPX5hg6M8na7TlGzk1Rvj3H4Lkj1O7MMn7uKM0JRenGQwzbZOT0EUpX7gCQTtqUrt1FhxHCkEy89waVD68AkBoo4HzTMO6Hlztnwzk0hmUKatfvd4479+4bNO7dJTF1CPfRDNKxyZw6guqS8zIyKaSpUI06IPAXl7B/++exf9/3bfMLbpZv+spXvoLv+y/U/d2NFt6nQTgAnnEM70nu204UU3aDdrdGeyj1QbrKW6mlRFHEtWvXkFJy8eLFXSvXJlMpgkj1ENems6QhiFSLiAROYmuXolatksxk8SONKWMLbWtoJMRlJ0qgMHiSSSlE22WO0SbE9tISMLtOcdv1bVuYSoOdTKKQ8S66jqn4d3+SqN6AMEJrgXQsrIRNWHcJS1UOvXuShQ/vMnr+MGu3ZjtkZ9gmjpCszM5jZ9MUxgYo34ytrrH3X6fyjesMv3aG0v1phk8c7pCdtG2shEU0/bhDdvL4YWSzSv3addKvnaV+/RaFS2/TuHEt1nJMpjDSKVLHDuE/nsUHEocncQZyBI8fIcfH0FKiAw8jnyOYeYA5cxN5+NyTTv4mmKbJ0aNHd+T+Pqtsbp/wnhMOysLTWjM3N8fMzAxvvfUWjUaDUql0AEe4jo0uaLubYWpqamMl+VOPtW3NnXvtwpZWWjtR4T+BtQzRcjlFnJzwI42RzHS2j1oJi/b9IVuuaag0fusr2LJTftYD0SItBQQhhNvWFOuOpai6ybBr3aQhCVV8zKAJwojqv/g5/Adz6AgQEtMxQGv8YqxXlzoyiltcY+S1o6zdnGbo/FGqt2cwUwnSY0NUbz7k0Lvnqc4sUn0whzRNRt44S+WjuFspkUxQGB6gdj3OzNpDg6TGBmlevU7m7TfxFpYZ+KZ3qF+/1uF6ISH/7us0b17vEIu/tETmtVN4d293vo81No7/IN7GW1gk9/YbqMVpQsvCTCeIPvlN5KFTYDz9ltqYsHua+/ussr87TRy+rEO4hRB/GPivNrz8JvDdWustuzZeWcJrW1lCiE63hud5B+4qd7u03S1iW00RexK01oRq+1yr19Jt24qMIHYhA6Xxtvl6GjBFXOLhhqpVjtKL9vpRGGHIuOg2VL0ubWLDQ1+0OiJi8uy19p60XaREq3g5Pnp/tUj0u7+GnTXxlEI3faJQEZRrmJkkdi5J/cE8+fPHqJSaDL12nOqtR1jZNMlClsbDxySnRpFuk8b8MlY2Q35yjMrlGwBkL5wheDyLMOJYWvr0CUSjivcoTmx40zMMfO4dGteudc6KPTqCJEC76/WuiSOHkcLHsNZvjfTrFwjuXcOeOES4tIA9OQXNRvyAajYRziHCxQWMD38ZefG7n/wDtX+DpxDNRvf3WWV/X/Uh3Frrnwd+vv1vIcSfBf4E8MtP+swLcWn3S3jdjf/dOvt7lYfaDlJKwjDk7t27lEqlzljInaBtsUXb1N3F3Q3x340N/CRoxb1CRaTX42/dLo7WGlPGpSWNQOGYAl9151rXYYj1BEmgBaHa2ozTWmG0CpQ3kmH3sdFl6QWq153OmK1ja+0i+id/DxmFCNOAvE2j2iSoNHCG8gjLoDG7Qu7cUWp3Z8icPcbi717HHszjJByas4tkTh0mWCvTWC0y9s1v480uUr8Tu7QD3/Q2jes30VFE5u03SYyP4t65A62wiT06gj2QxnDWSSZ97jRUi4QL86QvXMCbfUz6wnmi5TlU4NNo1DFyOZLHjhBO34ld3VQGozCAiUe4UsI+cgwzmSAqr2GkHMTKHBQfw+D2k892U5K12+zvbtzfV53wuiGEOAP8VeD3aL05XdbGC7Hw9hPD267x/6DFOiG+KKrVKoVCgffee2/HF6rqsuo2olqtYifTm4gkUjpWGUGjpYG7YQNFHDtTukVeQLnpIc11At64R6NVAOxFmmbHrRWbSLPtevqRRiuB3uprtiy4uG1MEmwsaWmtI4jd61ALQg3hV3+DaPoRWim0ihBhSHKsgJlKEnk+/lKJ7OnD1O/NkjlzlPrdR+TPHScsVnAXVsi9form9Bw6CEidPIqdSlB5vAhSMvS5t6l+fKX1ZQ3sjE3tyjVoCwKcP0NUXMKfnSNxLL7c5blTREuziNaDqHHnDrmL7+DdWXdrCUMyr7+Gd/2jzmvB/BzpU8dQC7HVqIIQrSoQesjRcVS5iHnnq+hLf2jbPuP9DPA5SPf30xLDE0JYwP8B/EWt9fR2274yLu1OGv8POvvbbhGzLIuzZ8/u6DNt9/VJNp0faWRiM9lprWnUa9hOkpCtA22twhCCSFNvvd9NdhCTpilAaYUbbp3EkAKCKOqUqPiRptm1nWPErWNa69Y2mjACN1r/Xrn2vdQiOa3BizReawPTiV8UfgP1q7+AjlRcmKzBsC2sZAJ3uUpYb5A+NkH9/izZs8eo331EcmIEmc2zcvsRhfcuULt5B5Qi/foZvIfTBEtL2GMjpCZHOmRnFfKkjo1Tv3yZ3JvnqHx0jfzFt2lcX3dh/YVFBn/vJZqXL6+fi0SC9NmTGAkDv0VCwrLInD9DOH0XYVoQhch0hsTEMNK2O/E/I5VCphLo5Tm0NNCGia7XkA8/Rh1/5wlXwMEKB+zH/d1qGPhWqNfr+xKqfQ74UeCa1vr/97QNXxjh7WZyWbPZ5PLly4yOjm5b2HuQYp3tAUJvvvkml7tukO3Qtuq2OrpIadxo6/e8ZpNAC6QT67VtJDuj9VIj0NgGLZeVTdtIAXVf0ZIq2bSNII7xRVFEM9AtvbretdpuuKkVfqQJtjidhtCxdaQ07obni0BjyVYcD+DnfxpdqbWsQwEJB4EmXIsVSSI/Q+Ph45js7k2TmBpHuw2i8iqFb3qT2uU4IVG4+Da1K1fjfYwMYQ4UaFy+BUDy5FFk5OK2auUM2yD/zgWaXWTnTB7CSplYpqDZes0eH8dMWfgP7mKNjMafzeVITgwTztyLP3f6LMHCYxKjg+jSMn6lhJHKYE8dgaUZFGNgWoh6ET0c94eL4iyMnYLU1kK2Bz2xrI2duL8DAwMMDQ2RyWQ+FRaeEOLbgP8A2NG0pWcew9typ7twaXfT+H8QFt5OW8Q2fW6bxEQzUB2rQANuo0EilUJoTaXpYlhOR7YmaFmHgth9DSKodvmOfsvKEi3X0W3UsBMpKl0mY8oUPe6mJSDUioqnUBqylugR54zjgPH/66GiFkDS7FVaMUTszvqRphpobCk7mV+hNaYRu7GNUNMEbBP0/WtEN66io1hBBSkhjAirVcxUCiOZpPjhnXXL7sghomoZ1XTJvvEalYdLICX5997okF3bRbUTJkUg9dZ5oumHqNbvbk6MQ7NGsLzWOfbsW68TzE8TrvioZh1tGGTOniZamidaibP6wfIS6bfegtIi0dLj9ZMXBDhDBfTaSvzvKMQ6chI9fy8uWVpdxD7/FmJtBrU8h546DpUixqOPiM5/69bXynOShnqa+9ueH53NZkkkEk9c52WdWCaEGAD+N+A/1FpXd/KZl9albTf+l8vlHScK9kt4ruty+fJlRkZGntoi1n2cUcsq2vAGvooJbCM8z0VYNhESY0PPqiYmqEaoaWweX4smzqJGGqp+hDKThBv8YyHAbGnZVf1ok5UWqNhNlcSxpHqkCDfsK66za5FcqKlu8I0FGlvGSY1mpONSk9b5cAxQkcL5t79ImLFpVl2E1ijPQ/s+Zj4XJ4PWVsieP0n95j2Sxw8TFVfixMOFczRu3iJx9BRWNkP9Stzzmr/4Fs1bN0EpvNkZBr/1IvWPP+kcU/LCecLZR4SVEH3oMDSaZN44h//gzromoOsiL5wheHCv5/dNnT+PlZC41bXOa/bkFDKsY+YLhNVYaso+cgJdml93dQdHkVFr1oNhIBwLXSkjfA9ZmkENbC5delFaeBvd32vXrqGU4saNG4RhSD6f7wzv6bb8XmIL788Bo8Df2XCv/o0nubcvJeF1N/6/9957Ow7w7kdrrt0idu7cuc4T8WnQWm9JaBDHuzbGz9rdCXEMT2zyOk0JNV+hDEG4hStpG9AIIhpabEpoQOzS2lLgBorqVr4oYLWIrNb0wTTZaI8KNJYQhJGiueEnisksVm3xol531mxZgLVA0Qwh+/V/g6yUsC2Jn3QI1qoIrbCGBsH3iCoVEpOT1FcapE8dxV9cREhB6sQxmrfvYA4UcApJVj6+ijAM8u+9TuN67N6agwUSY0PQCuMK2yZ74Szu7VsdFzaTTeEdmyB8eLdz/ciBARLDeTzld1x+YZqkL5wneHQbZZqIdAZdr5E4fRbKCxCFiNFY9MI6ehKqy6A15pFTREtzWCkLVudhdAIjnYXSPDo7jHSryNXHqMwYbGg7exnEP4UQSCmZnJzsuLflcplisciDBw867m+pVNpTHd6XvvQlfuiHfogoirh3794XtdY/tmH/DvCPgPeAVeD7tNYPd7MPrfXfAP7Gbj7zQlxawzCe6NLutjd1J/vbDlprpqenmZ+f31WLmO6K13VThtKaZouMut+TQD2IuysM08IU6+UephQ0AkW95YeGG8pKLANqXki5lRFImr03SztmVnLDOIOLQsr1J7QAEqagGSqKbkyESdErDOBIQaAUZS8+xpGU0TkGsxUfrPmaeotIk6aB0BrLEPiRotI6dq016eYa1vWvdB4+ZsZBNVxkOk1UqyIDH2dyAm9mhuTRk5S/cRWZTOKMDOI+eIg1eQgZ+Xi3b5A6dQwzaXfILnnqBLpexpueJnHiJPbYGFYmgXv7Vuf7pi+8Rrg4gyks2leZc+Y0enWRaHEeQwiidBpp2ySH852yE6II58QRpGmgHq9bgMHMQ+xT52F1Lm6vA6JyEWvyMKLSknHTEiOsIZRC2wlE6KFCH6s0TTBysiem+jIQ3sbjMAyjk92Fdff3J37iJ/ja177GX/krf4U//If/MN/1Xd/11Nkz7QE+X/7yl5mamsJxnO8XQvyi1vp612Z/GihprU8JIf448OPA9v15B4AXctZN09xk4bXVVW7fvs277777XLJC7all1WqVS5cu7ZrsNL1kF0TrZAcxSQhiAqsFva1kQrRidEpT9qIeSzFQ8XuWhEYQstIIcLvMRTeMS1cSpqDeaLDSDFlthutFxci4CDgK8Bs1Kq7PUiOk6ndZfSpEaoUpNM1AsdwMWfPWj1EpjSMBrVnzIopu1EmWOIYgVIpmpFjzIhph3GebMuPvnPudfwa+H+dOEJgpB5lJE62VkSrCGh3Fm5klcfwourqKkc9h5dJ4s3MkTp+CRoWovIZ96BDpo+O4D+JkRPbdNwkX54gq8cAdI+lgWhAszMfnO5Eg+9YFwpm74HskjxyOrb+33kDPP0IEcYGx0JrE2TOYVkS0srD+mySSWJkkev5+z8PTOXkGM53okB2ANTKKaa/bCzKZBDu+foQ00FYiloxx6xjN3u6fl4XwtktatN3fn/mZn+HcuXP8xb/4FymVSu0pZNuie4BPKxTVHuDTjT8I/HTr7/8U+P3iOSiivhQubbdA6EE2/m+HdovYxuLlJ6EtgtiO2eneN7d0YZWOXdSNP2Po+yjTpBFuTqa2M6luqKgHm91+Q8QWoRdq1rwAjA2xTa1JWZIwVJQjCeYGEtcKGXrUfB+V2FzaYxsCA2iGCq/bXdeatBW70iU3ImlYKB2TsiWh4mtcT5O5/zHJxRloTS0ThoGpNVGpjLQkVqGA//gxiZPHCWYeYY6MYOUl/uwcqTdex79/G5QidfYswcIsMpdFODbZ187QvBV3VQjLInPhPN6dmyQOn6BWKuEcnsIwFP6DO+vnUmiSU2P4D253CEzYNurQBImohhusVwqI0TEsM0JN30YNDCNLKyAlidPn0EszqEy+s61z6hyy9LiTlZWjkxi1JRieREuJDBqozGBsTYQeZn2VyEpDK177KhBeN+r1OpcuXeLbvu3bdrTuDgf4TAIzAFrrUAhRBoaAlR3tZI94YS5tm/Dajf9byaE/K7Qzv6+//jr5fP6p23fHBrdKUHhPILtGoJAq7OmvNARUlUSEsZvpdX3QloK1ZoivYtLqRpvoluoBkYbB5IafLgqxJKwFUHRDhjb0h1kyXn+1ofCVia0D2ltopUgYEGhBsRW4KzgGiHVCK3ua5Vblclsy3jEEFX/9tbRUjH3yK3HxtI6lpHQYQrOBPTKAhpjsThwnmH6ANTkJ9QpGrkD67TfxbsUeT+atN3Fbf9deg9SRQzRbLqs9NoqVSeLduRmfF9sk89Yb+I/uEqn1B0Tq9deJ5h8Qh4pa53fiEKYj0OVFIsAcGiFcXSZ1/gJ6eRrhxd/FzOaJGjX04CB6KZ7LoGtljIkjmOkUshRncfXKPHJ0CosgvtZX52HqJNKrosvLMHIYUVuFZAbTqxIaFrRKp14WwtvJcXie90ooOO8EL8TCa9fLzczMMDs7y1tvvXWgWaAnSVJrrbl3796uW8Taxyuk3ER27ZKTdrxOAF6oO+6f53k4KRNDxK/XIr1pXqstBVUvZK3LHW4ECkuClLGk+lIj6Nl3u/eW0MdzPRpGosfq9CMFSFJm7H6uNHpjptqwMFBYUrAWKOrhesRR67jjw7EM1rxofW6F1mRtiRtqGqEi0KJl+UlqgWLw5q9jhm5cXSw0OogQgY/IZDASNu6NWyROniB4dB/72HHU6gIoRWJqhOrvfgVhW6ROn+qQXfLMGVRxATOVw6cVm5ufIVhYA+KaOStj4X50DdHqJjIKAyTGhwlnYkvPOX6CsLRG+vXXiebvo911t96eGMcZHUIvPeypjzRViD02iq6uu6JaCGpCMljqKlmxbMyBgbjuDsA04+ytBxgGmDZEHugIw6+hrCTKSe+r0+KgsRPCayc4doodDvCZAw4Ds0IIE8gTJy+eKV7IYyaKIlzXZW1tjUuXLh0o2T2p+DgIAj788EOUUrz//vs7JrvuNWNxzHXEDfoxDLGemOguDLaTaSRQ9lRPHA7iYuQoUizVg57YH6zH8JbrAQv1YBPRCsD3XIqBoL6B7AStvtsoZKHmbyK7tCUJw4Cyp1hxFaFudcZqTUoqdOjzuOZRapOd1mQsgRSw1Aip+IpQKdJmnLFdboao0hJjqw+RhhkTnlKIKELkcgjLQkpwTh6Pye7UadTSHMK0sCanoLyEMTBI4tA43r07ICSZt94gevwA7TZxhgtk336T4OFdtBfH4ZJnTmOnTYIHd0gcO9x67SyWownnp7vOhSZ97hRq7m7PnFz78DFMU3UsuM7rJ88hvSpGrrC+RiJF8thxBv0SuiXTpaRBlB+A4hzaiEMDYmQKWV2O/50bQTbW0E4aI2jG/cmhi1DRS2Ph7QR7mVjWPcCn1WDwx4Ff3LDZLwI/0Pr7HwV+TR/UOL9t8Nxd2nbjv2EYvPHGGwe+z7a73B2baLeInTx5sjNXY7draiF6sq5eq6G/DaXjkoxuYorLUDa7wHFTvWK5rkjbvRd+O6O6WPfJ2samIua0JfHCiMdVjyRhbEm0IAXkbIPlus+MqxhK9P68OVvSDBWPaz5gMWiBr2NSyFiSiq9YchUQu7OO1BCFVAPNUmi0jl2Rtw0CBcvNsHVMgnMPfxMdBGAYcbJGgcjlETqCSglzeArv5k2cs+eIHt1FDgwjbQO1MIs8dAQrWSdYmMfIZklMjuHfi11Wa3QMK+1Qb3dZ2DaZ82fwH3RJNw0OYKTTBNN3e665xJnzUF4k8roI37KIxg9BdQlVExjDY0Qri4hEEmfqCHplrvU7xOQoB4axUzaiEoeWjIFR1PIciYlDyMYaaGgkC2itKDRLCCGIEhkMIVo90a3fIIqQoYcRxYT9qhBeG7uxSLsH+LRCV/9kiwE+fx/434UQd4EiMSk+czxXl7a78f/q1avPZB8bFVO6W8T2qviQzeUQXWUeodI9vbBxyYaCKAAZP+0NEQf+QxW7rG1YUrBabRDJzQmDpCkoNQOKbrx4LYg6AncpSxJEivnqupRROpVizYswBGRtg8Wax1pzvYLYNAQi0uQcSdmLmKn2tvOZRDi2xWozouqvx79MARlLEmmohBJaKitZM84oLzQ0KUJySRtDSpL3L5OoFWP32zJRQiJyabQfIOoVxMRhxMoK9tnzRI/uYExMQaOCLtUxTp5DLDzCyGQxshmEXyeYfRSfj3OvEc4/IpipIkwTe3wsllfvIjvn+CnMhKR2d72MxMgXYpd0KV7HnjyBe/sG1sQU0tRQW+lki4zCYCzbLhR6Zd1djRbmsI6exGiWEG6t87quV7DGJ5GNdXc3ZZuYho7JHWg06mRlXMsTKIUh7FhUVYAMmhSy6fWQxEuOvVqjXQN8AP46sHGAjwv8sYM4xt3guRDeVo3/z2pyWVsxRSnFzZs38X1/Vy1iWx37+KH1uqN2k3zb2uuQHTERShmTWqUr9uWrVn+phqW63yFFaEk6SUEjUjyu9WZlQwUDCYNmoFjoIro2/Ehhhk3KkUmp2dsqIUV8sH6kmK70urSOIRCBS8O3qHldBNkiuqVGwJobcnIwidaagmNQ9SOWXA1IbAlJ06IeCUTT5a3HH8WxESljlzaVQnseslmDiSmYn8U8fBz36x9injiNnp8GrTBOv4aYiedJJI5O0LzycaymkkiQPH6cYLo1a0IIchffxb1xpZOYEIkkqVMnCafvEQIynUHVayTOnIO1RfTSbOd7CaFJnH8dtfCg9wRKiZFKwMocPQVGUmIfP410LHRteX2ddA4rm0I6Np2G3GQ2NrLTeagV0aZNNp1Bp/LgVpBaUWm4SG3S1qx2DJtIv9gpZjv1HhuNxsvaZbEnPHOXtt34PzY21tOu9awmlxmGQbPZ5OrVq4yOjnL+/Pn9BYiFIApDaGWpmq0nc1vost5V22Zadite10tcpojl2ksbOu2lAFMIGlFExet94ltSYEqoehFrbi9hGQIyjsFMxcNG0C1rJwUUEibzFY/ZIIr7V1twDEHKFMxWPEIlGXIUSLmJ6KCV+NExUc/XY1KUaPK2wXzNpy4Eoxmbd+Z+B1PHcySEYSBME9VsIv0memwSufgYOXkUsTCNdf4N1J2rkEwjR8YQM3cRtoN1+CiR54OKsKYOI5VPMB037xsDQ1iFAtrQ0CI75/gJpN8gbG0DkDxxAuV76MVedSBzbBLTFPhLMz3xV2NkHCuVgKVpzKERotW4gFjmB7HyWcTaPKIwsl44PjSOZSiEW4VUy1NIZDDSaWToro/gLYwj/Traq6MSORxDYKOJEg6mgDXXx3AMPNdjeXmZgYGBPT+M94PdqB1/WiaWwTMmvCiK+Pjjjzl37tymxv9nNbksCAKuX7/OhQsXdtwith0ipXESiVax8bodEJedRHTrnxiCTS1fthSsNDYrw9hCU/EVjVCRT/R2RWRsyeOqT9gqT2lnnSWQSxjMVX2WWxZdRka4xHGzgYTJfNXnXqPZWW8gKZEiJrqZssdS1+G5kWY40Ut0AFlL4oWKqhdSCeOg9WDCYLURMlPx0VqTT5pk60ukS48xDSM+C0IgDYEMPBidRKzMI0YnYPkxHDmFWFhGjIwjtEIuzWIMjyFNSTT3EJ0pkHrtdYKZu52QhHPmPGppjmhpDmPiCMJJkDp9inD63vo4DiGwT5xF2BbejfXpY8J2cI6dRC3OoD2wJg4TzDwAaRCOT+K4FajG50nmB4hWlzCPnsJoFBH12F3Va8uIzAAyX8B0S4h20La0COkBjFQCGcRriMoyeuQIhl+P/+030bkRiFxAIC0brRW5pEMtVAzls8wsrvDo0SOklAwODnZUTJ5HBvfTJP65GzxTwjMMg8997nNb/oDbtZftBVprHj16RLlc3lU/7NPW1LTkrDyPoMsVdf2ARr1OMhOLkBoizsQCnbYxS8JifZ3sMrakESgCt8GCWl+r4kZYBiQtg7VmyHR53c1sBIqUiEgnHJYaAStrva5rpCFvw4qruFts9rznGIKMKZip+D1EJwWkCVis6o5IJ8QqK1LDbDl2nxOWJGsZuEHETDn+HhlLopTmUbHBd7gfYwkFIh7saIQ+kTDQw+PI4hLG4DBUishDR5BL04jCIWRxCRH6iCMnobiACgNkJo85PEzt+nVQCpnNY4+NEc2tu6CGY5MYHeix6oyhUYxMGr08A5l1MVjryAlk0EAvzazP90gkMUYmMByTRKPc+zu7dZzjpxGVxd4LwDAwDx1GrjzsvYZTWcTwGLK83qWhM4MIJwVhLCQQFx63ahSTWYzQJbJSSHQsrGAZnDpxAnXiBL7vs7q62lExyWaznTav3VQT7AZ9wntGkFI+cXLZQYl1hmHItWvXME2TycnJAxtz151djVjP0vquS2TYpDLZzhyJtS6X1JSiVW7SS+gCaPgRDdVr1VqGwDFiC2wjklJhmhb319xN7w0lTRaLLotubxbNlIIBW/Kg5OJI0ZNNHkmZLJQ9HnX6cgVeBMnW/tubpkxBEEYdN9wQcTHy9Fq8zXfKBzhehbjaTyGUii03J42af4yRzYLnIgeHkKuPCSdPIGpxeYY/eYxkqxwkHD1EImigl+cwh0Ywsln02jJRq7REJNM4h4+i5h8hnWRMIaaJc/wM0dI0uhRbVLpWwZo8ipFMopZne1tYLBsjlYTVx4hG77VoTB7DCGoggt7SnvwQViaJdNfQ3WsNjGOIEBGsP1x0egBp2wi3Glv8holhmsigSeRkEJaDIKKnqKmjHh2PNO1WMalWqxSLRa5evYpSqkN+uVzuwEJAOw0n1ev1vkt7EDgodeKN8y3u379/YCKg7VkUYRiCNDEANwgIhNkiP4ElodRVzCoAN4xY2xCvS1mCR2W3J2MLkHMM5qseGbuXpKWKsA3BbC1kcEN3WN4xaHgRNxfj2aijaUEjivc9mraYLjZZqsTHVPdCQDCcNCk2Am4tNTrrGCKWolpoBCy3FZTRDCZNHpY8Fqo+E4UEw0mTlXrAo2aIRHPcdDnhLkAUYQgdt6uh0bkBqHnxABzTwjBE3Bc7fhR7eZowO44YHSe5+hhMC+f4KazHD+Nzbdp4iRyJ+Ued47OPn0HU11Ct18zBITBtBBFq8dE6fQiBdew0QkrCrjYyAHPqOEbYgJVpGBhCleLyEpHOYg2PdJr/xcAoUTmWgDKmTmK6xTheB5AbhsoKYuwo0i3HCaFGGZ3OgwbpOEitIFKo9CDCdpCqZdkLidStHkIhUEgQGklLRHWDJKwQglwuRy6X49ixY4RhSLFYZGFhgdu3b5NMJjvu73Yadk/DTodwv6wTy/aKZ054z2qQD8DS0hJ37tzpaRE7yLkWHYvODxCWQ6gUQRghWrLqsRxSr2KK1nFyImPLTvbWNgTTLestZRv4bkwUlpQ8KseWW8kNcQxBoDRm0KQUWZ0C5mIzJOsYSCGwBNxdbtANW2gyKZulqseNxXrPe0prHKG5veEzg5ZiualYqQexEILWjKQslmo+d1fjY8rYkgHH4NFafOwDCYO6r7jo3sAyDaLWg8UAyOSRYYAwDHRuEKO2ik6kEckkVnGOcPQwZhARlZYIswVS2TSqRXbm1HHMZhnDSuEDKplG5wdgZa5zXkUqjVEoEM496LHejLFJTEtC6TFiZL0nWuYHMQcKiPLS+ra5Aqq0gj98iIxuriudALpZg2QGa3gYo9HbzikSKcgcx2yUeo00Jxsr0+guS9604lq7Tu9uIq6VVCFIiZYSgWrNEFYgticd0zQZHR1ldHQ0HgPQaFAsFrl58yZBEOx5glnfpX3eO97HIJ/txEEPcuZt+/mrhKQtlmTZToeIQhWrpsTSS7F2StsFDKJ4HkSkFY+r69+zGShMHVDxoTsxqwEr8qh5ilXVq1NntAqKby83Ng0GyhiKhgf313qJLm1Jkpbk1nKDE10m4lDSoOlH3K/Ex5lwI3IJE6U1d1eb7S/PZM7mftFlPOdgCM1wyuJByeNzcpZxOwIl0DpECoFO5ZAozKABzjBm+R5q+BBGo4yoNwgPnSRRnME3HMxT5zAXZtDlYqxOMjGFarm30krhnHoNXVqAduIAgTc8TtKvEpUW10UAUlns8Qn06hx4rU6RyipYFtbhE3GWtYvsAIQUGIemyDbXNv3eMp3FTCeR9V5lE9J5pGMjqr0kqHMjGAaIcP1aU5lBDB2g7RQiaKKSOQyhUEYCJQRSK3Tko4TsXFtx9HNnSQohBOl0mnQ6zeHDhzdJuFuWxdDQEIODg6RSqW2THzslvEaj0Se8g8Beicn3fa5cuUI2m91SHLQ9n/ag4Af+upUhJUGgkMTVHm19ulDF7kmxK9OpdDxIZ7XZS+qmFJT9CE/3ZmYNv8FyJHA3/CSDSZOlisdSK2vbRsKUZG2Dm0v1TpmKQmBKwUja4vZyvTOg25KCtC1JWwa3V3pdWhPFfMXrJC4GEwZupLi1EpOfLUEKwYOSx4B0+fecVbQWcbxOA8kUUkrMxhpufhyrXsOfOI61OoNKZNCFQRLFGcJEmuTAEPWr1xBozKlj0Kysk11hGDObw725LplmjE4gTQOr3CKbZhXPThBkB8ioBhQf98rQD4wgC0Oturou2AnM8bjtiw0KNCI7gJnLYbhrqMIhqK+tvzl2FCOoIRslVHYIqnGrpx4+jAw9ZOij0gOIegmVKmAYcSY9Mix06CPtRKwsHbiETqYzhrP9MwopEHrzSICdYqOEu+u6rK6ucv/+fZrNJrlcrhP/21j6stMYXq1W69fh7QY7UUzZKSqVCleuXOHUqVNPbBE7qEE+sbsmCIIQdOyWt3thTdmbpJBC4HcpdZhSUPNDzK54ndGquZsuu+SM9Us8aQiKlRpVFf8UeUfSjBSOIUgYklstF7XihiSseGj2eNbm7nKDuVZNYKRhIGliGwazZZerC17PfkGzXPOZi9bFASbSFgs1n5srPqeH09T8iOGUyb2iG2emBYxnLCpuRNmN3/u/RjMYKsIyBG6gMRJJMC3M+ipBfpRUfYVKahR79jLh8CSWV8WortAYnCQbVBGlReTAEK5pYZZaGU7Twpo6Biuz6NUq2AmEITEnptCL0z1kYEwcJiOMjivchp/KYaeSGPUV9NAUnV9CyDgp4ZY7GVhdGEasPI4TC4eOYjRWke5avHnUStok0sjCMIZXWd+JZaOFRIwciS3Z9k+rNTqZw7BMZOtopVdDZwfj+CbE7q20QAcowyZv2ygt44lwHVtv/0gkEkxOTjI5OYlSikql0plh0S59GRwcJJvN7jiGV6/Xn5uK0fPAC3Vpd2OJzc3NMT09zdtvv73tE+cgXFrXdbl3/wGnz54lmUzSDBSe66LMuPg40jGpBa2RiCuNALv1+DYFNPywowzsGPEM2LofstIqSK5FEik0aRMelJoosf4z5BIGGW3wYLVBs0umPdIwkXV4XPa4Or/e6gSxW7tWWmMp6pXwOZSN43ofzlZIOyYIQUJEpByLW12WXs6RVP2Iu8U4djecMqm6ATeXG5wfSTGethh1Fxg2K1iGpGXjguVgNkpEmQEMr06QLmB7DfxDJ0gUZ1GGTXP0KLlKTG5idAqzVCa1HLdwGROHkaELy7GVJ6TEPnEGtTjdU0AsB4Yxs1koLaKHpzo1eCKdwxwcxirNI1r9so1aBQdQA6PYjonR1SkBIAwDPztEJmMjN8TqqK7GVl3YQHaTHSB8F4YPYwS9sVCBRiTS60kKQKULSCvZqsGDyMkgiTtvtLTi6W1tZZoDIruNkFJSKBQoFAqcaJW+FItFZmdnqVarSCnJZDL4vr9t6UvfpT0g7JSYulvELl68+NSq9P0SXlti/sKFC50ZFBsTL41AY0lBgMZtCQa4oSZjS0rNkFoXUWVtg0dlt+NeQut57tW5V7NArLsVSVPS8ELuF3tLUGxDUHBMFsoui7X1OjxLCsYyFtcWqgym1snOEXGc8Mr8+gNlLNnO+ioW625nf4Mpi5V6QNmNM7CTeYcbS3V0y2oMIsX8WoU/XljCUhIlTUwp0a6P4dcRTgItJKYhIPLxk3kSC9fw82OYhGQrC5BIIgdGEKUFhJEmtBIkJw7B6nrvqhw5FI9/FALfj49PpNJYY5OwMgulmGiEimJZpokjiLUFxNpCTxIjnXCIDh0hUS8i3A1kks7HqshBGeFvkMtK5RGZAtJ2kKVestMDE/F+bQfC9XIUlRvBQKGdJDRjwlOpQjwBTgWgNZGVjDO4CCLDXvd4pGSH3V0HAtu2GR8fZ3x8HK01d+7cwff9TunLwMAAg4OD5PP5Hlf3JR7gsye8MMmGnRCT67p88MEHpFIp3nrrrR214OzHpZ2ZmeHWrVu8++67naxv1FpKC4ltxDEy1eqntQU95BZEuqcJP2MbPK71xt5SlqTacCn31g8zkrJYrnrcWGqQd9ZdjfGMTdUNubpYY67i0faSJ7I2QRRxeb5KpGMZqZwtOVpwKDYjpruMwLwMCHyPB5V1KfkjhQRuEHFzqU6pGTCUNElakuuLdZTSHB9MsloPuLHU4M8ebuBoHwwLU0qilqCpQUCQzJHwK/iJLNIwsIIGzdFjJL0ytlcjHJ7CsExEaQEQmIUCdsJYJ7tMHnPyOEajBPU1pGmAYWIdO4PlmDHZtSElMp3BymaQpccdDTwg7mmdOoElXGxT9IRSlJWgmR/FNCKSbgnfWr+BtWHB6HGkZWJ4tVapSOs904HhIxiRj9RR5+GkEeiBCUyiWBkmaBUbJ3PI1nhLqQIiKxGv3zoWLeQ6OUtr04iA5wUhBKZpMj4+zrvvvsvbb79NLpdjaWmJr3/961y+fJnZ2VlmZ2f3VZZSLBb5ju/4DoQQd4QQX26NVdx4LG8LIf6dEOKaEOKyEOKZzrV4aWN4xWKRGzducP78+c5gkZ1gLxZee1RdFEVcvHixK7YRz2sNI+IaKr0uvCkAL1q/4ZKm4HHNJ9MSw4zbw1wiDcMpi6V6QN6WPCo1CDEAg0LCpOZH5GyDawvrDJVxTPwobiu7PL8+btOLNEcLNs1QcW2hdwzneMYmYUg+nF23ThxDkBU+9ypwYiAudrZFRELozv4EmpQhmK+4eFGsYjyecbi+EM8t/Y9OwmBQQRrx4KFIGghhYLpV/OwIqdoy1ewh8s1lmk4W306RXbmBZ6dRmRyZWitTWhhBSpBKYbSttPEjiNI8rK13LEgngT04AKtdRCcExqFjyKCOKD9GWSa0HxhO3EEhG6vI+nL8w6RzqEoRDBMxOoXtlkmoZodsfNPBCRvUEwVSCbs3Vldfi0kqMxCH3vz17LdoltGmjcgOYXRNPpOhR5gewDQk3WWWynQwulxXIWMlmdD3sR3ZIryDi+HtBt29tKZpMjIywsjICFprms0mxWKRH/qhH+L69esEQUCxWOTbvu3bdmXt/diP/Ri///f/fr785S+fFkJ8Efgi8F9s2KwB/Cmt9R0hxCHgG0KIX9Zarx3MN+3FC7PwnlSWorXm4cOH3Llzh/fee29XZAeb5aGeBs/z+OCDD0in07zxxhs9gVxBy52NIrQ04hGLrYvcMmLrLmnFXRLztdilsUxJ2pLM1/xOh4MXabIm3Cs1CbtOedY2CFpWVjcipVmpedzY8PrRvEPFDbi9vP66JQXHCgluLNZ6pKEmMybNpse91r08Xws5krNxI8lcKwyVMRRpHfDJXJWsJRjP2BhCcHO5QcIUvDMg+aahCEOFGEKgEAjTxopchGViulWa6WHyzWXWshMkREQirFMZmMI2NZnGKtpJIsaPxImDRhmEppEbwcpkEMW5eNANsXimMTSK4VfAXf9+xqFjWKNjGNUlROt1mRuMuyemTmBlHMz6csttbP1uQiPGjmDmC1iN1Vhmvwu2bcPoUXKOgal7H45amujRY0gVItWGB2cigxgYj8muCypVwEikesgudHJxMXbr946suExEAE2/e5jJ8yc7eHJZihCCVCrF1NQUP/dzP8frr7/OF77wBX7zN3+Tv/W3/tau9vELv/AL/MAPtDU++WngD23cRmt9W2t9p/X3x8ASMLK7b7NzvFQxvDAMuXr1KrZt73mYz24Kj8vlMlevXt2291aIONBNECANaERxS1Cj5bpKAWVvvS3JDxVVL+pxY1Xos1BuAOvB4ZyhuL1UpxH0ZndH0hYfzVWYyjvUW0Nmso6BLeHDuQopK7YiFILJnMNixeMbLatuutRkOGOTEBHXl5q0b6acYzCUiDst6n6E1prTQ0luL9Zxwzg+6Sif+0UfhWA4IWn6iu89GpE0dOvG12AnESpEmBYhElsaiMinlhljwC/RMNM0rQQDpVtxO9boYYx6MY6zAbowjmHa5Fcf006lisFxpCEQ9a4EgmkhhycwCBEbkg6YNkZ+ECOsxRZdF7QQiKFJpBQYxQU2QiezBIksyciDoLnhs5IwO4xFSN1tku3yTLSQUBhDRh6665rUgMoOYwoFkd+x1UIn2yG/yDDjCXJta1ArdGvwUnyFvFyEtxGu6/Kd3/md/Ik/8Sd2vY/FxUUmJiba/1wAtlXfFUJcIr5J7m233X7w0ri07RaxI0eOPHXu5XbYqUvbzvq+8847T+wVlCLOjgohiAIP0zLRgGOst5MJwJCSuNsW3EjhmAJaRkBCBzwoK8bSaZotmaWCCbeL8d+PFBJMr7kMJk2qbthxNRNmfDEeLTjcXKzRaMUKG4HitdE0Sms+mut1aw8XEtRrTW4318n2zHCKB0t1bq65vH04T9pWDDgGl1ufzdoGQ0mLQBgofI7nLW4vN/lz5wRTGUlQrWGhEZZNKCRpEVIiSSGoUEqNklMN7KBKMTnKQLCGiBT19BA5R0K7FCQbN9Yb9RKRap3r/DAykUBuLOgdPISVU4hulxbASiBHJxGNMlqE6GjdmtVCxkSnAqQXnz+VyscWJaCdFCI/inCrJJQHAqJUAdGuq8uNIE2DRBQAgqwh0FGsWNyQDmYiRbLlwmqvFmdWpURnhrBEq0dWKyIrGbeStdrIIE6yKDPRITwlLQwzvj7VCyI72F2nRTabfeL73/7t387CwuaHy1//63+9599aay2EeGLIUggxAfzvwA9orQ+mN3QLvBQWXrtF7I033iCXyz3lkztfdyu0xUg9z3tq1ldKiYoUaI3RFZ/ROs5wNkNFxVufa5G2JDMVD0Ec0wvdJtPN+EOL9YCcYyA0PcW/XhhxOO9wbaHWYxUWGwEjKaMnJgcxQXp+xNUudzdtG4wkTS5Plzk9ZHVem0hbXJlZVwYRWuN5Ibdb7WzHBxIslj3uLNUZzVqcGE5zbb7Gt4xpPj9hIqTECD2kFASGjaM8mkYSy/MpZ8YZDNao2nlMoRkKSjRlgrJMMRotxpGZZAaRG0ZWliGMM8a+hjA/QjqoQhCTkwYYmkIKjWxWwcmuB/OdNHJ4AlEvrXc7uLU4/tUmushHer3kTzqHDjwYGEd4tfj9Ln4Rpo1O5hCpHGbYXM9OAUKFqMwAWA7pyOuQVfscliKDTDqHIza7w6KL7DRxwiSuwWtJiZk2WTseBvUiNY93Wofn+/62E8t+5Vd+5YnvjY2NMT8/z8TERJvQlrbaTgiRA/4V8F9qrb/y1IPaB15YDK+dTb1z5w7T09NcvHhx32QHT+7dhfjH+8Y3voHjOLvI+gosEU/xgnXhT0PEsbuqH9EIFIOJWJATWhd6o8pcc/1GsQ2BLQR3NnQ6aKWZK7s9ZDeZc1ioNPG6MsCmFJwcSHBltsKtpXqnyPXkYBKvGXD9cXzDrzbh5GAC5Udca71mGYLXRtN8eL9E0w8RaM6PpLmzUKfcDBlKmUgF82WPiZTmz75mIYREaIVNiDIdhBAYaCJp4UuTVFhn2RmOLbzIY8kZwTYlw8IFy0GMn4hjVpXY7dSpPI3UEAkD0m2iEwI9cgQxOIHhVhDNFmkZFjqZQ06ewkjYyOoyojsOpyIYO4EsjGB4VWTYW8+prQQkc4h0Jn5/Qy40NBywk3FmNux1bYFYACBTwFR+D9kBROlBciNjOGbvrdM0kvG119UbG1kppJC0nVdl2p2JdS/SnYWdd1rsR5vve77ne/jpn/7p9j9/APiFLda3gZ8H/pHW+p/ueWc7xDMnvCedMN/3aTbji+299947MN2vJ+2vUqnwwQcfcOzYMU6cOLHjH1IAhhG3UsXu7HpZSjeaXTMKjMhjVTkkWzeFJQUq0txdbdAeN+tIjSPh2mKNXKsMRQBHCwk+ni2z1gw7JDietXEEfDgTW3t1P+LUcIpTAwmuzJSptFrabEMylrEpld1OAuNQ3iFvGXz8qEwQaU4NppjMJLg8W0EDJ4eSVBsB08UmU1mbL77tkDAllmUSBCHSkATSIqma1O0cBVx8JcG0GI3KrNiDBHaaMR2TlZEfRiRSiPJifM7SBfTQFFKFpJUbE0giDWPHkANjGI01pLdurapUHp3MYFoyJrou70bbSdTgFCKVR9j2ZqJLZNBDUwgngRG6yA0PPu2kcNPDmMkEpl9FWL1qIyqRRedHMYXCCDckJkwHnR/FsgxMFcRxPeLsq2tlcOy4xq7ajK1nXzrI1hwUqRWRMJGt6WZa6xfqzsLOXNq9TCzrxhe/+EW+/OUvI4S4A3w78GMAQoj3hRA/1drse4FvBX5QCPFx68/be97pU/BCXNp2i5hlWZw+ffqZ7689yOdpXRpbQYi439E2DQTxUJZ2xajSsZWWMCXzVY+CqSkHioYyCLViPGMzX/HQSvO4Zf0dG0iw1oiTGNVWGGqmFcMLI8UH02udfT8sNrkwluHrj8odqap4jSTaj7jc1XFxuJCg3gj45FGZt4/kma8FXBjPcHU6JjqAUyMpIj/iwWoDrTWvj2f4eLqMBs6MpPiDR2AsBbZlo7SAMECJuGVKmw6ODlgzMlhUcQ2HppFlRDeIEMwZA4yaAaJZQYQ+QSKLkcphNNbWhQBa4wuFvYaoFTvHrgEK47EL3SgjI6/9anyeU3lwMkivinRj0hfGuqagzgwgnBTSrSFaMTwCF2UnEL6LdtKQziP8OikRy2VBK7YXemgrgU7l4zGKUUx0IvJRVhIRNNGZIaQRd8fQ+nRoJpCRj3LSdD+qs8kEjUiTsNePL9IaZVoda3FpZZWB4dFtr7vngR0/9Pdo5Q0NDfGrv/qrAD03udb668Cfaf39Z4Cf2dMO9oDnTnjdLWKffPLJM92X1prbt2/TaDT2NchHSEGzUWcgncGLBFqC8OOylMGk2bGw3FDhGAYrrar7UjPAFPCosm6JKBVnU7vHXgwkLbSKuNnl7mZsg7wtqTWDDtlJAedG0nz0cA3LiC1PpQUXxjN88qhM1LIIK42AE4UkHz1Yi48fzWvjWT56tMZEIUHKloynbT6aLqO15s1DWU7mNOcLIbZtEel4X4mgimemyekGZSNHQTcRIqKiTUZkiNIhC8YAWSNiSrTaqFI5IiR2swyNeP++tJGZAUy/hqgXOxPbtGFBYQwRuOvacwB+M4535UcRhkQ2a4gNMTqtwjjZYJgYQRO8ek/HBYBOD0FGI/w6Mmhseh8hUPlRZOj3SDp1Pm+nEKks5haxdi1NtGltcpG06WDbZsdbVVoTCBNTyLgMSwhmHi+8FIT3NOw0sfEq4blladvFvWEYdpIFz2pyGcQu8+XLlykUCrz99tv7ikUYUrI4/5iR0bG4/atVWLzmhTQDTaneBGGSSjg0u+SCkoakSxuUiazN1YUqExmbh+W2xZfkw5kyoxm7M7viSCHBQqnJ7VLAaDZ+fThjY2v48OFa/P0ieOdQhnIj5MMWsQGcHEkxv9ogm45JZSBpkrYMPnoUbyOBAdvg5kINS8Kp4QwycPkTbwxgm3Fnp5QGgeuSNCwkGs9IkselaGQYEB6Odlk08qQMmOgQXR5pWLGV1YwTJQ3pYGfy2G4F4a4nT3wMrKEppFvtzI9oQ1sOIjcMTiqO6QX0EJE2bcgMYqAQtRKoDS0rECuY2E58PNXlTUQWSRORHUJKEF5zEw9qw4otPsNAblhfCxn3xrbaxbp7YiM7jtlpYbSSFDFpOq3OlDDSLK+WqFarfO1rX6NQKDA0NLRrLbvnhU9bWxk8JwvPdV0++eQTxsbGOHr06DOfXBZFER988AGnT59mdHT/T9K4v9PHkoJQaixDUPU1SUPQcJukbJNKAL5SVLwollhPmFxfqGEbAseUDCZNbi3VCZXGa1liRwsJvtYioscVj2MDCVKWwcfTax0JoaWqz7tTOT6ZqdDsals7O5qmUQ+528rWSgGvTWT48H4JDRwfTZN1LGZXGyy25OHPj2e4MVPhzWMFCkmLjCVZLTf4yT90hIxoIIgnpTUigYoiGjLBoHRZ1mkMI2REuCypBNp0GBcNlIZZlWYgYZIJPQg9FOAlCigVkiaElguqEejccCuh08DYSHS5YYSdQDYrCLdCZPbGdHVmAGEl4oxrEH/ntssKscWl0gMYUmOqEEK3Z5obxDFAVzqkbIkkBAWRnUT4zdYaBipdwEBjCAVKoYQRt5URJyEwjDgJIgSRtDCUjxIGykp2XFbRIjtlJuKxle3rSBrYiVix+OzZs6ytrXXknNpadkNDQy+NpPqnTRoKngPhKaX45JNPOH369KauiWcxuWxhYQHXdbl06VKnH/agIKXAMUU8ZxZF5NZJ2AlKjYiRlMGtYuySHsrafNKqc/MjzbFCgq9Nr8fhVhshQ9Lng+l1V9cxJTnb4GstCw7izOzpoRRrVa9DdqaEMyNxxtUQUMg6mIYka0m+cT8mEUGsQnx9LiYb2XJp25ZgFEZEYcRK0+N//eOnycgmWomOjoGQEjNsog1JTaQYlT6LYQLPEow5EeVqwAw58mbEYSMCInSrzEN5DZxGZV09yU5BpoDwm7FbCfEN7a6hLQc/kcNQPnbkQXP9fAjLiV3e7BBChxihB36tN7HppGNrKpVDRC6WDnpqPUTgxq6n5SCSWaTyyWx0W60EOnDRqQGkAdaGjK42bVTko+z0pmyvQKGkhTad3tIVIDQSGOb6da10XKnZ9mi65ZqATjvX3bt3cV33mVp/O01EfNrUjuE5DfH5pm/6pq13vg/V441oqyBXKhVyuRzJZPLpH9olhBAYQqK8KpEXkM9liHmoNRya2MGpeVFsDSpNPmFye6UeS3pHMYllLMFaOaKdJB9ImohI8cHDNfIJk7IbMpSysDRxvE4KHBNySRtDaT5sEVukY0vv8kyZhVYcMZc0GUpa/NsbKxwfz1APIgZss0N2FyazXH1UZnDA4e9832mytsDyQ4SUKDRKSEwVEUmTAemxopMoYTKejGgqyUyQZMCyOSLjOKVvZ7CcBMKrI70aBhBKA50ZBMNAuNWOiwstS89yEMOTyGaVpOpVhtFAXTgEfkTeSXSsuZ5thIR0AawkUq8gtigt0cRKzNq0Mf06QgebY3RCxjMysoOdntdNa0gLpLmJ7NpST0izZ9m2ZdeTVNEQtvSNnxTCSSaTPVp23dafbds9Ssb7xW4G+PQJbw94lnMtIJ5Fe/nyZbLZLO+++y4fffTRgQ3y6Ua7aNn3fU6de42iq/CaYdwTqxSTWZuKH3FvucFUzmFmzaXqhqw1Q04Npbi/2iBtidZ8CYPhZNynu7rWoNHi/alCguFAMb1Up9oisUBp3pnI8fWHZdyulrbXD+W4/7hKpRkghOD4SIrlosvNYmxdTuQc7szXuFOMhQDeOZLn6/dLmBJ+8o+eYiBlQbOCKQU+kqShqUcCS0WEQlKTKUaMkLXIZC5KMe4oBsMIKRQPghRDCUmeEFqZUV+YmOk8IooQQWO9wR/QyTzYCWTgxrVotQ0STKl8XGQcuORUSGglkeVe7bnQTmMkMwjlI7VCic0ZRG06seS8jjDQKMuOj6ULkTBQiSyGjGsLN+YkNBDZaRAGWzUHKGmhWlZdJAyMlsurEbFr27LIlG5Zey2ya19DTyObray/1dVV7ty5g+d5+7b+djPA52Vxrw8Krzzh1Wo1Ll++zIkTJzrKrAc5yKcNrTUffvghAwMDnDt3LtaLI8KLFLVAUqqHVIMI0SLax1WPwaTJlVar2ELVI2vFjfltHBlM89V7xR7V8craGg9LiqAVgJICzo+lufO4RtMLEUKQT1oMJgy+fjcu7TgxnmEgY/HhvVInU/vW4Ty3p9dYdSMSluT4cCYmO6H5x3/2TUZSJlEUYEuNkBKBxDYiakrSDBTjVsRi5ODhMJKMGECx6ErKHhy2EpxwFKBQhkU1hFTCxiGCoE4YxUStnTQkMsjQR0Z+hxjbYw+1k4ZkLm7UD73O+wBGq+5RW0l0MgNRhC0URF21d60SEo2AVB5hWcgoQHQP1emq42tEYGUGMIXG6CLKyHAwW2KdoZUCabS6auJzGcfqghahxSIAnXhdu6hYGLHFuWEqXVzmvf6aUmrXCbRkMsnU1BRTU1NEUUS5XN5k/Q0NDe3Yq/msDvCBF9haBvufTbu0tMTdu3d54403evr9DspybKNer1Ov13uk5YWApCUZSVmsNgLySZOSF5Iy2m6qRcNdN3GytiToug9PD6X42v0S+YTFSt3HlIITg0kuT5c5P5rk1rJLytSkhOYb99cAODORQWnN4mqTW62h2wlLMp61+Le3WyMGpeDCoSwf3I7bsC6dGWKl6nN1pkwmKfgHP/gmQ2kTJQSWahIhsE2oehrfkOQtzVID6naKCUfRCBWPGiYZK67R84MQlKZiZEg7BkboUjAFbbdemw5kh0CFGIHbQ2LQ6oJw0vHYy6AJ/hYuq2lDMgNCIEMPoYItmxI8P8QlQS6ViAVIVbjJbRWhh2ckCJQgk3Va62xYzDCJRBJlmJ25E72LCCLDAcPaRFZSKyJpI0wb0UV2WsdnZKOi8X6rEgzD2NL6u337Np7ndYQ8t7P+DqqP9lXECyU8wzD2FMPTWnP//n1KpRLvv//+pi6N3UpEbYeVlRVu3bpFMpnclPE1pCTnCE4NONwregwlTe4Wm0xkY9HO2YrPZM7BkvCN2QqOKcnYkkO5BB8/WkMD43kHN4woWAaXp+NY12KlyWTOolQLma2tnx/p17m5EHYyuON5Bx0pvnprlYRtkLBijb2v34mb4k+MJok8j+mVJocHE/zk958lnzIwpCSKAlKGpikMFIqEKaiEBgVbM+aErEUWVc9gPKE5akOg4EFNsOYJRjMJ8jKEKCYYZSfBTCB0hIx8dOgioq6BRolMPKtCtd9vojeqlVjJuPcWHdfEKZ9IiM0uq5VAOykkgjQRDsYm2XUAZdhoO4mOIsIgIpPYTDIaEW9jmMgoYCsKiISJkhZSyk2cq4SMCX5DHE/pXje25zMHXIa10fprx/7u3buH4zhbWn+7mVjWz9LuAQc5yCcMQ65cuUIymeTdd9/d8uI5CJdWa82jR49YWlri/fff78QFN14oQggKSYvJnMILY8UUxzK43nJlM7bBVx7FSQYvVLwxlua3bq92Pl+sB+RM0SkvARjJJgkDRbEl526bkpNDST5+UGIkZ1NsRBzOCWaLddwgZr9/78QAN2bK3F6Nb/43D2e4fH8FKeE73zvK//PbD8fSUlJimRA2XQxb4EVgSJNCAlZdzVw1ZNI2GbM0fgQzTYlGMJ6EYznBbR8sCbVIkMjkMHWsl9ctfY4wUKk0wrQQURC/30VwQgi0YaEsB+EkEVphRH5nBkQHlgOtTgjsVDxmUUd0p2KFaXVihVoYBIaD0nH3C1qBFOhksscV1tKMuyhiysNQUSxE0OX+trOvgrhvOkJ0iXlCZNhIw0ZK0SPVvh3ZwcETXjc2TjHbyvobGhra8THUarUDr3R40XjhFt5uiKnRaPDJJ59w9OhRDh06dGDrboRSiuvX43GB77//fqeM4EnBXkPGPayNQPE5K8u9osvp4RS3lhus1D3OjKS5uVTnaCHB1x+VGUiZlBoh41mHctVjqpAAYkJ4bSzFh/fLnBhJx8Oxcw6m1nzUysweHkxzeBi+1kWaJwYEN+8/ZrkZWxpvH8nywe1YmOI//e7z/JH3xhEiFicVAoIwxJQSpCBtCRqRxAg1Q0lJw/VZ8iSGkIwl4UgrhFPxNY9qGtuUKNMha4sOiWhayQLDiV1KLWICC3qtdy3NuEzFMMHxMIMmhBtIrr2elUIbFsK0kCpECPVEPXTlpOPhOCrE3uLh6rkuliVoRALDSWBJgdygVaINCxF6PUTX/aAWMh6mrYSBNp1eoVjRGsuJYF00bGtorZ8Z4W3EVtbfysoKKysrCCFIJpPbxv7q9TpTU1Nbvveq4oXH8HY6uWx5eZnbt2/z+uuvP/Wps5+5Fr7v8/HHHzM6OtpTJP20NU3DYDLrUPcj3h7P8Gv3Vjkx4PD12Qo5x2Qia3NvqY4bKk4MpUlZPssll0ozpNoMGHAEw5kEH96P3dr7y3UunRjgyoMS5UZswiRtA88PuLu4Xmz81pEcX70xD8C5qSSB5/HB7SWStuT/8+e+maMFCynBMQ1CrbGloF73UAo8Jck6gtDTrPmSehTLHx3OSAIFjxsaD0nWloylJNkU1GpxvFFLK5Y+EhIRhQgddfpQddsSEgJtZ8C0QKtWQiGCMEKJ3pteSxNlp0G211MIaSL15pYwLWRr3wYIkIECHW1uHWutm8ykibQiuU2uQAuDyM5sIro2hFatchNz0/tKa7wwHuaktcYwjDixsQWxKaX23OK4H3Rbf/l8nmo1zuTfvn0b3/d7Mr/t4+4nLfaI/bi0bcn35eVl3n///W21uXaz7laoVqtcvnyZs2fPMjw83PPeTkg0aRuMZU0ergX83uODuGHElYUqNT9kMmtTb5WUrDVDIj+i0hrSbUnB8eEMv9tltb0xlWOl2OiQ3VjegSjiG3dXuXR6mNuLdQ7ljA7ZjeQSFBKSr8x6fPfFKf78F86TECGOEZOdFBCGoKKIQUdTDiSVAIQhGUhKckqz0owIhGTWhbGU4HBh/XdbrEckTUEmW0BFAUKFyGhD2xWiZenZMWFFQWxJhVs81IQRl36YNigdi3eqsFckrstXVEZseUGsVyfRoEPQMbF2D98JFYhEOk56aBUrRLfavboRaU3NizCdBLY04sHiG7szhIgtV8PcTLyARqKlxLRiZZEoijrXSRiGHe+gTSLP0qXdKaIoIpFIbGn93b17l0QiwbVr1yiVSnuO4RWLRb7v+76Phw8fcvfu3S8D36u1Lm21bUsP7zrwz7XW/8nev9nT8VK7tFEUceXKFWzb7riWB7HuVlhcXOTevXu89dZbWz7VnkZ47Yt9OGFRskKWmxGWhP/088eZW2vwd353huGMRRhpylWPwVRcmJqxJSlD8sH9EiM5h+WKx1uTWb56K86ynhrPYBqCh/MVqi3Jp3LdI2tEXH0YW4Mnx7Msr5RYKgb8w7/wrRwbS6N9H8eQWIbENKAZKLQQ+K6PlTHJCE3JU6w2FfUABpMSS8J4TtIMNbM1TSNQ2KZkNCUZy8Zko6MIocL4ZjeszlQuoRWoEEHUseZ6zo8w4rm+htEhMsNvwAYZps72CLQ0iJxsvB4qtg5hM/EYNkQBFS/ESSRxbKNFXHp9W2nGld+0yNOwQQiyXWaf63odlZNQ6Vhl2VzPzHZ71BoRk2jbA+hql4SY2NrkF0VR53o8qEL7/WBj0mJj7K/RaPBrv/Zr/O7v/i6/8zu/w3d/93fzx/7YH+Nzn/vcjvfRHuDzxS9+ESHEr7L1AJ82fhT4rT1/oV3ghbu0TyKmdrzu8OHDu44jGIaB7299I21Ed8b34sWLT2xz247wtNadC1lKydmRNAsPS5RdRT1QJE2Dv/pdp1mpuvyzr89xZTVgtR5wbjTB4lrA9Gocv5ssJBhMGHy1y9Iby9n89rXFTn3d+cks92cWOX90iEfL8NaxAoHX5K/9wDfz2tEhUgkT3/VIWaI1kEPE0kZKoPwwLkHxNfmEQdI2qHoRVV8zU1NUGwFRUjCcMjjWZd0preP4mzBjeXXTQqgAoXVcMrIJItaP65BhFGdoibpIp9dS1yKODSINQMezM4gQOnxiREzJmHAjDEwhydnb1KEJEUuwS6MzTGcj7GQKrSICDMzEulhnz3ESk7dGbOlCt7HRqtNa4/s+a2trDA0NEQRBnPl9guv7LKGU2lZ/MpVK8Rf+wl/g448/5kd+5EdYWlraUsZ9O/zCL/wCv/Ebv9H+508Dv8EWhCeEeI941sWXgPd3tZM94IW7tFs98VZXV7l58yYXLlygUCjsen87zdJGUdQZGvSkjG/3mhsJT2uNUqpTTNr9Pb/1aIF/catIzY8IDMFKw+XYQIIf/vfPslj1uDVf5ZOHa1x+FMdS0o7BWs2j2bLihIC3Dmf59U/mODuZ5/Z8jXeP5/ng2gxKa1bLDf6r73+bk2NZDg1nsE2JaUiaTZekAZGOjyVpSRxDEilNPQwIlcYVAg/IWpJs0iTb4ol7fixnfq+scMN48EzeMTiUi+vXBAoReZ1iW4iJKm6xMug010UBUgVPIMN1Symy4yLftnUoiRv2e7aVZkftOLYS7Th2Fw8+RACNeoN8cvODSguJMmyQEhBP5Cfd2o+WJpgO1hYbRpFifmmJWr3JwOAgAwMDO+5ykDKWhrp+/TpTU1MMDg52rL+2BQjx/fA8yG83ZSkjIyO89957u97HTgb4CCEk8BPAnyQWCH3meKlc2nYpyOLiIu+99x6JRGKbT+983a3gui4ff/xxJ47xNGwkvO3IDmKS/33H8/zL20XKKh60/bDk8qioODaU5PNnhvk9Jwf5M992jLlSk/lik393exU/ZbGw5nJ8OMnXbsWZ1lzS4k/93iOgFX/0W76FY8NZxgfTmIYgVKojI95oelgi7odFg2XIOKkgJabUjCQlfquTouopqr5G6wjLlCQtScaxGMqYbJzf1p4foTUIMxFP7tI6jtNpFRNglwS73vhZw4rJpCV/LnSEFq36uW1+p5iwLDSJ1ud013leP9+pVDKO59EmRSv+3vQ+bDeG6GKyNltW39ZE0/7umCZjE5PYpVIn1uU4DiMjIwwPD297rQZBwMcff8zhw4d7uoGAHtLrdn2fpfW3m8Lj7WJ4BzDA5z8G/rXWenY/8m27wUvj0kZRxLVr15BS7nlEYxtPs/DW1ta4du3aroZ8dxPe08iujYxj8vkjOX7pbpGFaoglJIOZBLPlgCuzVc6MZZjIOZw/ZHN6NMvnz46CjNd3gwitY7EBQwrQce7TMuOpWFprIt0id6UJggBbghCxNWeZcXypGUQESrNSrnNqyCEJdOe43UDRDCNqbojvR1xdDIg0mEKQTxiMZMxY7VkIlNZxHdwW51YDSBMtDbTSYDpxIkHHtYnx37us+Q3Xf5zwsFvEGCchhFYgrU72d8ssLCANkwgzzvDyZI+io1PXafrv/e3W1e26SB7ZE6fbGOtaWVnpDKseHBxkZGSEfD7fWbed9T927NiWUmVt19c0zY7r2231RVHUIb6DIr+Dai07gAE+3wx8XgjxHwMZwBZC1LTWX3zqwe0RL4WF17a2Dh06xJEjRw5k3SfF2x4/fsyjR4949913d6Wo0j7WdnKiLdb5tCfTeMZiOCjyIMxSSDus1FyGcwnSGZtbS3UWaz6jaZuhtEXGiclCa0EmEd+8SsejnKWM96XRcT2tITBlTG5eGJA0W4F1FQfqgzCiHqm4q8KLcCzJQi1EKUXCMnBMSdKUJGyThG2yXPU5O7x1o7huHUfT8yEKENLAtB0sy2zlBnTHzW13bgm1dXBeA7REMiMr1bLENGjVIsaN9XabiTHUUG96ZLKZjiWk25/dcp9xAkTLVkxxm99MI1pEt32MDuJY15EjRzhy5AhhGFIsFnn8+DE3btwgk8lQKBSYm5vj1KlTm7L+W6FNaIZhYFlWh/ja11z779uVvewEO80UR1G051kz7QE+X/ziF+EJA3y01p1ht0KIHwTef5ZkBy84hieEIAgCvvGNb/Daa68xMDBwIPvbyqXtlnt/2njGrdC28LqTE0+D53lcvnyZi4cP4dQcPpyvMV5IcONxmclCCidpUYs0MzNrjOfi8YuvHcowkIylw9uWnWpZeqYUBJFGozENiW1KKg0v7tONFH7YUtklHjRkGiaRUriBT0IKGl6EYUgqboAwJFppQq1RSlOt+TT9CEPERHp0OEWiPXGo1RGaNJ24oLhzUrfJWiNAGjHRtNxF0fpMxynVej3zuuUaMZTRjhECWmNKSd7pdSE3dkp0u6ux6kmr2X+LY+6Ul3QEAXfvXpmmyejoKKOjo2itWV1d5dq1a9i2zYMHD6hWqwwPD5PJZHYsHrBV4qO77GWv1t9OLbz9DvD53u/9Xv7+3//7EMfnvhdACPE+8Oe01n9mz4vvAy/UwpuensbzPD7/+c/vOV63FTZaeGEYduSj9iP3vrKyQjab3dGxVqtVrl27xpkzZxgcHGQSWKx63HhcYShtM1uqk3VMMimHQj7J43ITrxkQaMimLJTn89pUnsFk7Ko1vYBsMnavfKUIvIhmEJKxDYJIE2iNEgaRUp32NlsKEpZJ04WRzPZP6rvzmtOjGy28jYKXtJROWuQgBJFSBGFIGMZKLpZlIQWxS936zFYkI9ZXbO1JrBNUK8nQjrr1kOI2v52SZlx+0orJbdxyfUU6D4aY5J5uze0Gruty9+5d3nrrLQqFAr7vs7q6yoMHD6jX6+TzeYaHhxkaGtpV4gM2l73sxfrb6cQyeLKx8jR0DfCBroRE9wCfDfv7h8A/3NPOdoEXQnjt1i2lFKlU6kDJDnpjeO3ylmPHjnVnjXaMdkxlYmKC+fl5rl69Gs+YGP7/t3fm4VHV9/5/zZLJvm8sCRAISyBkUbBqVdRqaTEkaQWUeqvWBerFVr29Vv1pLV1ca2+tWpdWK61eCyaAIASsoq1XARUkG1kIkH2byWTPTGY75/dHPMckJGQymZlM4Lyeh0eTOTPznck57/P97DHExsYSHBx8xklhMBg4deoUS5cuHeL0vXXZTJ77vxpaem2oRDB0W4gJthERFkhgsD8OEfQ9/TS0deGvVWNWqTCbrUSH+hMfpGVxUAR+GhW9/Ta0GhUhflq0auiz2BFEEbtDQKtRERrgR2iAFq1azanWbpJjAhEEEatDwOYYOM7iEHA4RGwOAbtDRFSpOW20EKTTEB8umfrDzMlBaW3SJ9Zq1Gg1OvD/WlBNJhN+/mcK7ICZKImlGjRfByGGNlH6+r3Fr+o2VMMfkV9HM/BaTrgXvvbLqZwyWV3BZDJRXFxMSkqKXBGk0+mYPn0606dPRxAEurq6aGtro7q6Gj8/P2JiYoiJiRlX77mxdn8jJT1LnIvDeZzF6ybt8PkWhw4dcvv7SSZte3s75eXlTpWjjcTg4IROp2POnDnMmTMHq9VKW1sbp06dwmw2D3FW19fX09bWxoUXXjhiTt9PLpvNr/95ks5+B2FBfnSYbTR39hMdHkBMRAA9pn4cX5mCp5s6CAnwo9nYQ1tsGMeaetDYrVyYPI24YD+C/LX09tsHopkqgaAAP8L8NQTptAiCiLHPgtUhcMpoHmgRrwK+CrT4a1X4a9SEBfjRZbIwN36wc3pkU0Y841FJ/QZ2SQNCpMI/OAwBsDvsOL4aaqTz80OjUQ9+1kBiyVnMYol+iw1BFAkIChnIjVOpz8ilExkhCjvofWQ59WA0sLe3l5KSElJTU0dtq6RWq4mMjJTdN2azWe7IY7FYiIqKIiYmZkiJ11iMtvsbnvQs+Tud8eHZbDa3jl7wFby6w5Oio4sWLZIjXZ6YXKbRaDCbzVRVVbmc3nK24IROp2PGjBnMmDFDFtampiaKiorQarUkJyeP+nlUKhWPXDuPn2wvo9FiIzRAR2CQH21dZpoM3cxNiMLY3ktIiIY+B5hMdlSimsrGDvq6ewkM8Kexy0yfyYJarSZlZgQxQTqS48OYFh+Gv1ZDe5+Fjj4rXf0WQnVaVKiYERlERKB2yOwFiVqjeSB1ZPAWbuQvBeGrU2ako+TfiQJqUUCn1cJZfKV2x0ArfDncoRoo05IEVPo7CFoIGiPA9LWZ6j2BG0xPTw+lpaUsXbp0XPWngYGBJCYmkpiYKJ9Lra2tVFZWEhQURGxsLNHR0U6VVEoM3/0N/yeJ4dlM376+vnOu2zF4UfCkebSZmZlDvkgpNcVdgicIAhUVFdjtdpYtW+bS1n2w2I21Lo1GQ0REBPX19cyePZvIyEgMBgM1NTVynlZsbOyQE1ajVvO77EXc/XYJLWYbEYE6/IN0mM12jle3MS08gBZ9J9Ex4Zh7zWgD/ekwdhMRE4Optw99m4nwyHDsViv7ihpRadSEhQaj0miYFx3E3Kgg5kUFoNOomT8tQn5fu0PA0Guhy2THZLXhsAkDU8osNvosdoL8h54Ow6ViINXXOUf20F2gasD3p/rq/xGx2ez099vQ6XT4+/vL3/MZfjeVioBRxG7wDk7+eZR8Ok/S1dVFeXk5aWlpE+ofp9Fo5PNFFEX6+vpoa2ujpKQEQRCIjo4mJiaGsLAwlwIfDoeDEydOEB0dLVsvku91eNJzb2/vOdc4ALwkeKIoYrFYuOiii84QIHdOLrNarRQVFREdHU1AQIBLYufM3W8wJpOJkpISkpKS5DyriIgI5s+fj8lkQq/XU1JScobfL9hfyx++v4T7dpTR2mPB0dbHjGmhOBxqqlp6CAn1x97STkBQAG3NRqLjo+lo60BUawiNCKO/pweVWkN4TCQIAt0d3fhpVXyhb+MIKnpEP0S1hqgQf6JFC0nTIpkT5U9CZAhz4kKZP+1rk8tssRKoO/NUEIZo28CAhtHlbtAFKApfVWaM+OhAUMVfg5+//xmDrEd7ZWnnxqD/emv3djY6OzupqKggPT3drYOjVCoVISEhhISEMGfOHGw2G0ajkfr6enp6eggLCyMmJoaoqCinrh1pyJVarWbBggWyZTVa0vO5KniqMULPrselh2G1WkcMcxcVFTFv3rwJf7nSbIvk5GTi4uI4ePAgl156qdPPdzaZeDCdnZ2Ul5ezePHiMX2Ekt/PYDAM8fvZNYH851vFmFQqVDY7QToVQWHB2Exm7Dp/OvRGIsKCsZv6iI4Mpd9qQ6sCTWAQlv5+NA47bZ19+Ov86LapcDgEtCoHKgbmLnR09uEfHAYWE/12FaKlH7Vaiz8C8+JDuXPlQi5ZMvPsJqr0HY3wu9G+y+FTvkY8jqHJvgAWq5XGxiZsNht2h4OgoGAio6IIDQ11OWLoKdrb2zlx4gQZGRluD7ydDVEU6e7uxmAw0N7eLhf/x8bGEhQUdGaX6K9SskRRZOHChSN+j8OTnvPy8tiyZYu7fOw+84fzmknryUE+BoOBqqqqM2ZbOIsrYtfc3Ex9fT2ZmZlOnewj+f2am5vp6uriv5YH88fDfRjtAlZRQ7++E1GrQejtJzgqEqPBSFBkJPWGbtT+A9Fcu751oKOwfyAabQDtxi60Oj8CQwbmXth7eum3CoQE6OjrbMeuC0NlNaMSwWEXsApWLlkUxSVLBsrqRpIncYTfjiZjw78xYYRzfHgcVpa8r77vgYDWwECm2NhYeVdTW1srd9+NjY0lKipq0qOMRqORkydPkpmZOS7/mjtQqVSEh4fLN1mLxSKXu5nNZiIiIoiJiSEyMhK1Wk1VVRWCILBo0aJRz+3BgY/y8nKef/55/vKXv3jtM3kLr+3wbDbbiNUP5eXlxMfHO13iNRipV15bWxvp6elDssKd3eGNt3JC6q7S09NDamrqhJs5SnfrxuYWNu9rxmB2oAoMxNZnIjhIh8NuRRcehmg2QWAw/d3dBPgPjAnsbW8n2N8Pu1aHVqPF2tVBT3cf/gGBCNpANCqB/p5eHDYHGq0fWpWKfnM/foKF//5+Jjdcs3RCa3cnfX19lJSUsHDhwhET0KV0DmlX42wdqycwGAxUV1eTkZHhciWCpxAEgY6v6n07Ojqw2+34+/uTmprqlMldVlbGj370I/Ly8li0aJG7luUzO7xJF7yqqirCw8NHrDM8G4IgyLW3KSkpZ/jbDh48yCWXXHL2MqJxip3D4aCsrAydTif7QdyJKIr84u0iPi7Xo/X3wyYM5MfpVHasVhsWSz9R0eH09fQR4O+HWqPFaOzEX63CJmjQBkegFiz09/aiRsSuCkQQ7Kit/QM7bJuFQI3Ak3dewRXpSW5d+0To7u7m+PHjZ03nGI7JZMJgMNDW1obD4ZBNOk+bvq2trdTV1ZGRkeHTaRuiKHLq1ClMJhPh4eEYjcZR630lKisrueWWW3jrrbdITU1153LOP8Gz2+0jmq6nT58mMDBwXEnBFouFwsJCpk+fPmrt7eHDh1m+fPlZR9WNx4SVAiLTp0/3eJ//A8VN/DL/OA67Df9AP/osdrR+fqhVKvq6uggMjwKLaUDUtIHYrf1gNaP1D8Bus4CgAYcVu82BXeVHoGDG5nAQEyDyyv3XkZwQ69H1j4eOjg4qKytJS0tzOQ1CMn0NBoNHTd/m5mYaGxvJyMiYlDbt4+HUqVP09/ezePFi+fyW6n3b2tro6uoiJCSEsLAwAgMD6enp4aabbuLvf/87GRkZ7l6OzwjepP/VxuvD6+7upqSkZEgu39led/gJ74q/rre3l9LSUubPn3/W93QX30qbwTcXxvLQG0c4UNKKn84Pm7kbQaMhKFCHra8LdWAYWHuhvwc/VJgsVqwmCw5tMH4aEXNXNyqNDj+xD6ujn2syEnj67ut86kLV6/VUV1dP2A/m5+fHtGnTmDZt2hDTVxpV6A7Tt6GhAb1eT2Zm5qT7D8dCSohfsmTJkPN7eL1vT08PRUVF/OxnP8NgMLBmzRrUarVs8ZyLTPrZr9VqsdlGbhQ5nJaWFk6fPk1GRsaY+U7jbdg5GpIzODU11ath+gB/P/5wxyUcKmvkF298gbFfjcoBnf0iOsGCvc+IXdSgtfdiwx+Nfwg6oRvMbfTZ1QRiw9ZvIjE2kKfuyiVtwUyvrd0ZmpqaaGpq4oILLnCraTi8kkEyfY8fP+6y6VtXV4fRaCQ9Pd3nxe706dMjit1wVCoVYWFhJCUlodVqef311zEajTz++OPce++942rnPpXwmknrcDhG7G7c0tJCX18f8+bNG30RX/kjurq6SEtLc+oCKSwsZP78+bIwjtdfB1BfX09raytpaWmT7pze/UkFfy4opqXLhsncj90hEBwcNGDOigI9Zjt+WEEQ0OJg/swINq25lJWXLJ7UdY9EbW0t7e3tpKWleVVAXDF9a2pq6OrqYunSpZM+fGcsqqur6e3tJTU11elMgzVr1vDHP/6RK664wpNL85nt4qQLnsFgoKOjgwULFoz4PLvdTmlpKQEBAaPmEI1ESUkJc+bMITQ01KVIbGVlJXa7ncWLF/vUiW622Nj9SQXHqpqobmqnz9RPZ08ffogsSopnReZcLlsyDaPRiNlsJjIykri4OMLDwyf9c0g3LmkHMpnrGSvqK4qi3N1kstfqDDU1NXR3d5OamurUWltaWlizZg3PPPMMV199taeXpwieREdHBy0tLaSkpJzxmNlsprCwkFmzZjFz5vhMsuPHjzNz5kzCwsKGZJCPhd1up6SkhPDwcJKSknzalyEIAqWlpQQGBpKcnHzGWqV8P4PBQFdXF6GhoXJtprd9eaIoUl5ePjDkaBw3Lm8xPOoLA77B9PR0nxe72tpaurq6nBY7g8HA9ddfz2OPPcbKlSu9sMLzUPAEQRjRV9fd3U1tbS1Llw7NCevo6KCsrMzlxqAVFRXyYGFnTViz2UxxcTGzZ8+WZw/4KjabjeLiYuLi4khMTBzz+MHZ+W1tbaPW+XoCSZiDg4OZO3euz4ndYERRpKKiApPJhE6n87mE5+HU1tbS2dnptMltNBq5/vrr+eUvf8l1113nhRUCPiR4kx60GClKKzUaGG8bdglRFNFqtTQ0NAA4JZhdXV2UlZWRkpLi0qQ0byIJ8+D63bEYnJ2fnJws72hGqvN1pyBJzVdjYmLc0r7fk0hip1arueCCC+R6U09Efd1BXV0dHR0dpKWlOSV2nZ2drF27lv/3//6fN8XOp5j0HV5/fz/Hjx/nwgsvlH1nZrOZpUuXumR2De4C0dHRIZtz0l06Ojr6jJOjtbWVmpoa0tLS3FoA7gmkNkTuFObhdb6RkZHExsaOqyfbaK9bVFREQkKCS81XvYkoipSVleHv78+8efNGFf3JSngeTn19PUaj0Wmx6+7uZs2aNdxzzz2sXbvWCyscgs/s8LwmeNIg4uHY7XaOHj3KBRdcQHFxMeHh4Wc94cZ6j5GCE6Io0tnZiV6vp729neDgYOLi4oiOjqahoUE2CXwpR20kjEajXDM8kTZEZ8Ndfj+p0atUF+vLSCZ3SEgIc+fOdfp53kp4Hk5DQwMGg8Fp/2Jvby9r165lw4YN3HTTTWMe7wEUwRv8+08//RS1Ws3cuXNd9p2JoujUgB1RFOnt7aW1tZWGhgY0Go08Qs/bReDjoampicbGxjNqhj2Jq34/qS520aJFPu8eEARBDlLNmTNnQq/jjVpfSeycTekxmUysW7eOm2++mVtvvdVt6xgniuBJGI1Gjh49ysUXX0xYWJhLrzveZGKr1So7/GNiYjAYDBgMBkRRJDY2lri4OJ/p9io1SOjs7PR63tpwJHPOYDAgCIIsfoP9fq7UxU4WDodD9i86E/gZD54wfRsbG2ltbXU6AdpsNrN+/XrWrFnDnXfeOZnBIkXwYMDp2tzcjM1m47LLLnPpNccrdtLuY6RZoVarFb1ej8FgwGq1EhMTQ1xc3LhG67kTQRCorKxEFEUWLVrkU+kRg/1+JpOJqKgoAgICaGpqIj093WduGKPhcDgoLCxk2rRp4055Gi+S6dvW1kZPT49Lpm9TUxMtLS1Oi53FYuGmm25i1apVbNq0abIj4+ef4MHAHwEGLuTy8nIEQWDJkiUcPnx4XM06wTWxkxo2OlMmZrfbaWtrQ6/X09fXR1RUFHFxcXKai6dxOByUlJTI5T++nMrhcDiorq6moaEBnU5HWFjYpOX7OYPdbqewsJCZM2d6PZjiiunb1NREc3MzGRkZTomd1WrllltuYcWKFdx3332+cO5M+gIkvCp4VqsVi8VCUVERMTExzJkzB5VK5VJ34vGWiTU0NNDc3ExaWtq4fXWCINDe3o5er6erq4uwsDDi4uI85pyWopszZ85kxowZbn99dyPVxaanp6PVamW/n9FoRKfTeS3fzxlsNpuczB4fHz/ZyxnT9G1ubqapqclpsbPZbNx2220sX76cBx54wBfEDs5XwTMajRQXFzN//vwhkbtDhw7xjW98wymTzdngxODjq6qq6O/vZ8mSJRMWKFEU6erqQq/XYzQaCQ4Olu/Q7iiCl+aaeqszy0QZqy7WGb+ft7BarRQWFpKUlOSTkePhpq9Op8NisbBs2TKnAlV2u52NGzeyaNEiHn30Ubd8v7fddht79uwhLi6O0tLSMx4XRZF77rmHgoICgoKC2LJlCxdccMHww84/wRNFkc8//5zk5OQzzMkvvvjCqYaK4+1hJ5mFISEhLqe6nA0p4iuJn9R+x9XdjJT8PBUc/tJQGOlG4szNZyS/nzvy/ZxB6qGYnJw8JW4kLS0tVFdXExkZSWdn55imr8PhYNOmTSQmJvLb3/7Wbef6xx9/TEhICDfffPOIgldQUMDzzz9PQUEBn332Gffccw+fffbZ8MPOP8GD0bsef/nll6SkpIya9OuKv66/v5/i4mISEhK8ZhaazWY56DHeiK/BYOD06dNTIvnZHXWxDoeDjo4O2U3gyTrf/v5+CgsLWbBggUujBLyN1FU5MzNT/i5GM32lzcO9995LREQETz/9tNtvHjU1NWRlZY0oeBs3buTKK69k/fr1ACxcuJB//etfw32jPiN4PuFRPlsTUFfETkqNWLRokUt1uK4SGBjI7NmzmT17NlarFYPBQGVlJVarlejoaOLi4kZMS2hoaKClpcXtveE8gZS3FhoaOqFgikajISYmhpiYmCH5fjU1Nfj5+ckpQxPNYTObzRQVFU2JnEAYaIo6XOwAgoKC5HNLMn1Pnz7Nj370IyIiIoiLi+PZZ5/1eiS/sbFxSEpPQkICjY2NPltZ49OC50pwQuqiO9mpETqdjpkzZzJz5kzsdvuQ6VuDTbnTp09jMpmmRCddqS42NjbWrXlro9X5Sk07pfSg8fr9pBSkxYsXu5Tj6W30ej21tbVjtpCXOjzHxcXxne98h8bGRpKSklixYgUbNmxg48aNXlz11MInBE+r1Z7ROsqV4ITkQPe1nZJWqyU+Pp74+Hg54tvS0kJRURH+/v4kJydP9hLHxJt1scN3M21tbfJAGmf9fr29vZSUlEwJfygg724zMzOdHqz961//mu7ubrZt2ybfLEdK7vckM2fOpL6+Xv65oaHB43mNE8Grgjfa3Xn4Dm+8wQlBEKioqAAgIyPDpxJ0h6NWq4mIiKCuro6kpCQiIiLQ6/XyMCPJlPMlwZbqYufNm3dGsran8fPzY/r06UyfPl2+WbS2tlJZWTmq309qsJCWluaxmmN3Io19HI/YPfHEEzQ3N7Nly5YhloG3O3NnZ2fzwgsvcOONN/LZZ58RHh7us+Ys+MgOTxI8V/x1Ul84qf2Qj+QdjYoUTJk9e7acBxYREYEoivT19aHX6zl27NiEI77uoq+vj+LiYp9om6VWq8f0+/n7+3Pq1KlJd2k4S1tbmzzj1lmx+/3vf09VVRX/+7//63E3yPr16/nXv/5FW1sbCQkJ/OpXv5K7Hv34xz9m1apVFBQUkJycTFBQEK+//rpH1zNRvBqlHW1UY11dHSqVihkzZuBwOFCr1U4Jl5SzNnfu3HHPtZ0MJDPLmWDKRCK+7mIq1cWaTCbq6upoamoiKChIns41Gfl+zmI0Gjl58iSZmZlO7cxEUeT555/n888/Z9u2bT5lBYyBz/wBvCp4o7V5b2hooL+/n9mzZzu9s+vo6KCiomJKXIwwUNZWWVnJ0qVLxz39TIr46vX6MSO+7lzviRMnJjQv1pu0t7dTVVUl15pKZYHezvdzFlfE7pVXXuGjjz5i+/btkz5Uapwogie/wVfJuxUVFdhsNmJiYoiPjz/rnbmpqYmGhgbS0tImveusM7S0tFBXV0d6evqEzVMp4qvX68+I+LrrYtbr9dTU1Lhlvd5ACmqMJB6S389gMNDZ2Tmpcz0kJHEej9j99a9/Ze/evbzzzjtT4pwfhiJ40s+D/XVSRE6v12M2m+V0BGknI0296uvrIzU11efTOAZHjtPS0tx+gXmixrexsZHm5mbS09OnhMkkiXNGRsaY4jHY72c0GvHz85NL3bwlItLOeTzDx//+97+Tn5/Pu+++6/NJ6aNwfgqe1ObdmeCEw+GQxa+3t5fIyEh6e3sJCwtj/vz5PuuXkZDa1TscDlJSUjxuSg2u8W1vb3cp4ltTUyPPSPD1mwkM7Jzr6+uddvgPx2w2y3W+Ur6fVL3gifOro6ODysrKcYnd1q1beeONN9izZ8+UiDiPgs9crF4XPKvVOu5IrNlsliOXDodDnrUaGRnpk8LncDiGtAz39hoHR3zb2trQarVy0GOkC02qi7VYLD43h3c0pJZJUoeWiSJZFwaDQW4H5k5XQWdnJxUVFWRkZDi9m9yxYwd//vOf2bt375TwU58Fn7lIvSp4XV1dcgTWWbHr6enh+PHjch2kIAh0dHTQ2toqD+eRzDhfuFClbsrTpk0jISFhspcDfL2T0ev1csRX6lgi1cVqNBoWLFjgkzeQ4TQ0NKDX651uhjle3O33c0Xs3n33XZ577jn27t076elAbsBnTiqvCt5LL73ESy+9xFVXXUVubi7Lly8/q0hJo/FGG1ojDedpbW2lo6OD0NBQeTjPZJhkUt3mvHnzfLL9EAyN+FosFhwOB1FRUSxcuNAnbhhjUVdXR3t7O0uXLvXK33iifr+uri7Ky8vHJXb79+/n6aefZu/evVOis4sTnJ+CBwOi8M9//pP8/HwKCwu5/PLLyc3N5ZJLLpFPYFEUqa+vx2AwsHTpUqcjWd3d3bS2tsp96iQfljeicVLO2uLFiwkPD/f4+00UqetvYGAggiDIflKpq7Mvil91dTXd3d1OD532BOPx+0lil56e7nSw4cCBA/z617+moKDAZ2+aLnD+Ct5gLBYLBw4cIC8vjy+++IJLL72U6667jq1bt3L99dfzne98x6UTe/Bksra2NgICAuSqBU9EHtva2jh58uSUyVmT6mITExPlKXGSq0Cv19PZ2TmkTftkBzBEUZSbLDjbe88bnM3v19vbS1lZ2bjE7uOPP+bhhx9m7969Lk/vG87+/fu55557cDgc3HHHHTz44INDHt+yZQv333+/XP969913c8cdd7jlvQehCN5wbDYbe/fu5ac//SkxMTGkpaWRm5vLlVdeOeEkS6lJp+TAl7Lw3ZG82djYKLc3nwrJoFJvuJGGGElIEV/JjJvMGl8poGK1Wlm8eLHP+hgH+/2MRiM2m43k5GSmT5/ulIXx6aef8vOf/5y9e/e6rX+jw+FgwYIFvP/++yQkJLB8+XL+8Y9/sHjxYvmYLVu2cOTIEV544QW3vOco+MwfzSdqaWGgTvL3v/89f/jDH8jJyeGTTz4hPz+fX/ziF6Snp5OTk8O3vvUtl/KlQkJC5IipyWRCr9dTVFSEWq2Wd37jfV1p19HT08MFF1ww6bsgZ3C2LlalUhEREUFERATJycln1Ph6K3dNSu0BfFrs4Os6X39/fzo7O5k/fz49PT0cPXp0TL/fZ599xv3338+7777r1ma1Uodxabj4jTfeyK5du4YI3vmGz+zwADnqOhiHw8GhQ4fYvn07Bw4cYNGiReTm5vLtb397wuZjf38/er1ejl5KO7+xTBBp6ppGo3G546+3kdrHu1LaNpjBPixBEIb0qnMnUvRYq9VOibxL+LpLy/DGBSP5/cLCwoiKiqKwsJBNmzaxa9euCQ0CH4n8/Hz279/Pq6++CsAbb7zBZ599NmQ3t2XLFh566CFiY2NZsGABf/jDH9w+oxdlhzcyIzn7NRoNl112GZdddhmCIHD06FHy8vJ4+umnmTt3Ljk5OXznO99xKU8pICCAWbNmMWvWLHkmbXl5OXa7Xc5bG34h2+12SkpKiIyMlGt/fR0puz8jI2PCmfqBgYFDvrO2tjZ5SJLkwA8LC5vQ9yIIAmVlZQQEBHhkFokn6O3tlVtSDb8RD/7OJL/f3/72N15//XVsNhuPP/74pKUwrV69mvXr1+Pv788rr7zCLbfcwocffjgpa/EGPrXDGw+CIFBcXExeXh779+9nxowZ5OTksGrVqgnnLdlsNgwGA62trUMGcvv5+VFcXExiYqJP9/wajLfqYqXKGIPBQE9Pj8sRX0EQKC0tlVvITwWkLjjj6b9XVlbG7bffzt13382xY8f45JNPOHDggFsjs4cOHWLz5s289957ADzxxBMAPPTQQyMeL6UodXV1uW0NX+Ezd6wpK3iDEUWR48ePk5+fT0FBAVFRUeTk5JCVlTXhPCZpIHdTUxMdHR3ExcUxa9asCe9ivMFk1cUOj/g6mx8p3cSk3fNUQPKLjsdVUFFRwa233spbb71FamoqgDzGwJ3Y7XYWLFjAgQMHmDlzJsuXL+ett95iyZIl8jHNzc3yzXvnzp089dRTHD582K3rQBE8zyGKIidOnCA/P589e/YQFBRETk4Oq1evJi4uzqWTqrOzk/LyclJSUrBarbS2tsqdSqRdjK+Jn6/UxUr5kdIoy9Eivg6Hg6KiIrfPy/AkrojdyZMn+Y//+A/eeOMN0tPTPbzCgTGK9957Lw6Hg9tuu42HH36YRx99lGXLlpGdnc1DDz3E7t270Wq1REVF8dJLL7Fo0SJ3L8NnLo5zTvAGI4oi1dXVbN++nXfeeQc/Pz9Wr15NTk4O06dPd0qkWltbZZNwcIRNEAS5TVN3d7c8OSoyMnJS88R8uS5WqvGVHPgajUYuC6yoqGDatGk+PQ9hMK6IXU1NDevXr+e1115j2bJlHl6hT6EInrcRRZGGhga2b9/Ozp07cTgcZGVlkZubS2Ji4ojiV1dXh8FgIC0t7awmoSAIcomblLQrmXDeFBwpeqzVaqdEXWx/fz/Nzc3U1NSg0+mYMWOGRyK+7sZkMlFUVDSu5rP19fWsW7eOV155hYsvvtjDK/Q5fOZEPG8EbzCiKNLS0sKOHTvYsWMHJpOJ6667jpycHObOnYsgCBw+fJiwsLBxZ/ZLSbutra20t7cTEhJCfHy8xysWpA4tE50X601sNhuFhYXMnj2biIgIuR2YOyO+7sYVsWtqamLt2rU899xzXH755R5eoU/iM3/A81LwhmMwGNi5cyfbt2+nra0NtVrNhRdeyDPPPDOhHdpI/qv4+Hi31/fa7XaKioqIi4ubMv4vq9VKYWEhSUlJZ0Qm3RXxdTdSc4jxzLltaWlhzZo1PPPMM1x99dUeXqHPogieL9LZ2Ul2djazZ8+ms7OTxsZGVq5cyfe+970J+8Ok+l6pxE2n0xEfHz/h+l5JOGbNmuW2+ktPY7FY5PK2saLorkZ83Y0rYmcwGPj+97/PE088wbe//W0Pr9CnUQTPF3nzzTcJDQ0lJycHGKhOePfdd9mxYwenT5/m2muvJTc3l/T09AnvNKRyLYPB4HJ9r3QRnq0u1teQ1rxw4cIxJ7cNZ6Qds1Sy5cm0G2nNKSkpTnfCMRqNXH/99fzyl7/kuuuu89japgiK4E01ent7KSgoID8/n4qKCq6++mpycnLG7OnnDNJIRr1ej0qlksXvbLWqvjQv1lmksZrjEY6z0dvbe0bE1901vlKzhfGsubOzk+9///s8+OCD5Obmum0tUxhF8KYyZrOZ9957j/z8fIqKirjiiivIyckZ0tPPVfr7++UGnYIgjDiP1l11sd5EEuglS5Y4bRKOB6kuWqpXHa00cLyvWVhYyKJFi5y+qXR3d7NmzRruuece1q5d6/J7n2MogneuYLFY+OCDD8jLy+PIkSNceuml5Obm8s1vfnPCZpbUnbi1tRWbzUZsbCw6nY6GhoZx9VmbbKTSK28JtFQaKEV8pTm+44n4WiwWjh07Ni7Tu7e3l7Vr17Jx40Z+8IMfTOQjnGsogncuYrPZ+Oijj8jPz+fgwYMsX76c3NxcVqxYMeFeeTabjVOnTtHc3ExAQACxsbHEx8d7bMKWu5A6QY+nztSdOBwOOUFcivjGxsaeNUHcFbEzmUysW7eOm2++mVtvvdWNn+CcwGdOUK8IXl5eHps3b6a8vJzPP/981CzzsbqzTiXsdjv/93//R35+Ph9//DHp6enk5uZy9dVXu+RjamhooLW1lbS0NFQqFUajkdbWVkwmE1FRUcTHx/tczprU4txXOkFLEV+DwTDqDBQpgjx//nyioqKcel2z2cz69etZs2YNGzZs8ORHmKr4zEnpFcErLy9HrVazceNGnnnmmREFz5nurFMVh8PBwYMH5Z5+ixcvJjc3l2uvvdYpIaipqaGzs3PEwTUj7WDi4+Mnvb5XmsE6nuE13mR4xDcgIICoqCiamprkCXnOYLFYuOmmm1i1ahWbNm1y23c+1s3fYrFw8803c/ToUaKjo9m2bZvb++m5EZ8RPK/0w0tJSRnzmHO5O6tGo+Hyyy/n8ssvRxAEjhw5Ql5eHk8++STJyclkZ2eP2NNPFEWqqqqwWq2kpaWNaIJJ0cm4uDi5zXhzczMVFRWEh4cTHx/v9fpeo9HIyZMnxzVw2tuoVCrCw8MJDw9n/vz5dHZ2UlxcjFarpbq6mt7e3jEj5VarlVtvvZVrrrnGrWLncDjYtGnTkJt/dnb2kGvhtddeIzIykpMnT7J161YeeOABtm3b5pb3P5fxmQagjY2NQ6oEEhIS+OyzzyZxRZ5BrVZz0UUXcdFFF/HUU09RVFREXl4ef/zjH0lISCA7O5tVq1YRFBTEtm3buOiii1iyZIlTF5PUZjwmJgZRFOWE3RMnTsj1vVFRUR5N2DUYDFRXV5OZmTklZnzAgHCdOHGCJUuWEB0dLUfKjx8/Lkd8pclkEjabjdtvv51LLrmE++67z627aWdu/rt27WLz5s0ArFmzhrvvvtsjLabONdwmeNdccw0tLS1n/P6xxx6TE3kVhqJWq8nMzCQzM5PHHnuM0tJS8vPzWb16Nd3d3WRmZvLd737XpZNYpVIRFRVFVFSUXN+r1+s5efIkwcHBcombO8VPr9dTW1tLZmam14f9uIpUzzt37ly56iMgIIDExEQSExPliO+pU6cwm82cOnWKadOm8eabb5Kens4DDzzgdpFx5uY/+BitVkt4eDhGo3HKJKBPFm4TvA8++GBCz585cyb19fXyzw0NDVOmVZA7UKlULF26lNmzZ3Pw4EFWr16NVqtl3bp1hIaGkp2dzerVq4mNjR33BTZ4KI8oivT09KDX66murnbbRLLm5mYaGxvJyMiYUmJ37NgxkpKSRhUKPz8/ZsyYwYwZM3A4HLS0tPCb3/yG2tpaoqOjOXDgAFddddWUGOKkAD7TLG358uVUVVVRXV2N1Wpl69atZGdnT/ayvE59fT0bNmxg8+bNPPLIIxw6dIiXX34Zs9nMD37wA7Kysnj55Zdpbm5mjIDTiKhUKsLCwkhOTubiiy9m3rx5mM1mvvzyS44dO0ZjYyNWq3Vcr9nU1ERTU9OUFTtn26qrVCo+/PBDVqxYQV1dHddffz379+93+9qcufkPPsZut9PV1TXh7t7nA16J0u7cuZOf/OQnGAwGIiIiyMjI4L333qOpqYk77riDgoICYOTurApfI4oidXV17Nixg507dyIIAqtXryY3N5eEhIQJm1bSCEu9Xj8kGHK2wEN9fT0Gg4H09PQps8sZ3JYqLi7OqecIgsD999+Pn58fzz77rEeDQM60Zv/Tn/5ESUkJL7/8Mlu3bmXHjh28/fbbHlvTBPEZx6KSeDxFEUWR5uZmuaef2Wwe0tNvouI3eIQlIJdqDa7uqK2tldvI+1Jn5bNht9s5duwYs2bNIj4+3qnnCILAww8/jMVi4cUXX/TKZx2rNXt/fz8//OEPOXbsGFFRUWzdulUOcvggiuApuBe9Xs/OnTvZsWMHHR0dfPe73yU3N9ctnY8tFossflLU0mq1YrFYSE1NnVJiV1hYSGJiotNiJ4oimzdvxmg08pe//GXK7GJ9DEXwFDyH0Whk165d7Nixg+bmZrmnX0pKyoTFyWKxUFZWRk9PD/7+/sTExBAfH09wcLBPp0RIYpeQkOB030BRFHniiSeora1ly5Ytiti5js+cGOeN4LW3t3PDDTdQU1PDnDlzePvtt0esk9RoNCxduhSAWbNmsXv3bm8v1a10dnbKPf1qamq45pprXO7pJyVC2+12UlJScDgccpG+2WwmOjqa+Ph4QkNDfUr8HA4HhYWFzJgxw+l5wqIo8vvf/56ysjLefPNNt3ao9iaiKHL55Zfz8MMP893vfhcYKPV87bXXPBJwGQWfORnOG8H7+c9/TlRUFA8++CBPPvkkHR0dPPXUU2ccFxISQm9v7ySs0PP09PTIPf0qKyv51re+RU5ODsuWLRtT/ERRpLKyEoCFCxeeIWhSW3a9Xi+PsIyPjyc8PHxSxc9VsXv++ef5/PPP2bZt25SJPI9GaWkpa9eu5dixY9jtdjIzM9m/fz/z5s3z1hIUwfM2Cxcu5F//+hfTp0+nubmZK6+8Ur6AB3MuC95gzGYz+/btY/v27RQXF7NixQpycnK4+OKLzzDdRFGkrKwMnU5HcnLymAI2fITlZM2kkMRu+vTpzJgxw6nniKLIK6+8wkcffcT27dunTLXIWPz85z8nODiYvr4+QkND+cUvfuHNt1cEz9tERETQ2dkJDJzUkZGR8s+D0Wq1ZGRkoNVqz5uOtRaLhffff5+8vDyOHj3KpZdeyve+9z2++c1vIggCe/bsIT093aXo7/CZFOHh4XKJmyfFTxrsHR8f73QCuyiK/PWvf6WgoICdO3f6ZNMDV+nr6+OCCy5Ap9Nx5MgRb9c4+4zgTU3HxCicrbxtMCqVatQLt7a2lpkzZ3L69Gmuvvpqli5d6s2t/6Tg7+9PVlYWWVlZWK1Wuaffz372MzQaDcuWLSMrK8sl01StVhMdHU10dDSiKNLZ2Yler6eqqspjA3lcETuAN954g927d7N79+5zSuwAgoODueGGGwgJCfHZhg7e4JwSvLOVt8XHx9Pc3CybtKMlnEoXyNy5c7nyyis5duzYOS94g9HpdKxcuZIVK1awbt06EhMTEUWRyy67jMzMTHJzc7nqqqtcEgSVSkVkZCSRkZFD2jOdPn2aoKAgucRtIgECQRAoLi4mLi5uXGK3detWtm3bxp49e6ZMJ+nxolarp0wKkac4bz59dnY2f/vb3wD429/+NmJDg46ODiwWCwBtbW18+umn50R7Klc4duwYWVlZ/OlPf+LFF1+kqKiIO++8k48//pgVK1Zw2223sWvXLkwmk0uvL7Vnmj9/Pt/4xjdISkqit7eXI0eOUFhYSFNTEzabbVyvKQgCRUVFxMTEkJCQ4PTztm/fzpYtW9i9e/ekdGVW8B7njQ/PaDSybt066urqmD17Nm+//TZRUVEcOXKEl19+mVdffZWDBw+yceNG1Go1giBw7733cvvtt0/20n0OQRD4/PPPyc/P5/333yc5OZnc3FxWrlzplpkVfX19tLa20tbW5vQIS2lnFx0dPa5h5Lt37+b5559n7969U2b6m6ts3ryZkJAQ/vu//9vbb+0zPrzzRvAUPIMgCBQWFpKXl8f+/ftJTEwkJyeHVatWuWUUo1TfazAYUKvVconbYJNaEARKSkqIjIxk1qxZTr/2vn37+N3vfkdBQYHTHY4VXEIRPIVzD1EUKS0tJS8vj4KCAmJjY8nJySErK8stgjK4vlcURbkx58mTJ4mIiGD27NlOv9YHH3zAb37zG3mdnuB8TXYfAUXwFM5tRFGkoqKC/Px89uzZQ3h4ONnZ2WRlZbnU0284VquV1tZWTp8+jVqtJiEhwek5tP/+97955JFHKCgocLqm1hWUZHcZRfDOJ86xgSzjRhRFTp06xfbt29m1axf+/v6sXr2anJwcpk2b5pL4CYJAaWkpoaGhJCQkyPN7LRaLbPaONMLy008/5YEHHmDPnj1OJyO7ipLsLqMI3vmCM9PYXnzxRYqLi+XeZjt37jxnB7KIokhtba3c0w8gKytrXD39JNM5JCSEpKSkIY/Z7Xa5xM1kMhEdHU1ISAjx8fF88cUX3Hfffbz77rvjCmy4ipLsLqMI3vnCoUOH2Lx5M++99x4ATzzxBAAPPfSQfMzKlSvZvHkzl1xyCXa7nWnTpmEwGHyqAN8TSD39tm/fzo4dO+jv7ycrK4ucnBySkpJG/PyiKHL8+HGCgoLG7P8mjbB87bXXePPNN7Hb7fzP//wP119/vdvy0c6W7H7LLbcMEbjIyEg6OjrOOLaxsXFIsvuBAwfOtdxPnzmRz5s8vMlipIEsjY2Nox4zeCDLuY5KpWLGjBn85Cc/4cMPP+Sdd94hOjqa//qv/+Kqq67i6aefprKyUm5l73A4KC0tJTAw0Klml1LX5lWrVhEWFsajjz7Ke++9R0ZGBnV1dW75DB988AGlpaVn/MvJyZGT3YFxJ7sreAZF8BR8ApVKRXx8PD/+8Y/55z//yb59+0hMTOSRRx7hiiuu4Le//S1r167l8OHD4+rse/z4cTZu3Mi2bdu48847efXVV/nyyy+9YtIqye6+hyJ4HkYZyOIa0dHR3H777ezdu5f333+fgwcP0tLSwuuvv86vfvUrCgsLEQThrK9RUVHB7bffzltvvcWiRYvk32u1Wq+4Cx588EHef/995s+fzwcffCAHq44cOcIdd9wBQHl5OcuWLSM9PZ2rrrqKBx98UBE8D6L48DzMOTiQxetIKR1PPvkkPT097N27lx07dnDixAmuvvpqcnNzufDCC4f45aqqqvjhD3/IG2+8QXp6+iSuXgEf8uEpgucFzrGBLF6nr6+PoKCgM3ZlJpNJ7ulXUlLCihUryM3NJT4+nptuuonXX3+dCy+8cJJWrTAIRfAUFNxJf38/77//Pm+//Tbvvvsu+/fv5+KLL57sZSkMoAiegoKnsNlsU74t+zmGIngKCgrnDT4jeEqU9jxi//79LFy4kOTkZJ588skzHt+yZQuxsbFkZGSQkZHBq6++OgmrVFDwHOdUx2OF0XE4HGzatGlIiVt2dvYZKRA33HADL7zwwiStUkHBsyg7vPOEzz//nOTkZObOnYtOp+PGG29k165dk70sBQWvogieG6mvrycpKYn29nZgIIs+KSmJmpqayV0YzpW4wUC787S0NNasWTMkYVpB4VxAETw3kpiYyF133SVn1D/44INs2LBhyrR6Wr16NTU1NRQXF3Pttddyyy23TPaSFBTciiJ4bua+++7j8OHDPPvss3zyySeTMT9gRJwpcYuOjpZH+N1xxx0cPXrUq2tUUPA0iuC5GT8/P373u99x33338eyzz/pMPtjy5cupqqqiuroaq9XK1q1byc7OHnKM1NkDBobbpKSkeHuZk05eXh5LlixBrVZz5MiRUY8bK+Kt4JsogucB9u3bx/Tp0yktLZ3spchotVpeeOEFVq5cSUpKCuvWrWPJkiU8+uij8gyF5557jiVLlpCens5zzz3Hli1bJnfRk0Bqaio7duzgiiuuGPUYKeK9b98+ysrK+Mc//kFZWZkXV6ngMqIonu2fwjg5duyYuHjxYrG2tlZMTEwUm5qaJntJCi6wYsUK8YsvvhjxsYMHD4rf/va35Z8ff/xx8fHHH/fW0qYiY+mM1/4pOzw3Iooid911F88++yyzZs3i/vvv9xkfnoL7cDbireB7KILnRv7yl78wa9Ysrr32WgD+8z//k/Lycv79739P8soUBnPNNdeQmpp6xj8lL/HcR6m0cCMbNmxgw4YN8s8ajYYvv/xyElekMBIffPDBhJ7vTMRbwTdRdngKXue2224jLi6O1NTUER8XRZGf/vSnJCcnk5aW5nM3DWci3gq+iSJ4Cl7n1ltvZf/+/aM+vm/fPqqqqqiqquLPf/4zd911l9fWtnPnThISEjh06BDXXXcdK1euBKCpqYlVq1YBo0e8FXwfpT2UwqRQU1NDVlbWiKk7Gzdu5Morr2T9+vXA0IHWClMSn2kPNZbgKSh4BJVKNQfYI4riGXatSqXaAzwpiuInX/18AHhAFMXRM4EVFJxAMWkVFBTOGxTBU/BFGoHBg2MTvvqdgsKEUARPwRfZDdysGuBioEsUxeaxnqSgMBZKHp6C11GpVP8ArgRiVCpVA/BLwA9AFMWXgQJgFXASMAE/mpyVKpxrKEELBQWF8wbFpFVQUDhvUARPQUHhvEERPAUFhfMGRfAUFBTOGxTBU1BQOG9QBE9BQeG8QRE8BQWF84b/D8x9/4WjQ2lQAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABqjUlEQVR4nO29e7QlV33f+f2dR533fd9+v/REDxACGmGHcZxggUWShYiNHexkLDv2YmViMpPx2DGEjOMh8RqcZBaZmeXMjOJgEzsJYJIMyliYADaxHRBWC4TQA0mtbrW6W7e77/u8n7Xnj6pdp+659di79q46R7r1WatX33tet06dOvu3f6/vjxhjSElJSUk5uGSmfQApKSkpKdMlNQQpKSkpB5zUEKSkpKQccFJDkJKSknLASQ1BSkpKygEnN+0DiMLKygo7c+bMtA8jJSUl5TXFE088scEYW528/TVpCM6cOYNz585N+zBSUlJSXlMQ0SWv29PQUEpKSsoBJzUEKSkpKQec1BCkpKSkHHBSQ5CSkpJywEkNQUpKSsoBR4shIKJPEdENInra534iov+DiM4T0VNE9FbXfQ8R0Yv2v4d0HE9KSkpKiji6PILfBvBAwP3vBXCb/e9DAP4vACCiJQD/EMA7ANwH4B8S0aKmY0pJSUlJEUCLIWCM/TGArYCHPAjgXzOLxwAsENFRAD8M4MuMsS3G2DaALyPYoGjnRr2Lzz1+GcORGevfOX+jid957BK6g1Gsf0cXpsnw/377Kp6/1ojl9Rlj+Ny5y3hpvan9tdcbPfzON16e+XPNGMN/+s6r+MKTV5GkHPy3X9nG156/ofU1e8MR/u03X8GNRlfr68rAGMMfPL2G353B7xlj1vfpmVd3p30oniTVUHYcwGXX71fs2/xu3wcRfQiWN4FTp05pO7D/6fe+gz95cQPlQhZ/5Z5j2l7XTbM3xAcffgwbzR5euNbAP3r/G2P5Ozr5D9++il/8ve+gYmTx+D+4H2VD76Xy9Zc28fc+/xTeeHwO/9/f+QGtr/1Ln/8Ovvb8OtZ2u/h7D9yh9bV18ruPXcL//IVnAFjXyF9/x+nY/2Z3MMJf/RdfBwB8/SPvwrGFkpbX/Z1vXMI//v3n8PjLx/HJv3avlteU5Tf/5CJ+7dHnAABfee46fuun3w4imsqxTPKNlzbxdz/7JJYrBh7/2P3IZGbjuDivmWQxY+xhxthZxtjZ1dV9HdKRGI5MfPOC5cj8l+fXtbymF49+dw0bzR5uXqng9564jEZ3ENvf0sXnzln2udUf4Y9f0H9u/uv5DQDA01fraPeH2l633R/iT1+0Xvv3v7um7XV10x2M8MmvvIj7blrCfWeW8H9+9XzsXikAPHVlvCP9+kub2l73D79neRhfe/5Got4NZ7PZw//25edx/52H8ff/0h342vPr+Mpzer0eFf7gmWsAgM1WH9+LyctWISlDcBXASdfvJ+zb/G5P5qB2OujbX744P5z/8vw6js0X8b/+yJvQHZjOIjirdPojfPuVbfzMO8+glM/iGxoXDI475KQz/PTk5R0MTYbvv3kZlzbb2Gz2tL22Tr72/A1stfr48F+8FT/9zjO4Vu/iiUvbsf/d56+Pz7WuMAVjDN+9ar3WdnuA6/Xkz/lnHr+M7sDER957B/7mO2/CqaUy/uWfXEj8OPx48vIOjtve19NXZy88lJQheATAT9nVQ98HYJcxtgbgSwDeQ0SLdpL4PfZtiXBhowUAuPvYHF7ebMX2d564tI23nVnCW04topjP4LELQemU6fPk5R0MRgw/cNsK7jkx73zJdfLCjQbuOFIDALyy1db2ut9bsxa6v/F9VpjlqRn80gHAF5++hqWKgT93yzL+/O2ryGfJ2VXHyQvXGqgVcnjD4Rouazrvu50BGt0h3nPXYQDAc2t1La8rwxefXsNbTi3g1kNV5LIZfOBtJ/BnF7fw6k4n8WOZxDQZXrzexP13HoKRzeClDf15MVV0lY/+OwDfAPAGIrpCRD9LRH+LiP6W/ZBHAVwAcB7AvwTwtwGAMbYF4B8BeNz+93H7tkR42TYE77x1BY3uMJaQzdpuB9fqXbz11AKMXAZvO72Ix1+ebUNw/oa1mN51dB63H67hxetNre4+YwzXd3s4e8YqEHt1R1+C8dJmC9VCDvfdtARg/BnPEowxfOOlTfw3t64gl82gWsjhLScX8WcJXBeXt9s4tVzGqeWyNgPMX+cHbrdCtle29Rl2Ea5st/H01ToeuPuIc9v73mzl+x6dgfDgq7sddAYj3H6khjMrZbx0Y/auSS0ZQMbYT4TczwD8vM99nwLwKR3HIcuNRg/5LOHuY3MAgLXdLmrFvNa/8cJ1y/rfddT6G288Po9P/elFDEYm8tnZTNGcv9FEtZDD4bkCbj9SQ6M3xLV6F0fn9SQWd9oD9EcmblqpolbMYW1X367t0lYbp5fLWKkaqBZyuLSZ7KIkwsWNFm40evi+m5ed2+49tYDf/vrL6A9NGLn4rovr9R6OzRdxaqmMP31xA4wx5YQqP8dvO7UII5vBlYR34dzD/sE3jHOHZ1YquGW1gj95cQM/9wM3J3o8k1zdts7HqaUyTi1VEjeUIszmSpQQG40elisFnFi0FrirMVzAF+3yyJtXqwCAO47UMBgxXJzBnSrn/HoTt6xWQEQ4vVQGAFze0ndubjSsGPKhWgHH5ktaPYJXNts4s2wd+5mV8kye5z+7aC1c77h5ybntzScW0B+a+N61eMMqN+pdHJor4vBcAZ3BCK2+epnlZXthO71cxtGFotbPU4QnLm2hVszh9kO1Pbe/89YV/NnFLfSH8Sfhg7hWt87HEfu88+t/ljjYhqDZw0rNwKFaEYBVf66bCxst1Ao5rFQNAMAbDluewSxWDnBeutHCLYcsw3XcMZL6djG81vxQrYBDcwVsaEroMsZwZbuDE0vWMZ9eruBSjLmfqDzzah21Qg43r1Sc2+6yvdK4+jYAoD80sdnq48hcEUuVAgBoSaZvNPqoGFlUCjkcnS9iLWGP4NzL23jrqcV9JZl/7pYVdAYjPHVlJ9HjmeS6bQgOzxdxeK6IrVYfveFs9TkccEPQx0q1gKWKtUhvt/ra/8bFjRZusnfXAHDLoQqyGcLzMe/8otLpj3Ct3nUWqWN2OIi7tzrgVSWH5opYKBvYaes577sdK+TEDfvxhRLWdrtTKWcM4tm1Ou48NrcnJHNysQQjm8H5GBrsOOv2on94roBle2Oy0VQ/95utHparlmFZrRWxGcP3yI/dzgAv3mji7On9ggRvPb0AwCp+mCbXdnsoG1nU7HArEM+mU4UDbgh6WKkWUDayMHIZbGlakNxcWG/t2fkVclmcXirjwvrs7VQBK7EFwGk0KhlZLFcMrWGzdVdoaKmcx5amhYO/7mqt4Lx+b2ii3tXXp6DKyGR4bq3u5Iw4uWwm9kQi35kemitgxfYIdJz7rVbf2UwtVwxtHp4IvELpTSfm9913qFbEsfkivnNlupVj1+tdHJkvgoicTco0SmyDOLCGgDGGTdsjICIslQ3tHsFwZGJtt4MTi+U9t+us2NDNmh3fdSeGjy+WcEWjR7Dd7qOQy6BSyGGhbKDeHWpppuI7Xh6GOzRnfelu1KcnezDJpc0W2v2REwpyc+uhaiySG5wte/e/XClgyT5HWkJDzb5zzpcrBhrdYWKhjxfsvog7juw/nwDw5pMLUw8Nre12cMS+Fg/ZHsEsXZPAATYE9e4Q/ZHpXMCLFQNbLb3loxvNPkwGHF0o7rn91FIZr2y2Zy5kAbg9gvExH6oVtbqy9c4A8yWrOovvJHc76ueehzlW7TDFYdszmKXd17P2DnbSIwCAW1aruLTZii25uWOf44VyHsv2edcRxtlq9cYeQVWfpyHC9641MFcch1wmuefEAi5ttmMJ+4pyvd5zDAH3VpP0mkQ4uIbA/lLM2QvSYjmPbc2hIV4WyS8CzqmlMhq9IXbasyc1cW3XTmy5jnmlamiJJXN2OwPnvC+Urf91nPvJ0BB/D9MUQpvkhWsNZAi47XB1330nl8owGbSW07rhxnahZKCYz6JayCkvSIwxbLX6jgFYdjyNZBbeF641cMeROd8S2Dcen35xhlWUYp2fhZJ1fmbtu39gDUHDjhvPFa1WisWK/tAQj8kemd9vCACr5n3WWNvtYLliLRSclWoBW60eTFOPB1Pv7vcItjV8MTaaVl8If23uhs+SR3Bho4WTS2UUctl9951Y0J+Yd7Pb7oMIqNnX/EI5r+yJ1btDDEbM8TB0ehphMMbw/PUG3nCk5vuY2w9b971wfTqGoNMfoTc0nQ2PkcugYmS1XO86ObCGoG53Ec/ZDWRLZUP7xbu2O64fdnN62Uoez2Jp46s73X2hrJWqAZPp2bUDtkfADXDZWjh0hBLW7b4QvjssGznUCjnHIM8CFzdauMlVPODmeIz9LIAVGpov5Z0yy1oxj3pHLZG+ay9o3PhyzyAJjaf1Rg+N7hC3HtrvXXEO1QqYL+WnZgj4d4Zf5wC0Vsrp4sAaAscjsC/g+VIeje5Aa9z+Wr0LI5txdr2ck3aduy6tF52s7Xb2dRA7X25NhrLeGToLB/+/riVHYPWFuFmtFZwk8rRhzGokPLPsbQiOzpdAFJ8h2HXlZgDLG64ryqo4G6qJz1NHzicM7lGfXi77PoaIcPvh6gwYgvF5XyjnnXzNrHBgDQFfeLibXC3mYDKgraHTknNtd1w25qZs5LBUMfDq7uzsVDnXdrv7PJgV2xBsaEoYu3ME1YJ1/ps99RLPnfZgz84LsEJP00wUullv9NDuj3DzqrchMHIZHKoVYgsN7bQHWHAbglJe2QBPetbc01P1NETg0hZ+hpVz++EaXtCslyUKzwUsuK7LxbKhPR+pysE1BBMXMDcIDY015+uNnpO4nOTIXNFJzM4KveEI9e5w3zHzyiodO2vTZGh0B855r9rnvanhvNddBoazUDZmJh7L1W79QkOA1QQXa2jItSDNFfPK1zt/Pv/+5LJWDDwRj2CzhWyGnJCaH7cfrmG3M5iKtIN3aCjvhNRmhQNrCPgFzBciLjanU4F0q9V3kmeTHJ0vOjmEWYHH6XnlB2fFifuq72Ja/SFMNg4h5LMZFPMZLR7BZOgDAJYq+ZnxCC4KGIJjMRqC3XZ/j0dQ0xEa6uzNEfCfVV9XhEubbRxbKIaKN95m5xDO30he/plvQiZDQ6lHMCPUOwOUjaxzEdXsEEVDw4LE2Wj29y2qnCPzRVyLqUwwKpuuhiM386U8shnCZkt9R7XrlO2OhW+rhbzyeWeMoe7yNDiLFQNb7f5M9Gxc3GjByGUc2Q4vji+UsLYTjyzGvhxBKY9mb6hUDTbpEfDXTcojCAsLAZYSqfX45HNyO/YmZN5lCBbLBnY7evORqhxYQ9DoDvcsGrpDQ6bJsN3u70sUc47OF7HdHszUkG1eU746kXDNZKySTB1fbh47np/YmaqGhjqDEQYjts8jWCwb6A9NdGbgPL+80cLppXLgvNrVWgH9kal9ITVN5pksZkxt88N3/jzXA+jJPYhwaavtlGIHcWSuCCOXiXX4lB/bbWvD6S4Xrtn5SB3Kr7o4sIag3h3s2cXw0JCOWDV//ZHJHJXHSY7Yu8JZyhP4eQQAbEOgJ3wDYM/ch2ohpxwa2vUIUQBWWTCQXKdrEFe2OzgZsnBxWQzdomTtwQgm2+uJ8XyKSji00R2iYmSRc4Vn5orxewS7nQF22oPAiiFOJmPJqU9jSNFOu7+vgKFa0LvW6EDXhLIHiOh5IjpPRB/xuP+TRPSk/e8FItpx3Tdy3feIjuMRod7dm1isOh6BnguYd+Ku+ISGjtpNZrOUJ+ChH69w1lwpr6X2udXbH0qoFtQ9Au5puBc6wAoNAcC2ZvmQKFzZbjuzL/zg8hi6E5v8vFfcO3f7M1BZtL0S9FYpdryLHB9BeXwh3BAAXJI8+dDQdrvvNJNxaprXGh0oTygjoiyA3wDwbgBXADxORI8wxp7lj2GM/Y+ux/8dAG9xvUSHMXav6nHI0ugO94RtdIeG+A7ULzTEu42v1WcnT7DZ7MPIZfa4+Zz5Uh67OgxB3zq/ZcNlCIo5ZVE7P4+AJ+niUJaVodEdoN4dOgPM/XBEyTTLYnCPy/3Z8p1pqxc9RNHoDvcYdcAyxnGHhrgMx2Tzox9nlsv40/PrME0WGJrTzbZHSbOz6dSYj1RFh0dwH4DzjLELjLE+gM8AeDDg8T8B4N9p+LtKNHvDPV+KiqH3w9myd9e+hmBu9jyCjWYfKxXDU7dlQVOOgPdpVAqumGkhh2ZP7bV9DUGFa7tM1xDwSqCwUkdeuqs7NOR4BC4DzD8Dbpyj4JWgny9Zyf+RJkkSL/j35ui8mCE4vVJBd2AmXkJa96hk44Upr7fQ0HEAl12/X7Fv2wcRnQZwE4A/dN1cJKJzRPQYEb3f748Q0Yfsx51bX19XPuh2b4SyMV6MshlCtZDT5q7xLlyveDtguehzxdxs5QhcA0YmmS/p6YbkC9KkR6AeGtrbF8KZlRzBlS0eygg2BLVCDsV8Bjc06yM1PUJD/Oe2bo8ghlLsSdZ2ushmxvr+YZyxcwlJJ4wnN5yAu1T99WUIZPgggM8zxtxX3mnG2FkAPwngnxPRLV5PZIw9zBg7yxg7u7q66vUQKdr94Z7FCLDCQ7o+HJ549fMIAGv3N0tytJsB5a7zdiWIqvCc4xG4jDBPFquU0/l5BHOlPIjimT4ng6hHQESxyGLw8I97UeIboZaCF9zoDvYk/oFkZCbWdrs4VCsgKxjm4WWmSSeM2/0RyoW9AoNOE6WiF6wTHYbgKoCTrt9P2Ld58UFMhIUYY1ft/y8A+Br25g9io93f6xEAepKWnK1WH7ViDkbO/xSv1gozNbJus9nz9WAWynmYDGgqhBEAa9Ep5DJ7qkyqxRwGI4aegg7/uBppr3HP2qWv0+4uvrrTQSGXcZLBQRyqFbV7BONk8V4DDKiFhlr90R4vw/ob+mRD/LhW7wiHhQArhJTNkNYBS2EwxtDq7/cI+O+vN4/gcQC3EdFNRGTAWuz3Vf8Q0R0AFgF8w3XbIhEV7J9XALwTwLOTz9VNf2hiaLL9hqCoXsbI2fYoG5tkVfPAFxUYY9ho9X2rnHhliGprfKs/3Ldw1DR8MerdAaqF3B4Dw7GkFKZrCK5st3F8oeSrm+9mtVrQnizmua9q0e0R2KEhhXr2js+GClBLQoexttPdJ44YRC6bwZG5olNtlATt/giMYd/1/ro0BIyxIYAPA/gSgOcAfI4x9gwRfZyI3ud66AcBfIbt9f/vBHCOiL4D4I8AfMJdbRQXbY/KFcBKpLUVd7wcL7mDSVars+MRNHtD9IdmYGgIUHf3J3MzwPhz6CgsSEHne66Um/rc4qvbndCwEGelpl8fqeVRNWTkMshnKfLmh+94KxOfp5OEjskjYIxhbbcr5REA1tS9KwkaAu5pTZ6fbIZQMbIzZQiUy0cBgDH2KIBHJ277lYnff9XjeV8H8CYdxyAD3wFNLkglI6stZi9iCFZqBlr9kWe+ImnGOQ3/ZDGgbgishWPve+WfQ3sQ/YvR7O53wTlzxWQ6XYO4utPBnR7jKb1YstUpRyYTjoGH0eoNkSGglJ9ctHNoR1ywuwMTjAFlnx1vXKGh3c4AncFo38CnMI4vlHDu0nYsx+QF94gmPQLAShi/3nIErzkcQzAZ2zSy2mSoRT0CANhoTL/rlVcELZa9j5k3xSh7BB7JsxI3BArn3go57Z/6BSQnguZHpz/CRrMf2kzGWawYYExvsrXZswzwZGiqYuQiSx2Me0L2GxcgPo9gXDoqHhoCrET9td1urGWtbrya+Dg6w9A6OKCGwL6A85MLkr7QkFfH5SROzXhz+iWkflU3HH676qzVVm+/R8B3qSqhoWZvf9KSM6dhEpcKohVDHF5pprPktdXbn5sBrEU86oLdcTzrZJPFvORa1iM4tlDC0GSJTazz6t3gWKXqqSGYKmOPYGIno8kjYGy/wJcXcTUPRSHMEPDacFV3ttUb7du560hatjzqtTlWjmB6HoHTBSu4gx3PcdZpCPafd8BatFU9gn05AqcsNZ5kMU+kH54Lr8Byw3s4kkoYO+fH47zXUo9g+vgli8u2IVCtlfdTwpyEh4ZeC4agbGRBpN4N6ZUjGIeGor9222fHC1hGrN0fYTCKXp6qwjWf2dV+8GozHfMfOF6NTYC1SEXNEfCFfjLEmrNnTKiUpQbBvy8rAqW4brghiGvewyRNj94NTimfVfKAdXNADYF3sphf0N2h2gcUtqhylioGiIB1jV/4qDiduT7HTESoGjllCQ6vHAH/HNRCQ/urVzj8PU0rYcxDEaKhjHg8Ar/QUPSdadsnRwDoUZT1Y6Np9egU896ftx/HEjYE3MBOGkqAe2KpRzBVeEv9viSXJpfWS3Pfi1w2g+WKMRMeQb0zQCGXCfxy6ZCC8MoRlBWTxVYZY0COwFYknVYJ6bV6F/OlvPDCFUeOoOljCKqFXOTz7rehAuyFLiZDsN7oCTXmTVIp5LBQzsc2E3oSR+jPI0dQMlKPYOr4hYZKGurZAXGPALDc21kwBCI5jariLmY4MtEbmh7n3fYIIg6P6Q1NjEwWGBoCpukR9ITDQgBQzGdRNrJaZTG8OlwBHg5V8wj8kqGxGYJmDys+s8DDOL5QSixH4JeLBKxNZ5wNd7IcSEPQ8tnJOB6BossmYwji0JWJgpAhUNRiag/2K48CgJHNIJuhyAuSl8SyGyc0NKWE8fV6F4clK1wWy4bmqiH/ZHHUEM44R+D9unFVxWxE9AgAKzz06k5yVUNW097+ZbZk5NAZqOcjdXEgDUGnP0KGgMKEDpCOenZA0hBUC9iYEY8grNxVNe7b9mmwISKU89ErtoLqtQG3RzCl0NBuF0ckK1yW7FnLurCSxfs/31I+i+7AjLQg+ZWPAureYxDrzZ5TcSfLkbkirmuW7/DDL0EPjDedszBCFTighqBld/Lua67hsrwJegQrtkcw7UHWoqEhlRwBNyJeMWWVmOnYI/BLFvMcQfIewXBkYqMpFxoCLEOgKzTUH5roD03P88M3P1EE//hCP9mtDPAcgf5FrjsYodEd+mpihXF4roCdhGaFt/veXhignhfTzYE0BF5CWcD4gla9gHc7AxDtV8L0YqliDVef9iBrYUOg4BHwhd5r4Sgp9HAEtfIDY4M8jRzBerMHk41nEYui0yNwYvk+ZYxAtJ1puz9CKZ/1lMGoFrKxVA1xCZioHsFh+3PQre7qRdOjMIIz7p2ZjcqhA2kIvCSogfEXpaOgeQNYC06tkBMaiedUiEy5hFQ0R6Dy5eZluSUfIxxXaKiUzyKXoal4BLI9BJyFcl7bnOWg6h4VQ2CVpHrveCtGPMni8SxwNUNwLYHuYr+SXSD1CGYCP5G3sqby0d3OAPM+mj2TLNuGgA+OnwYjk6HRHYbmCGqKA2SCPIKykY1sgHmIwi8eS0SYK01HZkK2h4AzX8qj2RtiqKEJji82XuWrRYUejk5/5GnUAVvMTkNz5iS8wi5yjsD+HJKQmQgqaS5rCkPr4oAaAm+PQEdjE2BPbfJIzHnBR0NOc5Qi1+oX8QgYi76L4XFZrwWpbESvZ28F5B44c8XpyExwj+CwpEfghLM0VN7w8+65+bE/iygxc68ucY6OoTde8NBQZI+glqAh6A1981apRzADtPojz24//kVRvXhbvZHv7nSSsUcwPUMgmtzmVSdRw0OdAEOgliz2b+XnzJWmI0V9rd5DPkvO5yyKLrVXYHze/XIz7sfI4LehAtwKpHoXOu4R+M3NCGOuZM2ETsoQ+MnL64o+6OJAGoJOf7hPeRSwBkYUchllj6DVH3rWVnsRRxepLKKGgMeDo9aH812nVzjBCg3FkyMArBLSOGfo+nG93sWhWlEoX+RG59xfvuv0Ou9FBeXXoBg4v1Z0J4w3mj3Ml/Io5OTkJThEhMNzRVxLIFkcJIToDGNSzEfqQoshIKIHiOh5IjpPRB/xuP+niWidiJ60//2c676HiOhF+99DOo4njJbHlCyODg0Qv3Z+L8pGFoVc5jVhCHgVVNQkYHdgxbuLHnOcy0pVQ/6NO5xqTOWMYVzb7UqrZAJ6DUFgtZaGqiEvxuMq9S50641e5NJRzuG5YuwewVj2xC+ZPlsegfJYLCLKAvgNAO8GcAXA40T0iMfIyc8yxj488dwlAP8QwFkADMAT9nNjHSPUG46cJNkkpXzWaXyKSrs38hVAm4TIChvomowWhaRDQ95VQzmlPoKwUNy0BoFcr3dxx9Ga9PO0GgJ71+l53o3oOYJ2QDJUV3PmJFutPpZ9puiJcniuiKeu7Og5IB+47IlfaKikKR+pCx0ewX0AzjPGLjDG+gA+A+BBwef+MIAvM8a27MX/ywAe0HBMgXT6IxR9XMuSkVVWHw1ymb1YquqVE5BF3BCoDd12ksUe555r3kSpSAoqY+RYg0CSDQ0xxnCt3pVOFANjWYxdDb0Enb7liQWVj0ZZsNv9oW/VUFyhj+12H4sVsUIMP47MFXC93o21idNrRrQbXflIXegwBMcBXHb9fsW+bZIfJaKniOjzRHRS8rkgog8R0TkiOre+vq50wN2hiWLe+63zlvuojAd6SxiCSuE1YQh4aEjFIzByGc94ecnIwmRRO1xHoeebDwJJsoPbmkc9imQI9OYIrM/LM0mvkCPoBISG4qqK2WoNnLxaVA7PFdEdmLGWE4c1OerKR+oiqWTxfwJwhjF2D6xd/6dlX4Ax9jBj7Cxj7Ozq6mrkAxmMLJfNTxK4mFf7cLoDEyYLTlxOslwxtA4hkWW3M4BhDxMJwhlBGHFn3Q1YOPjn0YtghNv9cA+sWsjBZMlqu/AKl0MRat4LuSyK+YwWQzAuH/XqI7A+8yjnpTs0fT9PFU/DD8YYdtp9Z3BPVLhhjlNziG+WgkLEszSTQIchuArgpOv3E/ZtDoyxTcYYD4L/JoC3iT5XN+Nadu+3XsxHr14B3M1N4lUNS5Xphob4fOVJ7aVJuJsb1SPoDvw9MX57lLBc0M6UU+XeTIIzCVSbn+ZLeiqdOoMRchnyTKYb2QwyJJ8jGG+ovD9PXT05bhq9IYYm0+IRAOMejzgIkvXgqHTT60aHIXgcwG1EdBMRGQA+COAR9wOI6Kjr1/cBeM7++UsA3kNEi0S0COA99m2xwcM+QTsZFUGqcXOTTGjIQGcwmpqbWO8MMV8KP16rMoci6yJ1BgEeQS560rIzMEOHvjj5jQQTxny27rQNQVB1DxFFGpsY1BMC6JlDPQkX4VtQ9Ai4h3YjRtXfpkBJszUmdDYMgXLVEGNsSEQfhrWAZwF8ijH2DBF9HMA5xtgjAP57InofgCGALQA/bT93i4j+ESxjAgAfZ4xtqR5TEHyhKfgZAkPNEIhcAJO4ZSZOGOXIfzsqIjpDnLIRvbqnMxgFhOSilzF2B/5SB5zaND2CiF2wugxB2PkpRejhCOoSt27PgMjq2dEF95qXFJPF3DDHWak3zhEEnfecM6Nj2igbAgBgjD0K4NGJ237F9fNHAXzU57mfAvApHcchQm8YcgHn1EJDfAcUVsXixi0zcWJxOoZAtDa7bGQV+giCDIEdGoqYI/BqEHSjWvoahfVGD9kMRY5pz5fyuKphiEo7QBMIiBYO5bkcv89TdcaEF3yGs2qOoFLIoZTPxjoHpBUwvc05DiPrzDWeNgeuszioqQlQnyUaxSNYmrLMhMhQGk7ZyEbexXQDQkP89kihoZCFDlAvfY0Cb36S7SrmzJcMLbIYYTmUKOHQsFwbYO14dcqrczVW1RwBAKzUjFgnA4aVjwL2pup1lCN4TRHu0qqVjzpTuCRyBMtTlqKWCQ1VCrnIu5igZHFBwRB0BXIEqqWvUVCZpAXoTRaHhoai5ggCpB7KRlZraMjxCDQYgtVqIebQkJ0rDAkNJTEgR4QDZwjCklylfBZ9uyIiCmPdG4mqoer09IZMk6HeFTcEpXz0XUzQghQ1NDQcmeiP/MsYOVXF0tcorCvM1gX0SVGLeATyOQK76CLAwKjIhnix1eojlyHUJLxtP1aqBWw04vu+tfoj5LMUqIlUzGVSQzAtnNCQX0OZwRekiLo3Idr4XtQKOeSzNJXQUKM3BGNiYzUByyOInCzuhyeLe5Llo92hf9esm4pi6WsU1hs9HKrJN5Nx5p0Rm2rH3Bn4a2sBPFksZ2zEQkNq+bZJttt9LJSN0DJnEfiI2LgQURfQfX5UOICGIDw0BERvPIpSPkpEdi9B8npDPAYtmiMoGdnITTC9oUDVkKSRcbpmQwyBkcugkMskVj46Mhk2W3210JAmKeogAwzYOYKIoaGgHW8cHoFqxRBntVrAdruvZfCPF0FjKjlRynbj4uAaAp8LWEWWF7BcQiObgeGTjPZjqVKYSnexqLwEx6p0iO4R6E4Wd/vBfSFuasVcYuWj2+0+RiZTMgR8uJGqRlKoRxApNOQvIDh+3ejDhrzYbg2UK4Y4K7UCGIsvHNvu+SuPcgr5LHpDU/sUtygcPENghxJ4a/0kpYghCk6rJz6LwM1yxZhKaEjWEFiTxOQXU8ZYoCTBuLNYbocWNHRlkmohOQVS1a5iYJzgVq10CmrkAyxvSnbBDisfBeJJFuuoGAKAVTsvF1dTWUtA9mS81sTjlchw4AxBTyBZDIwVG2URcQm9mJbMhLwhiObuD0YsUJIgamcxNwRhOQLAlqJOyCPQYwj0eATtvr/sOhCtfHRcNeS/hOgODVnKo5o8gmq8TWVioaHoOk+6OXCGQDg0FPHDEXEJvXitGIJKIYehydCPuHP3M8CZDMHIZqSrhoKUNSepFnKJ5QhUu4qBsUegkiwe2Z9VOR+sedMZjKSUWcNybYB6T44b02TYbg+wpCk0NO4unl5oSGVMqG4OoCEwkSEgn/WuPCgpqDECYi6hF8sVA83eMHJIKiqyhmCsKim3OIV5YgBQyMuX04nEqjnVQj45j6A5G6Gh8TCg4OqekcnQl0icdgVDQ21JA+NHozvEyGTOLGdVuEewHlNoSGRKYTFiXiwODqAhsCoo/ErQVD+cVtTQkB2z5N2TSbHbGSCXIaHQCjDuj5DtJRCJ5RejhChkk8UJegRlIxtpU8AZ9z4oGIKAMZWcQk6+h6MzsIoisgFd02UjJ21g/Nhqc50hPR6BIzMRU2ioLTCTRLUwRScHzhAECZ8BalIHgCU2FSk0VJ5OUxnvKhatzXYmT0l6BEFjKjkqsWqhHEHCyWIVbwAActkMykZWKUfgGIKARYl/Jj2Jc98djFAImV/heI8aFDZ1dhVzVmvxdRdb64BYsjj1CKZAd2AGJrjUy0ejhYb4TmdahkAUvuDKDt0Oa+Tj98nmCDoyOYKEk8Uq+QFOrZjTExoK8sScRL34ue8Nw2dAOFPKNCx0XIJaV44AAFaqRiyhof7Q6nYPm0kyjj6kVUOJ0w1oagJ0eATRQkPL1bEUdZLUJQTngOizVrlhDTr3xbz8vGgRT4NTLeTQH5mJ5GFUdYY4VoJbwSMQ8JiiJC3DmtT2vK6GElK+QdLVRwDYMhMxeAQ8fxbWVFpSLEzRyYEzBL3ByHcWAeD+UkSz0iIuoRf8At9O2COoR/QIZD2mboj8N2BLgMvmHiRzBEAyMwl0hIYAq4RUxSMQqaoa6zzJhIb8BQQ5FY3DaXjllMy1GoYVGtL/fWsKKI8C6oUpOtFiCIjoASJ6nojOE9FHPO7/BSJ61h5e/1UiOu26b0RET9r/Hpl8rm66A9Op3/WCJ86ifDjcJQyaU+qHpaEy+6GhqMnirkjSMp+J1FBm5IKTlhzVUZui9IYj7HYG2kJDKuWjIlVVPDQkc813ZUJDGgzBbmcAorEx18FKtYCtVh8DzTITYYPrOa+rqiEiygL4DQDvBXAXgJ8gorsmHvZtAGft4fWfB/BPXPd1GGP32v/ep3o8YQQNRwHGo/uifDgic0r9yGYIC6V84t3F8jkCxWRxSFhOJmHJj0PEGwCSm0nAd5mH5tQNwVwxr5Qs5otwUGiIN5vJeQTBnjXgDg1p8Ag6A1QLucizHbxYqY0HQumEh03DFAZeV4YAwH0AzjPGLjDG+gA+A+BB9wMYY3/EGGvbvz4Ga0j9VAjLEQA8aSn/4fBdcpSqIcBKGPPqiCRgjKHeHSacLNZcPhoin+CmmtBMAh1dxRxVfSSR8tEoyWKROdE65xbLblhE4DITuvMEIkNpALeKwevDEBwHcNn1+xX7Nj9+FsAXXb8XiegcET1GRO/3exIRfch+3Ln19fXIBysS24yqCtiKMJ3MzXLCwnPNntWkMycwuJ4z/nLr9wgiVQ0NTOEeCC7iFneOYNxVHF2CmqNaNSQkDhfBI+gNRoHVd4A7NKR+vmVzWSIsVWLyCPg6INpHMAMegb6AmwBE9DcAnAXwg66bTzPGrhLRzQD+kIi+yxh7afK5jLGHATwMAGfPno3cqtgdjAKnKgGWqxzlwxG9APxYrORxcaMV6blRkO0qBiw551yGpHd5jiRBQIdrlNm5ItUrnNeiR1At5NEZjDAYmchn5fdtbRGPIFKyOHw8qE4JhTg8grhKtkUG1wNWODiKrEoc6PAIrgI46fr9hH3bHojofgAfA/A+xpjjizHGrtr/XwDwNQBv0XBMvgjFNiPmCESTRH4sVQqJJoujGAIgmphYdzACEWAELGbRQkNDodJRwJUjSMgQ8JJgFVQrncI0noBoZYwdgQ2V7mTxXFGvIeAjYnVXDrUkcoVRw9C60WEIHgdwGxHdREQGgA8C2FP9Q0RvAfD/wDICN1y3LxJRwf55BcA7ATyr4Zh8EQkNRZ1b3IwwptLNUiWP7fYgMX3yXcmhNJxKIed4P6LwWQRBHcxFW59dRpsmbAyjm6TKR9ebXSxVjEg7+ElU9YY6/REKIVVVURqbhL5HOd5ZrH6+4/AI5kt5ZDOkfSCUaPkooFeYTwXlK5UxNgTwYQBfAvAcgM8xxp4hoo8TEa8C+qcAqgB+b6JM9E4A54joOwD+CMAnGGMxGwKBRpgIIQrAVTUUMTS0VClgZM8QToJ6RI+gZIuJySCapAfk9Nk7A1PYIyjYYa2mQoOWCLq6ioGxFHXUayJscD0QrWS6OwiWtgYsRdlSXo8Udb07cCa26SKTISyW89q98HZvhAyNz2sQUZoo40BLjoAx9iiARydu+xXXz/f7PO/rAN6k4xhEGI5MDE0WuoMs5rORLg71ZDHvLrZms8ZN1NBQxchJ7/I6/fAB8+6ZBKJx/65E1RARoaqYfBVhvdHDSk3P5zenmNfo9Ecoh5wfIkIxnxEu3TVNht7QDA0NAWMFUhV6wxG6A1O7RwBYeQLdBRpceVREv2tWxlUeqM5iZzpZWNWQETFHoFg+ygW1kuoujmoIrLnFUTyC8JAcILczbUv0EQC28FzsoSF9HkFVMTTUFti5A3L5md4wvBSYoyP0ETWEKUIcc0BavaFQWAiIViARBwfLEAgkzgBr6lK0ZPEQRGJyB164PYIk2O0MkM2Q8EXLqUT4cncFqnvG1SsSoaF+eOjDTRLDaTYafUfvXhXVKWVdwRyKTDjUKUkNMewALyxQO988hDmnsauYsxxDgUa7Hzwj2o3VRPn6qBp6zRA2nYxTilw+OkLFEHMJvUhagdSqxJA/3nIhJy86JxDCiSL415XIEQDxD7Bv9YboDEZO16oqqsli0UVJpkBCpBKJUzLUB9hH9VxFWIphVnhTyiPIpB5B0vALXURHPWofQdSwEDANQyDXVcwpR4hrisT9ZVvuhyNL20k6NBSjR8C7VPV5BNwQRE8WiyzYhZz4giTqWQPRrpVJ6h39gnOcpYqB3c5Aq95QS2A6GSfqplM3B8wQCIaG7N2R7Ii9ZsRZBO6/WzaiJaqjELUkr2xk5ctHBSQJCpKhIZ7zkTIExXxChkBPsriQy8LIZZTKR0U8Apm8mMhsCY6OAfZxegS810OntEurPwqVoOYU02Rx8sgYAkCujBGw6qWjlo5yFsvJDbHflZxFwCkZOeldjOURiCWLRcvpHIll2RxBjKGh9Yb12enyCACgVoiuQCqqxVTMiRsCmdBQuSB/rUwSd7IY0OuFW8lisWvS6p1JDUGiODuZkPpengSTtdRRx1S6Wa4mZwgaCh7BYMSk3GmRMk+nfFTwvHftWQRh5ZFurLnF8fURbGgYWj+JpTcUXx8BwD0Csc+zJxkaUk0Wx+oRcL0hjSWkUqGh1CNIHlGPIKpGSktgYHUYcZSz+aESGgLkpAOEGvkMOY9AZjoZp1rIoTswtWvQc7gh0DVkHbAqh6KGs6yqIb1SByJDhjglDaGhemeAspHV0qk9yXgyoM7QkKQhGIykw9C6OViGYCi2cETVCZfZCfixlFBoiDGmYAj4TAK9E61ky0dFFE0n4dUcsjkOUTaaPSyW81oXLZXeB8sjEOhwzcmUj4rnZsqa+gji8AYA/aGh4chEd2AKbwiL+QxMBgxGqSFIjHFoSMwQyHsE6qGhpDyCdn+EocmUPALRElLGmJjERE7OAIuMYZxEtUErDJ09BBwrnCV/vAPBTnrAyrMIG2Bn/rRYsnhoMvQl821u4hCc4yzakwF1eQSyTaWzIkV9wAyB2AUcdYB91MH1bpaqBjqDUexxQ5W4q+zkqf7IBGPiSXrhqiGBweyT1GIeV7nR7Gk3BFFlMWSSujLJYrnQULT5FW7i9Aj4ZEBdwnOyUwqjzIKIgwNpCMRH7InvYkyTWc07GkJDALAV86QylUoM2aHkPKkbJsIlK37mDK6XyRHEPJNgo9nT1kzGqRWiJYudOdFCyWKJHIHAtDmODinqencYS8UQR6cXLqs3FnXTqZsDZQh6glpDsiEKAI6wlmjZmB9OzDLmSWU6PALRXZ7oDjKTIRg5cfEzlRxBXN3FG82+th4CTtUODckmFEWG0nCKOSuEI5JEF/WsAU2GIEaPANA7GbDZk1sH0tDQFBAZjgLASa7JfDiqyqOcJUdvSK9G+iQqhkD2y92VWLBlhgJ1IuQInE7dGDyC7mCEZm8YQ44gD5PJLxYyhlKmQEL0e+T+2yqhTqvfJb5hijo9Aq7KK9pQNitziw+UIej0ralKYdo6Uay06phKDjcEcQ+xT9YQiIcSZOYWdyLkCKoxzi0ezyrWnCOI6MU4OQIRrSEnVi3mEYh8j4DoM645w5GJZi+aFIooS1V9ekMyQ2mA1COYCiJSyICrs1jKEKiNqeTwBpe4h9jXFXIE4/JRwdCQRChBZlAHzxFEqRqKo6nMkZfQNIuAw70Y2e7irlRoSHxusWiTGuAKI0Zc6HiSPN7QkIHtdh8jDZMBZcZUAq5hTFNWINViCIjoASJ6nojOE9FHPO4vENFn7fu/SURnXPd91L79eSL6YR3H40dXQO8GiDbD1bkAJHanXtSKOWQzlIhHQDSuopEhamhId/VKZzCCETKGcZJyPguieDwCPvs2jvJRQD7BLRMakqle6Q7M0O58TlmywmySOLuKOUsVA4wBOxq+c86GUNZQvtZDQ0SUBfAbAN4L4C4AP0FEd0087GcBbDPGbgXwSQC/bj/3Llgzju8G8ACAf2G/XiyITrNy3DWJqiFdOQJrfF78vQS8NjsjsYhy+DkUNgSCSXr+GPF6drmhNIB1fqtGPDMJdCuPcqKGs2Q6r3mBhMjmR2aCnGqyOClDAOhpKjvIVUP3ATjPGLvAGOsD+AyAByce8yCAT9s/fx7AD5EVYHwQwGcYYz3G2EUA5+3Xi4XuwAwtHQWs2mIjm5GaJao6uN7NUiUfe2hIpTY7k7FGGwpXDfGyXYHRhgUJCfDOQHwAiJtqTDMJeI5gWXfVUCGaFHVHIjRUks0RCBqCcSl2tPMdp+AcxwnH6jAE/ZHUcCoZocVzL2/hv/vdJ/DqTkfpGL3QYQiOA7js+v2KfZvnY+xh97sAlgWfCwAgog8R0TkiOre+vh7pQA/PFXDLakXoscV8Rsqdbff15AgAa4eSRGhIZZdVlhg4IhMasiY2iRoCuVkEnLhmEmw0e5gr5oQMngxRK52kQnJ58RyBiFwIpyzZczLJa9EjKOezwp52UaJq6PJ2G198+pq0KrII8dVkaYYx9jCAhwHg7NmzkbI6v/ZX3yT8WNm5xbpCQ4C1Q3nuWl35dYJQNwTiGjJdmRCFVGhIfGfqphpRsiGMOJrJAFeOIMbQUCGm0JBsGHGSejd+Q6BTeE5Wb0wmNCQzB0IWHa94FcBJ1+8n7Ns8H0NEOQDzADYFnzsVZIdK8ySRjCSyH4uVfCI5AlVDIF0+KpBglKoaGgyluoo5cc0kiENnCBhvLqSTxX3x8y6TLBadegZYYVaVcYxJeASLZX1NnK3+SGoGeD5LyGZIOCQHhGulRUGHIXgcwG1EdBMRGbCSv49MPOYRAA/ZP38AwB8yq03yEQAftKuKbgJwG4A/03BMysg0NgFW1VAxn0FOg+rkUqWA3c4Aw5ikkgGrfFQl7loycsIlgbFVDUkMCXcTVcQtjI1mT3sPAQDksxkU8xn5HMFgBCMrdk3KNpTJhOSsMGL0HIGRzYTKk6hg5DKoFXNawrGt3hBliTwhEaEoOCaUh4TCRu1GQfkV7Zj/hwF8CcBzAD7HGHuGiD5ORO+zH/avACwT0XkAvwDgI/ZznwHwOQDPAvgDAD/PGJv+lAZwj0Cuaki1mYyzzMvZOvEMUGGMoR5xXjGnnM86XZRhxNdQJlYOPImKrHMQ682ednkJTpSZBCJT4TjjEIXIztSUWoxK+egzCfiGRaR5TYVlTUPsmxHWAdG5xXF6BFpWLsbYowAenbjtV1w/dwH8mM9zfw3Ar+k4Dp2U8lnhSVmAnlkEnEXeXdyKJ9TQHVhD31UMQaWQxas7YoaqOxw5LnAYMiE52Z0pp1rQP7e4Oxih0dUvL8GpRQhndaRm54oni3sCkuJuVGYSWBuW+FOZixVDiwJpuz/E4VpR6jlFwehDd2DCyGYilXyHcaA6i2Uo5mXLR6OFKbxYruifmuRmp2O97kJZLTQks2CL7mKK+Sz6QxOmQJdnpx/RENihIZG/IQr/rOJIFgPREtwyHcAyfQSy571sZB2dflnilKB2s1wxsNVS98BbPXkFYnFDMIolLASkhsCXkuQupt0fSiWJgnCSVzEZAh0JOJlZtKL9G4BL3kOgRK7dj5Ys5t3UooN1RNhoxNNMxomS4JZJ6nLlV6HQ0FC8fBTg36XoOYI4ewg4S5o8gqbE4HqO6Nzi3tDUXprMSQ2BD/JVQ0PlWQQcXs4WlyHYaVuGYEEpWZxFuyd2fnoSsWrZevZIVUMxzCQYdxXHlSOQz2tYoTPxr3gxFz6TYDAyMTKZVJxapudkkqQ8gkVbgVR1dnA7So4gLzYdTuZ7JEtqCHwQddc4VtmYHmudlEegstMqG1m0BYdudyRi+aKdlsORleeI2lAG6NUbikteghMlr9Hpi4eGALHeGZneBPfrRs4RdJMLDQ1GTGlzYJoMrQjDqQqC5bUi416jkhoCH0StNEdn1ZCRy6BWyMVnCLhHoJAjqBRyGJkMfcFBJqIXsOgAe65fFDVHAOidScAF51ZjyhHUivJTymQMMCDmBYtO+XNTjlg1ZJos9qE0nCVbZkLlOxd1OJVoqXp3YMZWRpsaAh9K9pdC1FXUWTUEWBrpsYWG7GSxyhdMZqCGjCSB6HQ4np9QyRHo9AjWGz1UC7nYdmxcFkMmdCGTIwDEejh6Es2BHKv5UP5cN/tDmAyxDa53o6NAox1RXUBUxUC2WkuG1BD4UMxnMDIZBqPwLx5jlkuoQ3COE6cC6W5ngGyGlJLbMqqSMi4tH5ASujPtq3sEunMEceUHAMsjMJmcVINsdU/RCPeCnWE3Eq8rU2HmhnuuSeUIAKtkOyqO8KRkZKCYE+0jkEvSy5AaAh9kVAF7QyuBJlqzLcKyxvF5k+y0LXdbpUlHZm6x5dLKlTHGEavmxJUjiCs/AEQzXjLlowCEOlxlusQ5ZSOLwUhsHrIbrjOURNWQDo8g6nAq0RyKTBm2LKkh8MHRXhH4gLjgnK7yUUDvHNVJdjsDpYohYLzrEdmhRqkaCpvYFGVwPadm6/vrzhHEaggiSFHLegQlI1z5lXsMsn0EgLzwXBI6QxwdCqTj6WRy16SlryWWa0v7CBJGpsHGEZzT1FAGjA2BajmbFzpqs6VCQ1LJ4vhzBPyLqt0j0Dyi0g2Pk4v2EpgmQ28oJ8EhEqIYe2JyfQSA/JSyeoKGoGxkYeQyaoYgamgon0HfjioE0RuaqUeQNCXBWDUw3gno9gj6IzNyR2YQu52BUsUQIPfl7g7FyzxFQ3JdBY8gl82glM9qm1s8GJnYaQ9mKjTEz59UaEhA50lmyBCnEnGA/bjMOX6JCSJSDsc2oyaLBTc/Mo2ZsqSGwAcZES6+E9DVUAa4XNUYJpXxHIEKMgNHZMTPRMtHucRyFI8A0DuTYDOmWcVuZPMaMtPJOCLiZzKzJdyvC8x2aAhQD8fy9ye7IRSVAE8byqYAj8WJ7HhbzgWgNzQEAJsa2t4n0ZEj4KGhMJkGxphUGaPo7kglRwBEE3HzI+5mMsCdIxA0BBHOT0GgfDRqsth9TKLUO0Pl6jYZlhQVSMcbQskcgWAYujscpRITSSMzOUjndDIONwS6R1aaJtPSrVkWDA31RyYYE184nNF9YYZAIUcA6PUI1m1DsJpEjkBY+ttesCV37mFJepkhQxyVZPFcMRe7BDVnqWJMp3xUwCPgpexRNz5hpIbAB5mJTVGTREE4HoHm0FCjOwRjwHxZbdESDQ3xhUO0I5I/Lo56djc6ZxLELTgHyCe4OxH6LIq5LPqj4KRlJImJfM4+JvkcQRKloxwdoaFiPiMkt+5GJAw99sTS0FCilAR3psBryyPQ0VUMWBckUfiXuye5YBMRCrlMaBljlIXOjc4B9hsJ5AhkE9xRQkO8Eiho8xNlOIoTRhQUKeQkJTjHWSobaPaG6EnIz7uxlEflj5cv7kFrjUrfjAhKhoCIlojoy0T0ov3/osdj7iWibxDRM0T0FBH9Ndd9v01EF4noSfvfvSrHoxPREAUwzhHoLB+tFnIwshntMwl4Ak41R0BEKOXDdeZlppNxRAT/2oMhCjn53RenWtSbIyjls1o3Al7UJI45SpmnyDXfGYxg5OSGozihIdkcQUKCc5ylKu8ujlZN1uzKS1ADYnItcU4nA9Q9go8A+Cpj7DYAX7V/n6QN4KcYY3cDeADAPyeiBdf9v8QYu9f+96Ti8WijKFk1lMuQVkEoIrKG2GsODe1oEJzjiMgL8zJGGZdWqIxRUllzkppWjyDeHgJOtZgTzhHwRUW2jwAI9gh6A1MqPwC4S41nOzS0rFigEVVvTKR3xgmxzmho6EEAn7Z//jSA908+gDH2AmPsRfvnVwHcALCq+HdjRzZZXDay2pNaS5WC9tCQzpK8ssDAkSj1/qV8NrSPoN0foayQOOPJYh0Ne3HLS3BqEnkNft5lZE/GSUt/Iywrbe0+Btlkcb0zSERwjqMq/95UNARBnphK34wIqobgMGNszf75GoDDQQ8movsAGABect38a3bI6JNE5PttIqIPEdE5Ijq3vr6ueNjh5LOEDImXj8ZR4qZroLabHW4ItHgE4fLCUUNDYee9MxhJVcRMUi3kMTKZlNS4HxuNeOUlOFUJKeooOYJiTiBHEEEBM2tPP5PpLGaMJZ4jUB0I1Yo4pVCkMCVK2a4MoYaAiL5CRE97/HvQ/Thmba18t1dEdBTA7wD4GcYY//Z9FMAdAN4OYAnAL/s9nzH2MGPsLGPs7Opq/A4Fj4GLJovjiA8vxqA3pLNtX6YBSSY0VBDQXrEGs6t5BADQ0NBdnJxHID6cJmpDGRC8IHX60YTPRDYNbroDE4MRSzZHoDiTwMoRRDAEQlVD8hsqGUKPmjF2v999RHSdiI4yxtbshf6Gz+PmAPw+gI8xxh5zvTb3JnpE9FsAflHq6GNGVCc8ylQiEeJQIN1p91HKZ7U0plSMnFMx5Qc3FDJ/T2RkouzQlUncMwkO1SK/DIYjE1vtPlZjlKDmVCXGVTrltZqTxd2hGckTkx1Ok3RXMf9bRCqhoVGkDaFIheKsh4YeAfCQ/fNDAL4w+QAiMgD8RwD/mjH2+Yn7jtr/E6z8wtOKx6OVgqBOeCvCwGoRFssGGt0h+gLKhKLokJfglIRCQxGSlvlwFUzZoSuTyHbq+mEJAwIrMU0mc1MtiCeLu4MRMgQYWZmZxWL17LLJYoB7j+LnOkmdIU42Q0pzQKKuA7zIJCh01ongWcug+qqfAPBuInoRwP327yCis0T0m/ZjfhzAnwfw0x5lov+GiL4L4LsAVgD8Y8Xj0YqwR9Abap1FwHHK2TQmjHUIznHKAqEhZ6KV5qohXaEh1cqh9QTkJThzdoLbDFGpBMYS1DIFDLzUNGxnGqVaS3aA/TQ8AiB6U9nItKRUongEGbviMKhAIu4cgdLqxRjbBPBDHrefA/Bz9s+/C+B3fZ7/LpW/Hzeic4ujJonCWLUXl/VGD4fnilpec0djSZ5QsngofwGLVA2phoai6Pt7sW53FR9KwiMo5sCYVY8fdr21IyzYBYHy0ajDUUS8RzfTNARRCjT4hiLqOlAysoGzT3jOLB1VOQWKebFKh1ZPbXfqBx+EznedOtA5DLyUzzlzWv2IEtsUaijrj1BS8MJk9f394IYgrqH1bnjXqkieoNuXD51xwxEUlpOdesapCE7h4kzNEEQMDakOpwqbBdHtz3Zo6HVNUaJqKG6PQBfb7T6WFHWGOJVCFu3BKLAWP67y0a7k9K1J+AJTVzQENxyPQI/HFsQ4nBXuxUTxmMTq2aPNzbVCQ/I5gsQNQTWa8JyqzEwpZF701MtHDzIlgZ3pcGSiNzRjyRHwbtUNTR4BYwzbrYEzqFuVkpEFY9bkJD+6gxHyWZKSgijkM4Hlo4wxtAd6cgR8wYnKeqOHWiEXmwaMm5p9zCLGK8rOvSgg+NftR5NCFp3Ly+GfSy3BhjLAqtTbbveF8jBuGqoeQcimszscIZsh5CWS/zKkhiAAkWQx19qRnVMqQtnIoVrIafMIWv0R+iMTSxVNOYJ8uLxwdyA/Xq+Yy6I/NH2/jIMRw8hkSotvNkOoFXJOX0VU1hu9RMJCwN6S1zDaEUJDuWwG+SyFLkjRksVZKa2hemeAWjEXWUsqKotlAyYbN16KouoRWAUSQf0b4lP+opAaggBEZrjGMbjezWqtoM0QcJd3UVNoqCwwgrAzGEmP1+MLmJ+nEUVHx4u5Ul7ZENxodBMzBDKVTp3+CJUIC3YxYDjNcGQ1eUVOFkuojybdVcyJ2l2sug6ERR+sju74luvUEAQg4s7GMabSzWpVnyHY0m0ICuEeQZTxeqV8sNQBN86qCfq5Uh51DVVDiRkCCY+g1Y9W0lwM8IJ5uE5G0ZRTzufQH5kYjsR6YqZlCJwRsZKGoNmLNqaSE6Zi0B3EN50MSA1BIEUBqYM4xlS6WakZ2nIEvB9BV45AZPJUFG2asAH2qmMqOfOlnHKO4Eajl0iiGBjHy0WMV9Q+i6AeDpWEpawU9bQMwVh4Tu4717Q/k6gh4rACid7AjDUPlRqCAIr5DPrD4IlNjkcQQ7IY0OsRcEOwpCtZnBcIDUWo7nGqV3y+GG3FMZWcuWIe9U70qqFWb4h2f4RDcwl7BAKhIa6IK0tQaEglJDeWop5tQzAODUnmCJxcYfRkcaDqa4yD64HUEAQiIkWdRI6g3h0KdTiHwS9uXeWjInOLI1Wv5IOrV3TprswrhoZ46ehqAl3FgJXgLhtZodBQZxBN/ypISLAXoTmQIzu3+DXnEfSGyGejzyQpGcHJ4qiNfKKkhiAAETXGVp97BPF8SDz+rCM8tN3qW9UyRT1GqyKQI4gSoiiEhIb439ORI1AJDTldxQl5BIDYlLL+0ErqRpnXEOwRyA+u54wNgZgHNi1DUMxnUTGy0t3FXIE46kyS0IayiI18oqSGIABugYM+INUkURhOd7GG8NBWu4/Fcl5qzGAQJYGqoXaU0FCI1IGuqqH5Uh7t/ggDwQTmJDcaXQDJdBVzRGYt8/MTxSMoGll0/DyxIR9/GSU0xAfYh3sE3cEI/aGZ6HQyN1GayprdISoK4WFequ7XnNkZmGmyeFoURTyCGAbXu+FiZhsaRlZut/raKoYAsT6CKKGhsdSBT/mopkHec7xBK6JXcKOeXFcxp1rMhyqQci81WvloxldiQkuyWMAQTKurmLNUKUh7BE1FdYFiPguTAX2fTUmU6jsZUkMQwHiotP+OsdUbgij+0JAWj6DV11YxBIwXYt2hoWJY+aim0BCf0hZVZmK92UMuQ1hIcMGyxlUGGy7+eUTbuYcni6PkZmRCQ1M3BOW8fB9Bf6jUVOpUyvmsNV1FkcUwUkMQgLMgBShhNrpDVI3oscEwliv6DIFOnSHA0lEPG+epFBqKuXyUC89FzRPcqFs9BLpCbSKI5AjajkcQITQUEKseK2DKLxs1Lpgn0FQ2dUNQKciHhnojVBXkMEoCJdNx6QwBqSEIpBRSxgjEN6aSY+QyWCznsd7sKr/WlkadIcAa51kxck4oYhLGmB0akjs/xRBPTGXH68YRnotoCNabvUTkp92I5AhUkumBfQQKuRm+Ww6baAcAu+3pGoLlqiVFHSSmOEmzO1DqJXJmQfisNVHF/kRRemUiWiKiLxPRi/b/iz6PG7mG0jziuv0mIvomEZ0nos/a08xmBhE1RlWXUITVWgEbDbUcAWPM8gg06Qxxgrqv+YIi30cQHBqKMn3Li7mSeIOWFzfqyclLcETGVXKPIHqy2M8jiG4IZOQxpu0RLJYN9Iam1PyEVm+klCwOKkxhjFkaTzPsEXwEwFcZY7cB+Kr9uxcdxti99r/3uW7/dQCfZIzdCmAbwM8qHo9WRMpHVV1CEVaqBeWZBPXuECOTaU0WA8HDadoRS2vDOovb/RHKGsJxfKGJGhraaPawmmCiGLC6i5v94CllrZ6CRxAg+KdSrVXIZZHPktD8h2kbguUIMhPN3tAxdlEIKkzpj0wwBmnNLhlUDcGDAD5t//xpWHOHhbDnFL8LAJ9jLPX8JCgKNJSpuoQi6BCe4zFPXV3FnFLACMKo1T2FEDlkXfFSniOI0l08HJnYbPUT9whqBWtKmV84DlBLpjubHw8j7MyWiNg0VS3kxEJDzrziaeUI5AzByGRo9obO9RSFoAH2PIE8yzmCw4yxNfvnawAO+zyuSETniOgxInq/fdsygB3GGL8yrgA47veHiOhD9mucW19fVzxsMUoC5ZGqLqEIh2oFXK93pWKWk+jWGeJUAoaSR60yISIU8/5ljKrzijnFvCW7HMUj2LSH1ieeIxAIsYybHKMki/2NcHdozZbIRQzJVYvh+Q3AMgS1QvIS1JwlSQVSHqpTadQM2nQ6/RsxGoLQIyeirwA44nHXx9y/MMYYEfmtVKcZY1eJ6GYAf2gPrN+VOVDG2MMAHgaAs2fPRl8RJRCpfVatHxbh8FwRvaFpD56PtpA7OkOaQ0MlI+vr7qslLYPLGHV8KYgosszEuIcg+WQxYC8+896PUT3vgPeC1OmryRxUDDFDUNc4VzsK/Dsi2kvArx+VYx7L2XgYYKd/I75kcegKxhi73+8+IrpOREcZY2tEdBTADZ/XuGr/f4GIvgbgLQD+PYAFIsrZXsEJAFcjvIfYKOQyyGYosPa51VeLDYpwdL4EALhW70Y2BJtNvRLUnLKRdRbFSVTKPIPKGNuDkRNTVWWuGE1mYhpdxYDYlLJ2f4gMIZLujSMO52MIVCq1agKJbmB68hIc7hGIlpA6hkBhHQiqUOwoNPKJompiHgHwkP3zQwC+MPkAIlokooL98wqAdwJ4lllxjj8C8IGg508TIkvkq+VT+8wYs1rLY/YIjsxbi83abvQSUt6ZzMdf6qJs5NAOCw3FUMYYRUfHi6jDaa7bxu/wXNLJ4vDQULtvhSujJNMLAfIe7cFI6VoXKX0Fpm8IaoUc8lkS9wjsHJNKjqDIy0e9zrumBsogVA3BJwC8m4heBHC//TuI6CwR/ab9mDsBnCOi78Ba+D/BGHvWvu+XAfwCEZ2HlTP4V4rHo52gBFdvaGJoskRCQwBwXckQ9FAxstrlsoPKR8cXcIRYdcCgjiiyFX5ENQTXdjvIUPIeQZU3ZgV5BL2RMzRIlqBKuU5/qBSSq0gki6dpCIgIi2VDWIG0oSE0FBaSA+KTugcEQkNBMMY2AfyQx+3nAPyc/fPXAbzJ5/kXANyncgxxE1QeGbcENedQrQgiNY9gvdHDSgyLViXg/KiEhiqFnK+BafWHOGWUpV/Ti/lSHq9stqSfd63exUq1ENswcT/GyWJ/49UejCIvGkHJ4lZPLUlfK+ZCdZKA6RsCwKocEp1JUNeQLA4KDY1nnsyuR/C6p1Lw75xtxiw4xzFyGSxXrMqhqGw0e46AnU54+ah33Xn0ATKWAfZJQvdGqGraHS2W89KDygHgWr2Ho/PJhoWA8WITVI/fjjiUBgjembYVPbGKIeERlKdrCJar4h4B9yhVQkP5bAZGNuM5wU2XyGIQqSEIwcoRBBuCuPsIAODofBHXlA2B/sbtckDduUpsM8wTixr6mGSxbGC3MxCepcu5tttJPD8AjPWDAg2BQnltcLJYTWq5WrQ2DUET/7qDEXpDc+oegRUaEssR8M9CtWikXMii7bHWvBZyBK97rByB34KkNp5OhsNzRVxTDA3FEc8OKrFVqXYo+2gYMcasSi1N53ypYoAx+e7ia7tdHJmCR5DNECpGNiRZPJTWd+KMZ0HsN4wqBgYQG7VZn3JXMWe5Im4I6t0BykZWOUxoldcGbajiW2dSQxBC2cj5hiiSyhEAVuVQVI9gMDKx3R7EEhoqBwwc6fRHTgmu/Ot6J6F7QxMm0/el4A12vM9ChHZ/iHp3OBVDANgyEwEeQbM3RC3q7NyQ6hWV8AT/ngSFh3ZmxBAsVawRsSJDi+qdgVJYiFMpeIdDOzFPQQRSQxBKpZB1BlNP0kjQEBydL2GnPYg0u5jvbOIxBLaqpMcFrLJwVHw8sXFeRs+XYqksP6yce2ZHphAaAqwQRCMgWazS5Mi9N6+u7nY/eu4BEOuKjksKRRYuzijSS9DoDrWMf7W8YI9kcd/q6I6zMCE1BCGUAxJccU8nc8Pj0VHCQ1ynKJ5kcXBoKGq9f8kuH51MQrd5OE6bR2B94WUExrhnNjVDUAieSdDsRm9ydFQwJz5P02ToDkwlT0wkNMQ9s4UpJ4uX7DkgWwKeYr2rpxO64pMj0NVJH0RqCEKoFPyrYpI0BLxCJUoJKVcujSVHENQRqeQReCcttXsEEUJDjkcwtdCQf2PWyGRo9UeRPYJ8lpDN0L7kP/8ctOQIAozYtj2LYPoege0pCoyIbXSHSl3FHD+PoN2Pv2k1NQQhVAKqKJxqgQQ9giglpBu2R7Aag0fAL1Avj8BKWkZbOPjOczLk5Ezf0nTOF8vyksOORzBNQ+CzmPLzFTVUQUQo5vZ3dbc0xKlFQkP8c9AthSILNwQi3cX17gA1DTkCv+ZV1dyMCKkhCKEckOBq9axOyyRUEo8oeARxyUsA7tCQ9wVczkdbkPiCM+lptDRXUBTzWZSNrNRowmu7XdSKuVirOIIICg01NWxOSh7DacZyIdFfl4fzwnIEpXw2Vl0dEWSkqC2RPB0egXeyWLVaS4TUEITAewS8kzjxu2zj48ihVsjh2m5H+rnrjR7KMchLAMHloyrT2xyPYCJh3NIcGgLsmnHJ0NA0msk41ULedzF1elsUQhWF3H7lV/75VhQWJEcnKSQ0tDjl/ABgNRoSWf03QTDG7GSxjhyBd4FEuz+MvKESJTUEIYwXpP0Xb7071LITEOXYQglXd+Q9guuNbmzNT/wC9TQEvegiZWUfT8MxBBqN2lLFkPIIrtfjO58i8ByBV95KR7iyZHgZguhd4pyKQPnodruvfWZGFHJZq5vfT1mX0+wNMTQZFjQki8u2JzbZcNfpR9eOEiU1BCHwBcdrodNVPyzKicUSrmy3pZ93fbeLw3PxiKM5nageLq1KGSPf8U+ed2dnqtETW6wY2GqLl4+u7XanVjEEuHbWPufc/ZgoeCm/6mhqymczKOYzgfMfttv9qecHOIdqBUdu3I8d+7rRccx8rZkMy6WhoRmAW2J/jyA5Q3ByqYyr2x3pSWVru11npoFujJylkeLVEdlSMARlxwDvPe+6q4YAYKmcF/YIBiMTG83p6AxxgqpvxjkCBSXM3P5mPl0yB/Ol4PkP263Z8AgA4NBcATdCRsTqLHf185ja/RFKaWhoujjdkB67r0ZnoKVsTJQTiyU0ekMpOQTTZLgRY2gIsFUlJ3Z5I5NZuvjKoaH9IYpchmBobK5ZlAgNXdvtwmTA8cV4DKsIQdU3XJVUJUdQMrL7y0eTMgQzkiMAuEcQZghsj0CD8ar4bDpVG/lESA1BCM6C5LHj1dVIIsoJe/G5si2eMN5q9zEYsVh3sJYhmIjl99Vi1ePy0clkseUmRxm64sdS2UCjN0R/GC4nwM/9iUU9MthR4InJSeNr3aaeI7CSxX7lo2obn4WS4WsIhiNrHOushIYOzxWx2ewFiuTttPWVu5Z9wtBpaGgGqPjUszPGUO8ME84RWIuPTJ6ANz/F6RHMecz9VW22Gxvg/cli3X0bixKlgvzcH1+YnkfAdXh2PPIaY0Xc6OfIq4xRZdqcm7lSHrsd72QxNxCz5BGYDNgMqBzadvoeNISGjP0ewchk6A3VOrpFUDIERLRERF8mohft/xc9HvMXiehJ178uEb3fvu+3ieii6757VY4nDvxyBL2hif7ITLRq6KRjCMQ9Am4IEvcIFMsYeUu95+5IsyHgA+jDEoMAcHWnAyLg6ML0cgRcH2nbyxB0rTCCSm9Ltbi/sUlrjsCnVJfH22clR7Basz7joPAQ/wx0iOSVPZozdXR0i6DqEXwEwFcZY7cB+Kr9+x4YY3/EGLuXMXYvgHcBaAP4z66H/BK/nzH2pOLxaKeQy8LIZfZNVtIxjEKWuZLVS3B5S8IjSKALtlbI7wtTjEMU0S7gTIY8d6bN3lCplt2LQ7a3FFYqCFhG+FCt4Mz2nQYLFe4R7F9QVSq1ODWPhrVmb4hiPqMsfBaUI9jWWIGjg0Nz4RuEnXYfc8UcchpyVvy6dud+uEc8653FDwL4tP3zpwG8P+TxHwDwRcaYfA3kFJkr5p0B1Zy6hjmlshARTiyVpT2CbIZiEZzjzJVy+85PS4M4XNlDn73Z09O842bsEYQbgqvbnanmBwBroc5lyDOU1ehFF5zjVAs5y+N15Uwa3YFSJRJnoZxHqz/ylHfemhHlUY5zXQRsELbbA20ezFiuZfxd0jEGUwRVQ3CYMbZm/3wNwOGQx38QwL+buO3XiOgpIvokEfmuVkT0ISI6R0Tn1tfXFQ5ZnrlSbl8MnMc5k6waAngvgYQhqHexWi3EKoNRK+73CHSM8fQSV6t3Btq/FNxIioSGruy0p5ofAKwNwULZ8AwNNbrRZxFwuCFxh4d0CavxEIqXV+DoDM2IIVgV2CBst/tY0OTBVDy66fn3Ku7IQ6ghIKKvENHTHv8edD+OWcXtvul1IjoKa4j9l1w3fxTAHQDeDmAJwC/7PZ8x9jBj7Cxj7Ozq6mrYYWvF8ggmQx/JewSAZQgub7eFewmubLdjL3WcK1q7PPe4x5aGxqa5Ym7fea939TfxGbkMlipGqEcwMhnWdrpO9dY0WSznPUND1rxftYXJSy66oSBt7SbIEGw4cumzYQgKuSwWyvnADYJV5aTnevTS7dLRIChC6Kszxu73u4+IrhPRUcbYmr3Q3wh4qR8H8B8ZY84V4PImekT0WwB+UfC4E2XOI67JXbYkcwQAcNNKBe3+CDcaPaFKoMtbHdx301Ksx1Rz1bXz3ZEej8A79xBHgv5QLVxO4Hq9i6HJptpDwPGbqbvb7uP0klroin+e7jyBFZKL1xCsN3uYK+ammn+ZJOy62G73cctqVcvf8mrO1DUPOQzV0NAjAB6yf34IwBcCHvsTmAgL2cYDZBWFvx/A04rHEwtzxRwak4aAJ4sTrBoCgJtXrIvuwnor9LGDkYm13Q5Oxrxw+S0cgFoZ42Q10mBkot0fac8RAFYYYD0kNHR1xwrJTTs0BFgDdbzKR3c6A+UuV54LcHsEza6est35coBH0IxnrrYKh2rFQE9xs9nXmtOYbM7kP8dxzbtRNQSfAPBuInoRwP327yCis0T0m/xBRHQGwEkA/2Xi+f+GiL4L4LsAVgD8Y8XjiQWvOvl6QrG7SW5arQAALmw0Qx/76k4HJgNOKO4Qw5jz2OU1ulYHcCEX/RKbNASNbnx5mbAvPDDuIZh2shiwPILJYTqmybDbGSgLoI07l/cuSDoWI8cj8DBiG41+rEUNUTg8V/SdCtjqDdHuj7Qar8mqqkZCyWKlV2eMbQL4IY/bzwH4OdfvLwM47vG4d6n8/aTgVUOMMaejdbczgJHLJK6bfnSuiGI+I+QRXN6ydrAnY164vDyC3c4A86W8UgfwXHGvAR57YfqN76G5AtYbPZgmQ8YnsX5xo40MASeXZsEjsAyB+5psdIdgDNpyBHuMsKZGvnEz3P6w1nqzh7uOzSn/DZ0cXyzheqOLwcjcVzrLJap1DnyqlfJO2BkYfwY61Xa9SDuLBZgr5dAfmei5yum2mn2nsSdJMhnCmeUKLm4IGAJ7B3tqOWaPwN4pTi7aqk02tWIebVcSuhFjXuZQrYChyQJHVr680cKxhdJMxLAXy3kMRmyPBMdOxxZAUz7ve6tXTJOh2dNTNbRQsnT+vdReNxq9WKboqXB8oQjGvGeF81ngcXsE1UIu9uFXqSEQwFnoXB/QdltvbFCGW1aruLAeHhp6ZauNfJZil0yec7RvJjwCxVi1OwkNjA1NHG4yP0dBE+AubrRw00pF+9+OAk/Ku8XyeDmpeo5gb2ioPRiBMT0Jy1w2g6WysW/gS3cwQqM3nLkcwfEFaxPF80Nu1p0qJ33HPJmPbPYGiYzCTQ2BADwU4d7xbramZwhuXq3g8nYnVCTt8lYbxxZKse8meMLcvZPZ1eIRWK/Lm9XiDA3xuL/XFx6wtKVeniFDMJaZGBuCHUcSWe26tET9xpLWOqSt3SxXDadUlLMe41xtFXiF2FWP3p31ZjIeQdz5ASA1BEJwl9gdu5umbvpNKxWMTIZLm8HhoYsbLZxejn/hmivmkc3Qnt2pDkMwaYDj7OYOU3bdbPXR6A1xJoHzKcKiLTOxNXHOAXWPgIisuci2J9bQ7ImtVAv7hsJzDyGOudoqcI2uV308ggzp7YTmhSm8Tyg1BDOElxu+2epjeUqG4PbDNQDA9641fB9jmgwvrTdx2yE9Nc5BZDKExXJ+z5dbp0fAQ05xVlAslPOoBug4vWznZHjV1rTh4YiNptsjsA2BBkM5VxzvTBuKAoKTrFQL+0JD1+1a/UO16Yn5eVHMZ7FSLXh6ihvNHpYqerv250tW7oeLzVmSIfFXJqaGQAC+4G/aX7r+0ESjO5yaONZth6vIZQjPrdV9H3N1p4PuwMStCRgCwNoVbbWsL7NpMjS6GjyCCd39nfYAGQKqMVRQEFGgfMcFbghmxCPgC+b1+jinwb0DHR6Tu09hV6PCJmCFhjabez0CvuOe5uQ3P44vFD0NwbXdrqNHpAt+zTtGOAZJFS9SQyAA333xmCCPxS5NqRW+kMvi1kNVPBtgCM7byeRkDYF1Xpr9IUymvnA4pYb2l4LnZfzKO1UJmgl9/kYTRi4zE/ISgCVHMFfM4YbLEKw3e1iuGMoKocDezmX+vy4PeKVaQLM3RNc1m3dtt4OCLfUxaxxfLHkagqs7He1d5vya53mx7XYy1YmpIRCgZGRRMbKOO8tDINMoH+XcdWwOz74aYAiu24ZAU/t7GMuVcdx3p6VnB7lc3TswZqvVi3WhOLHoPxP6ubU6bjtU1SI3rItDc0UnpAJYMWtdicvFsuFseHTPCeBaQuuuhPGrO10cWyhpnTyni5NLZVzZ6uyZVMYYs5Vo9RoCd+HFyGTY6ehTNw1idq7qGWelVnDc2bFK4vQmKd11dA43Gr19sVbO+RtNLFeMxBLabo9AVzVF2cihmM84E6I2m30sV+KrKuEzob1UPZ+/1sAdR2ar2enwXGGPIJpeQ5B3Ps/NVh/5LCmrmnK8VD1f3e3g2BSH/QRxy2oV/ZG5x1vc7QzQ6o+0y424G+6shkF9nlgQqSEQZLkyrn3mX744xz+GcddRa1F6+uqu5/3fvbqbaJfmUsXATnuA4cjU2mizXNlrgOMMx/Ew2ovX9ybht1p93Gj0cMeRWmx/OwqHazF6BBUD9e4Qw5FpVciVDW27da9S3Vd3Ojg2Pxtht0lusQsEXnL17oxnV+s9Zh6G3mz1E53PkBoCQVaq4wVpLYHxj2Hcc3IB2QzhiUvb++7rDkZ44XoD95yYT+x4eBhnuz0YewQaasJXqoYTctpo9rAS45eCV2O9cGNvs973rlkhuDuOzpYhWLU9AsYYGGNY1yjaxgshdjoDywBrPO98F8132P2hiRuNHo7OgJifF15Cj9wQ8IYzXTizMeq91BDMIsuukre1nS7mS/nYB0oHUS3kcNfROTz+8ta++55bq2NoMrzp+EJix8Mv1s1WD+uNHkhTffVSxcBmq4fByES9O8RSjKGho/NF1Aq5fR7BU1csr+vOo7MVGjoyV8RgxLDR7KPeGaI/NLU1ZPGQIg9R6KyQqxRyWKoYjhaWNV8DyvLZcbFYMbBUMSY8Ai5AqNd4GbkMFst5rDe7qSGYRVarBrbafQxHJtZ2uzNR5nb2zCKevLyzr8P426/sAECiHsFR261/daeD9YZVvaIjsbpse2JO5UqMoSEiwq2Hq3h+oj/jW5e2cXq5PHPKmKdtDalXtlqOrpSuhYl7XjcavVi66E+6KrT4TvvmGenR8OLmlQpeujH2CF68Hl8ObtWegbCpuVoriNQQCHJisQzGrLjm2m4n1mHworzjpiV0Bya+/cre8NDXX9rAmeUyjiXoanNFzstbliHQtWjy5iPe6BV3QvHuY3N4+uquI3THGMO3XtnB204txvp3o8C7nF/eaGuXyOZhmrWdLtZ2utqvd16hBcDRzbo5oQq3KNx5dA7PrtWdyqEXbjRw2+F4jvdQrYj1Zg/r9S4ylMzoztQQCHLG1pi5uNHCle1OoousH++8dQX5LOErz113bhuMTDx2YQvvvHUl0WNZrRZQyGVwectalHSdn5NLJQxGzMmFxD0L4O1nltDqj5yu7Zc329ho9vDW07NnCE4slpEh4OXNFl7Z0qs0y0X4nlurozMYab/eTy6VcXm7jf7QxEvrTaxUDW0Na3Fw78kFNHtDnL/RBGMM5683cduheHJG3CO4vN3B0fmSlr6QMFJDIMgZ+wv2xKVt7HYGidXnB1Er5vH9t6zgPz973al9/+aFLTR7Q/zAbcnOdeadua9stfHyZkubJs8pO278jQubAOKfDvb2M9ZYT557+cPvWdNXf/D2ZM+nCFaDWxkX1lt46UYLSxVDm0R3ychisZzHOdsA6z7vdx+bw2DE8ML1Br57tT5z+ZdJ3nJqAQDw7Ve2cWGjhUZvGFtV3onFEtZ2O7iw3kysgVHJEBDRjxHRM0RkEtHZgMc9QETPE9F5IvqI6/abiOib9u2fJaLZayu0Wa0VUDGy+PKz1u6bV5hMm/ffewyXNtv4kxc3AAD/4VtXUCvm8BfekPzCdXq5gscubKI7MLVp8nBD8LXn17FcMZRmIItwbKGE08tlfPU5ywB88btruO1QFSdnNJH5xuNzeOrqDp5+dRd3a16YTi1X8OTlHQD6k6I8f/XNi1t44XoD955c0Pr6urlppYKlioGvv7SJxy9amwS+adDNrYeqMBnwnSu7ic3HVvUIngbwIwD+2O8BRJQF8BsA3gvgLgA/QUR32Xf/OoBPMsZuBbAN4GcVjyc2iAh3HZtzQgZ3zkgp4V++5yhWqgX87199ES9eb+CR77yKH33ricQnpwHAm08sOAqtb9BkKE8slh2tlaT6Ih689zj+60sb+P2n1nDu0jZ+/OzJRP5uFN5ychGXtzp45tU63nhcb3HAm45b5ztD+qVKTi2VsVQx8IkvPoeRyfB9Ny9rfX3dEBF++O4j+Mpz1/Hvv3UFxxdKTn+Bbm5xRRvuTKiJUckQMMaeY4w9H/Kw+wCcZ4xdYIz1AXwGwIP2wPp3Afi8/bhPwxpgP7P8hTccAmC5tcszUkFSyGXx0ffegScubePdn/xjVAo5/O2/eMtUjuX7bxl/mXVVLGUzhPvsnZf79ePkJ+87hXI+i5//t9/CStWYaUPwrjsPOT/f7/pZB2+1E+Q3r1a1byyICO978zEMRgyrtQLecVM8u2ud/PjZE2j3R3j85W382NkTsclhvMHVuPiOm5M5L0kUwh8HcNn1+xUA7wCwDGCHMTZ03b5vrjGHiD4E4EMAcOrUqXiONISf+v7TWG/08KNvPTGVv+/Hj7z1OBiAJy5t4ae+/8zUpHzffmYRv/Du23HX0TmtC8ff/8t34vRyBX/9vtPaXjOII/NF/NbP3If/8K0r+OvvOK08aS1Oblmt4p9+4B7sdgZ422m9i8ZfuecYvnetgb/0pqNaX5fzP/zQbSjkMnjP3YdnSsPJj7ecWsQ/+7E348J6E3/rB+PbbOWzGfzmT53FhY0m7jmxENvfcUNeAlt7HkD0FQBHPO76GGPsC/ZjvgbgF+2h9ZPP/wCABxhjP2f//t/CMgS/CuAxOywEIjoJ4IuMsTeGHfTZs2fZuXP7/lRKSkpKSgBE9ARjbF8+N9QjYIzdr/i3rwJw+9Yn7Ns2ASwQUc72CvjtKSkpKSkJkoQ/9jiA2+wKIQPABwE8wixX5I8AfMB+3EMAvpDA8aSkpKSkuFAtH/2rRHQFwPcD+H0i+pJ9+zEiehQA7N3+hwF8CcBzAD7HGHvGfolfBvALRHQeVs7gX6kcT0pKSkqKPKE5glkkzRGkpKSkyOOXI5j9VH1KSkpKSqykhiAlJSXlgJMagpSUlJQDTmoIUlJSUg44r8lkMRGtA7gU8ekrADY0Hs5rgfQ9HwzS9/z6R/X9nmaM7VOkfE0aAhWI6JxX1vz1TPqeDwbpe379E9f7TUNDKSkpKQec1BCkpKSkHHAOoiF4eNoHMAXS93wwSN/z659Y3u+ByxGkpKSkpOzlIHoEKSkpKSkuUkOQkpKScsB5XRkCInqAiJ4novNE9BGP+wtE9Fn7/m8S0RnXfR+1b3+eiH440QOPSNT3S0TvJqIniOi79v/vSvzgI6LyGdv3nyKiJhH9YmIHrYjidX0PEX2DiJ6xP+/pjK+TROHazhPRp+33+hwRfTTxg4+IwHv+80T0LSIa2gO/3Pc9REQv2v8ekv7jjLHXxT8AWQAvAbgZgAHgOwDumnjM3wbwf9s/fxDAZ+2f77IfXwBwk/062Wm/pxjf71sAHLN/fiOAq9N+P3G/Z9f9nwfwe7Am6k39PcX8OecAPAXgzfbvy7N+XWt4zz8J4DP2z2UALwM4M+33pOk9nwFwD4B/DeADrtuXAFyw/1+0f16U+fuvJ4/gPgDnGWMXGGN9AJ8B8ODEYx4E8Gn7588D+CGyJlA/COvi6THGLgI4b7/eLBP5/TLGvs0Ye9W+/RkAJSIqJHLUaqh8xiCi9wO4COs9v1ZQec/vAfAUY+w7AMAY22SMjRI6bhVU3jMDUCGiHIASgD6AejKHrUToe2aMvcwYewqAOfHcHwbwZcbYFmNsG8CXATwg88dfT4bgOIDLrt+v2Ld5PoZZA3N2Ye2SRJ47a6i8Xzc/CuBbjLFeTMepk8jvmYiqsAYh/S8JHKdOVD7n2wEwIvqSHVL4ewkcrw5U3vPnAbQArAF4BcA/Y4xtxX3AGlBZg5TXr9CZxSmvX4jobgC/Dmvn+HrnVwF8kjHWtB2Eg0AOwH8D4O0A2gC+ag8m+ep0DytW7gMwAnAMVpjkT4joK4yxC9M9rNnm9eQRXAVw0vX7Cfs2z8fYruM8gE3B584aKu8XRHQCwH8E8FOMsZdiP1o9qLzndwD4J0T0MoC/C+DvE9GHYz5eHai85ysA/pgxtsEYawN4FMBbYz9idVTe808C+APG2IAxdgPAfwXwWtAiUlmD1NevaSdJNCZbcrCSJDdhnGy5e+IxP4+9CabP2T/fjb3J4guY8aSa4vtdsB//I9N+H0m954nH/CpeO8lilc95EcC3YCVNcwC+AuAvT/s9xfyefxnAb9k/VwA8C+Ceab8nHe/Z9djfxv5k8UX78160f16S+vvTPgGaT+ZfAvACrOz7x+zbPg7gffbPRVgVI+cB/BmAm13P/Zj9vOcBvHfa7yXO9wvgH8CKoz7p+ndo2u8n7s/Y9RqvGUOg+p4B/A1YyfGnAfyTab+XuN8zgKp9+zO2Efilab8Xje/57bC8vBYs7+cZ13P/pn0uzgP4Gdm/nUpMpKSkpBxwXk85gpSUlJSUCKSGICUlJeWAkxqClJSUlANOaghSUlJSDjipIUhJSUk54KSGICUlJeWAkxqClJSUlAPO/w9JVvrQ1ZoCtQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
@@ -137,39 +150,21 @@
}
],
"source": [
- "from scipy import special\n",
- "\n",
- "def drumhead_height(n, k, distance, angle, t):\n",
- " kth_zero = special.jn_zeros(n, k)[-1]\n",
- " return np.cos(t) * np.cos(n*angle) * special.jn(n, distance*kth_zero)\n",
- "\n",
- "theta = np.r_[0:2*np.pi:50j]\n",
- "radius = np.r_[0:1:50j]\n",
- "x = np.array([r * np.cos(theta) for r in radius])\n",
- "y = np.array([r * np.sin(theta) for r in radius])\n",
- "z = np.array([drumhead_height(1, 1, r, theta, 0.5) for r in radius])\n",
- "\n",
- "import matplotlib.pyplot as plt\n",
- "fig = plt.figure()\n",
- "ax = fig.add_axes(rect=(0, 0.05, 0.95, 0.95), projection='3d')\n",
- "ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap='RdBu_r', vmin=-0.5, vmax=0.5)\n",
- "ax.set_xlabel('X')\n",
- "ax.set_ylabel('Y')\n",
- "ax.set_xticks(np.arange(-1, 1.1, 0.5))\n",
- "ax.set_yticks(np.arange(-1, 1.1, 0.5))\n",
- "ax.set_zlabel('Z')\n",
"\n",
+ "x = np.linspace(0,0.1,2000)\n",
+ "y = np.sin(100 * 2.0*np.pi*x+1.5*np.sin(30 * 2.0*np.pi*x))\n",
+ "plt.plot(x, y, '-')\n",
"plt.show()"
]
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABqdUlEQVR4nO29abQtZ3ke+Lx7Hs987nx179WAhACZ4SLHxrHbTBZxB+GEJJAVW4ntxUrHpDvtdhoI3babhF62O73ISi93EmJjkzjL4OA4yCs4GDAENxjQFUgCSUi6kq505zOfs8eqPXz9o+qrXWef2lXfVLW3dOpZ6657zp5O7dq1v/d7n+d9n5cYY0iRIkWKFIcXmWkfQIoUKVKkmC7SQJAiRYoUhxxpIEiRIkWKQ440EKRIkSLFIUcaCFKkSJHikCM37QNQwcrKCjt79uy0DyNFihQpXlJ4+OGHNxhjq+O3vyQDwdmzZ3HhwoVpH0aKFClSvKRARC8E3Z5SQylSpEhxyJEGghQpUqQ45EgDQYoUKVIccqSBIEWKFCkOOdJAkCJFihSHHEYCARF9gojWiOh7E+4nIvqXRHSRiB4jotf77nuAiJ5x/z1g4nhSpEiRIoU4TGUEvwvgvpD73wHgDvff+wD8KwAgoiUAvwLgBwHcC+BXiGjR0DGlSJEiRQoBGAkEjLGvAtgKecj9AP4dc/ANAAtEdBzATwD4AmNsizG2DeALCA8oxnF1p4P//J2riNuO+/s39vDJr19Cxx7E+ndMYThk+MzDV/Dk9b1YXp8xhs8+chWXt9rGX3u9Yb0kzjVjDP/5O1cTuf78ePTyDr781JrR1+z2BvjUt17EXrdn9HVlwBjD5x+/gd/92vPo9mbrs+ef9RPX4vk+6SKphrKTAC77fr/i3jbp9gMgovfBySZwyy23GDuwD/7hY/jzZzaQz2bwk/ccN/a6fjS6Pbz349/AdruHp2828NGfek0sf8ckPvXQZfyTP/ou6sUcvvnht6BSMHupfO3iJv6nTz2C24/U8MVf/DGjr/2//MdH8dWn13Fjr4sP3HeX0dc2id/75ov43/+zw6Y2uj389A+djf1vWv0B7v/NrwEAvvbBN+PkQtnI6/7O1y7h1//r9/H1ZzfxL9/7OiOvKYt/++fP4f/83PcBAH/+zAZ+64HzIKKpHMs4/vyZDfyjTz+CxUoeD/9vb0MmMxvHxfGSEYsZYx9njJ1njJ1fXT3QIa36mvjOizsAgK8Y3iH58fnHb2K73cNtq1X8p29fRdvux/a3TOEPv30FANCw+vjq0+vGX/9bl5wE8uJaE03L3PnY6/bwtYsbAID/8th1Y69rGlZ/gI994Wn88G3LOH9mEf/qK8+iNxjG/ne//cKO9zM/TybAM4yvPrOeaHbDsdG08M//9Gm87e6j+Cd/5S586ftr+PzjNxM/jkng36Htdg/fv9GY8tEcRFKB4CqA077fT7m3Tbo9Edzcs7xFKM4P58vfX8NqvYh/ev+r0ekN8JWnzC+sJtHtDfDYlR387JvOoZDL4OEXto3/jYtrDd/PTWOv+8S1PQyGDD906zJe3Gpjp20be22T+OITa9hq2fj7P3YbfvZHzuHabhcPXQpjV83AT/WZov0YY3ji2h7yWcJOu4cr2x0jryuDTz90GXZ/iA/cdxd+9k3ncGa5gk987fnEj2MSHr2yg+VqAQDw+LXdKR/NQSQVCB4E8DNu9dBfArDLGLsO4PMA3k5Ei65I/Hb3tkTw9E1nMbrzaB2XNlux/Z1vPr+Jv3z7Cu49t4RyPotvPR//F14Hj17eQW/A8Kbbl3HPyflYAsHTN5u4dbUKALi0Ye7cP+MGlZ96ncMwPj6jnOwXn7yJpWoBb7p9BT/6ilXkMoSvPm1uhz4Jz200MV/O41Un5vDcupnzvt3uoWn18WOvOAIAseg+UfjjR6/hjWcXcfuRGnLZDP7WG0/jW89v4cXN5I9lHIMhw3ev7uIn7zmOXIZiXWtUYap89PcB/AWAO4noChH9HBH9fSL6++5DPgfgOQAXAfxbAP8AABhjWwD+KYCH3H8fcW9LBM+uO4vGm25fQaPbR8sgRcGx1uhio2nj1Sfnkctm8AOn41lYTeJ77uL5A6cX8OqT83j6ZtNouj8YMlzaaOFHbl8BANzc6xp77WduNlAv5vCWVzqL0iyKc8Mhw1efXseP3rGCbIZQK+bw+jOL+Itn4w8EN3a7OLFQxunFCq7tmNm584X/h29bBgC8mHAguLzVxvdvNPD2u495t73j1Y7e95Wn46N8RbHW6KLbG+LOY3WcXqrg0sb0g9M4TFUNvZcxdpwxlmeMnWKM/TZj7F8zxv61ez9jjP0CY+w2xthrGGMXfM/9BGPsdvff75g4HlHc3LOQzxJefXIOAHDD4ILEwReiu084f+P1tyziiet7sPqzVdXgx3PrTSxU8liuFnBmuYKm1cdmyxzFstWy0R8y3LZaQ7WQxc09y9hrX1xr4rYjNSzXipgv5/HC1uztvp7fbGGzZeOHb1vxbnvd6QU8eb0Bux+vTnB9t4vj8yUcmSsaC8CcCrr33BJyGUo8EHzTzbB/9BUj7fDcShVnliszQcPy83NyoYyzyxU8bzADNoWXjFgcBzabFparRRyfdyonbu6aDwRPudrDK485geDOY3V3Rzx7uwKOZ9ebuHWlCiLC2WWHvnnBYDq70XQW/pVaEUfnSrjZMHfer+92cWrR+TxPL5WnwldH4RG3QOG1tyx4t73m1DzswdCjK+PCjd0ujs2XcHSuhL1u30iZ5eVt51o+s1zBycVy4oHg4Re2MFfK4Y4jtX23//idR/D1Zzemvum66l6DpxbLOLNcnQp1FoVDHQg2mhZW6gUcmy8BcBYR07i83cZCJY/5Sh4AcLt7sZoUSE3jufUWblt1jvPMcgUAjAauUSAoYLVexJqhnSljzFno5pzP89RCZTYDweUdVAtZ7xwDwKtPzAOIV0js9gbYbNk4PlfCar0IwOm50MWN3S5qxRzqpTyOz5ewZjDDE8HDL2zj9WcWD5Rk/qVbl9HtDadOD151KbgTC2Ws1otoWGYCsEkc8kBgY6VW9BaOOKihK9sdnF6seL/ftloDEfDM2uyVkAFAxx5grWHh7IqTCZxarIDILO/rBYK6mxEYWjj2On10egMvsJ9aLOPKdnsq5YxhePTKDu45tYCsb+E6vVRBPkt4LkbagC/Qx+ZLOOIGgjUD2dhWy8ZyzamIWakVvc83Cex2enj6ZhNvuOWgIcHr3IyLl4hPC1e2O1iqFlAp5LBaMxeATeKQBwILK7UiyoUsKoUstg3y4ByXt9oeVQEApXwWpxbLM5sRXN91di/H3cW0kMtguVo0smBwbDSc87xaL2K1XjT2peCBnAeCk4tldHtDo/qGLvqDIb5/vYF7Ts3vuz2bIZxZruJ5Q5U8QdhyS2k5JQfASBDeatlYqk4nEPAS2HtOLxy47+hcCScXyvjO5Z3EjicI6w3LC7wrdec8JXmORHBoAwFjDJtN20uRF8p5bLfNtsczxnBlu7MvEADA7au1GQ4EzmLKdRMAODpXNCrobjQtFHIZ1Is5LJTz6PQGRkRSLxC4ixxf7GZp93Vpsw174FSQjOPcSjVWIZH3VMxX8lhxd6abBhakzZbt1cgvVwvY6/YT4+W5pnJXwPkEHB3m21Ou0ttsWd46s1qbvWsSOMSBoGH1YQ+G3gW8UClgt2N257jRtGH1hzjlo4YA4NbVGi5ttmaOsgDglRSeWCh5tzn0jbmMgC8cRIQFVzvZ7egHYa41HKk7x84Xu1naffGF6xVHDy5ct65W8cJmG4NhPNcFP8fz5Tzmy+bO+1bL8jKCZfecbyWUhX3/RgPz5by34x7HPSfncXWng13DmzwZbDQtb53hGcH6DF2TwCEOBHvuF2Cu5HwhFip57Bi+WK641RTjGcHpGaQsOHhGwOkVwHxGsNfpeQvRnLcg6Z+LbXfHu1h1XnOlNntp+NM3GyDCPqGY49aVKuzB0KsyMQ1+fS+U8yjkMijns9qBgDHmUkMu9eGe881mMtf20zcauPNofaKnEM+8vn9jeoLxZtP2AuRyNdUIZgqNrtM8Vi85ZmoLlby3kJiCVz88Fgh4hjCLFS3XdztYqRVQzGW9247OlbDZsox54ex1e14AMLkz3W73kHMbtABHjAZGmsQs4JmbTdyyVEG5kD1wHy/VfT6mzlMeCOZ9515389Ow+ugN2Iga4mJoAsGXMYanbjYCaTaOVx53yran5e/Ttvto2wMvOy3kMpgr5YxvOnWRBgIvIygYWYz84HTK8bmxQLDk/M4zhlnCtZ3uPn0AcKgWxszt8nY7fV8mVnBv0z/3O20bC5WCtzusF3Mo5DIzlYY/s9bAHUeCFy6+YbhuqON3HDsdG/ViDrms87VfqOS1zzsvsFh0AwGniJLweFprWGh0+15JdhCO1ItYqOSnlhHw7wyvqgIcjWbWPLAOcSBwvgBeRuDujkzy9htNG4VsBnPl/RbO3Pp3VjOC4z5aCACWXKrFFO+71+l554TvTk3skLZbPSy6mgMAEBFWa0VszEgaPhwyvLDZ9jyWxnF0rgQi4FoM/SwAsNvuef0sgEPL7WgGgr2Os6Gac79H/H9+e5zgJc281yUIRIS7jtWnlhFwWpJnTACwUDa/6dTFoQ0EfIAGpygWKnn0h8yoJfJ6w8JyrXCAv6yX8lio5GcyI7i5Z+3TB4DRrt3ULmav2xtlBEapIRuLlcK+21bqxZnJCG42urD6Q9yyFLxw5bMZHKkXY8wIep44DzhBeE/zvDcsvqHar/novq4IXnAN5SadT45XHK3jGcN+WaLgG5xFXyCYL+tnYqZxaAPBuEZgcmfKsdEclY2N49RiOTZRUBV2f4jdTs/jMzl4ur9lIBAM3WB7UCw2QQ3tX+gAYLVWwEZCwmUUeHc21wKCcHy+HEuHO+BSZ2WzC9L49yifzaBS0BehRfDiVhsZwoGqvHHculJF0+pP5TrwV2pxzFf0MzHTSAOBewHXis4H1TI4NGa9YR1YVDlOLsyeDw6nfvx8JgBvcTXRZ9Ho9sHYKABw983YMoKEG5zC8KJrgBdGZRyfL+HabnwZgZ8aWjAhFnc5NeSjnEr5REZWvrjZwvH5Mgq58GXsnFuhNQ2zt8BAYCATM41DGwj2uj0UchmvOqbmBgSTVtRO53Ih8L5jhmvzTWDEZ+4PXnwXaaLz2qPkSiPdpFrMom3pNSAxxpyMoLo/I1ipFbHVsjGMqTZfBpc228hnCSdCxkMeny/j+k43Fhpjt93btyDNuc18OtVg41qb87q5xDSCKFoIcDICAHh+I/kmzqBAEIceqYtDGwga3f6+xahWzHq3m8BwyLDZsidSQ0fnHffHWRqwzvsaxoMX7wI2UV7Lvxhzvi9GtZhDUzMTa9sD2IPhgYxgsVrAYMiMfa46eGGzhdOLlX0eQ+M4sVBCpzcwTq0wxhyNYOy8A3qbH35ea77vUlIc+ItbndDsiuPEQhmFbCZWH6dJ2O30UC1kkc+Oltr5sqNHtmfou3+oA0Hdl8561JDmzpRju21jMGQTqaGjde71MjtZwabPHnocC9W8kYyAi/H1oj8I57QzMa+ZbEwj4AvfjuGucRW8sNnGLRELFy/dNa0TNK0+BkO2b2dadXsZWhoLUtPqo5TP7FvokqCGWlYfG00LpwUyAsfHqRKrj9Mk7IxlYcCIap0lncDUhLL7iOgpIrpIRB8MuP9jRPSI++9pItrx3Tfw3fegieMRwV6nty+drboZQdMy8+FwYWpiRjA3e4HAo4YC6KylSsGIRtB2d/5VXyCoFnLa1JDXNVsJ1jem3cDDmFM6GiYUA8CRuXg6Tz0u33hG0Nu3oeJ/I+5A4J+BIIK4fZwmYbfT23fOgVGFVSMBHUUUueiHhIOIsgB+E8DbAFwB8BARPcgYe4I/hjH2P/se/w8BvM73Eh3G2Gt1j0MWzgU8evt1NyNoGsoINkJ214Bj2wDEY32tis2mjUIu43Xm+rFQKRihhnjGxQMv//najt558Nsn+OGVvk5598Xn+kbtYOPyR+KLfXUsEwOgVTK91+3v+x4BXAyNl4q7ssWHvQgGgtUqvvLUOgZDFkrNmcZe52Alm4kAbBomMoJ7AVxkjD3HGLMBfArA/SGPfy+A3zfwd7XQ6Pa9xR/wZQSGuGRegbNUDRaLj7q1+kkP8QjDRtPGSvVg3wPgvA8zgcA5v5WCPxvLaVdrNboHtQfAnxFMlxriZn7jvlPj4PqM6YyAL/a1fQHYjEZwICMo5bDX7cUq0F93N1AnxnpeJuHcsuPjZGpOsyh2OwepIR6AZ0G34jARCE4CuOz7/Yp72wEQ0RkA5wD8me/mEhFdIKJvENG7Jv0RInqf+7gL6+v6c0gbYzuZXDaDUj5jrHyU70DHdwMc9WIO5Xx2tjKCluX584xjoZLHdkt/V8356H3UkAGNoGHtLwfmWIihP0QFfErVyZCKIcBZJEr5TAwZgXveCwfpUF1qaG7snM+V82AM2gUAYbix20EuQ563URR4JpZ0yXZYIDClR5pA0mLxewB8hjHmPwNnGGPnAfxtAP+CiG4LeiJj7OOMsfOMsfOrq6tBD5FCELdZK+aMRekdNyPwN/D4QUSuq+fsBAK/Xe44FisFNK2+tvFc28sIfDvTQlb7S+H1hRT3f6ZxNAqq4JpvXGEYiAgrNXPDejiaodSQ+rlvdPsHqMQkuouv73ZxpF4Upnl4JpZ0N/9Oxz4YCEr8vM+ORmAiEFwFcNr3+yn3tiC8B2O0EGPsqvv/cwC+gv36QSwYDhla9mBfmgyYqV7h2HHLxsKaXY7OJT/fNQx+u9xx8J22bqBs2n0UcvurTKrFHDq9gZYPP6f0qmOfaS7rlL5Ou2ro2k4HpXzmQFVTEFbrReNdsC2PGtqfiQEjAV8FzQCNgDeXxVlCenOve8AKJQzH58sgSjYjsPoDdHvDAwUMtYJ+ADYNE4HgIQB3ENE5IirAWewPVP8Q0V0AFgH8he+2RSIquj+vAHgTgCfGn2saXXd6Urmw/wKuFnPGvIa2XSfMMBydK80MNcQntgVVDAGjL7dupUPbGhzYQXqpss6CZPVQzmc9Z00/5iv5qQ4mARxX1xML5Ym++X7E0Q3dmlCtBeiJxYFVQwkYz13fPeiSG4ZCLoNjc6VEA0FQzwxgXo80Ae1AwBjrA3g/gM8DeBLAHzDGHieijxDRO30PfQ+AT7H97XSvBHCBiB4F8GUAv+avNooLbftg5QrgLEimAsFugO/NODg1NAsdhnxi20o13oygZff30UKAb2eqSVGM70w54pg1IYurO51IfYAjTmrIf45K+QwypK4RDNzMevy8m8g0wsAYw41duYwAcOihJKmhcWdWjlzWGQpk0s5GF9rlowDAGPscgM+N3fbLY7//asDzvg7gNSaOQQa8m7ec378g1Us57TJGjnGnxyAcqZdg9YfY6/T3ecBMA1vN8ConvuvTrQ9vWf19giUw0gu0dqZWf193qx8L5cLUy0ev7XTw43ceEXrsar2IrbaN/mAYmOGooNntI5shFH1UJRG5Qr1aAG4G0E3AKBCYdPL1Y6/rDHvhs6lFcWqxgm89vxXLMQUhiI7jqBrUI03gUHYW80hciZsamiAUc/D5pRut6esEQZ4ofvD5AbrpftseBGZigF71SrPb39et7Me0qSGrP8Baw4oUijlWawUwZnburxOAsweoKZ0suBNQAcZfE0BsFgq8wEIlI7ix10Xf0KS9KATRcRz1kjk90gQOZSDgF+g4RWFSLBahhrzmoRkYnOIFggnHbEojaFn9A1+MqgGNoNHthWQE06WGbu46n++JBbGFi3vXm+jk5mgGaDOAXunuaEO1/3tUMVCWGgZuvzE+QCkKpxbLGAxZbDbf4wgq2eWoFrOxZUwqOJSBwKOGAgJBw8CH4xl8iQaCGfDLj8oITGkEbXsQGIABvbrqptU/UDrKMVfOu/bX09FiRHsIOLhxnsngFRSAAb0seBLFakKEDsMN16b7qAI1BIzsKeLGyE7l4Hxqk3qkCRzKQOCJxQHUkN0fatfKN1yDr3EnzHHwCp3NlwA1ZKobshmwIPHAoEsNTcoI6qUc+kOGbi8ZSmAcoj0EHN78B5PUkB0cCGrFrDKF055ADWUzhHJe/XWjcMPNsGQDAQ/EpnTAKAT1bnDUirmXV9XQSxE8Uo9nBHxB0r2AOR89aVHlWKoUQDRj1NCEY85lM6gWstpicdseHAjAJjxvGtbBxiYOU0K3KnggEOW0l2KhhoLPT6WgTw2Nf4+AeKmPjaaFhUo+ciDNOPj5T6qJs20FB0rApaFnqGrokAaCYI2AX9DdXjxOmOPIZTNYqhSwYXDnp4q9jjOop5Q/+KXmqJfyRjSCSjG4fFR1QeLjL8fL9DjmPFprSoFgt4uVWiH03PoRFzUUFAiMiMWBHHh8Yqgz8EnMWsKPUj6LhUoe12OaADcOfl7HqTPApeTSjGC6mBQITGUEQVO4JmG5VpiZjCAqg6mX9Ere+oMhrP7Q66zk4F8UVeqm3RuAMUykhua8jGA6X7ybe10pGqOUz6KUzxg1ymtZgwkaQVZ5wZ70PQKc4BCXl07Y5L8oHJsr4UZCYnHb7qOczwbaYNRKqUYwdXQmlI/yBUm3EWY0vi+6N2BWZurudg6ah42j7rpKqoIbzlXGFqSMW9/eUczE+M6qNkEsrnudrtPJCGQDAeBkBSapoUa3d8BSBXCueeUAHEENxZURhFmhROHYfHLd/C07OPgCjs2EZUCPNIVDGQja9gC5DB3gGLnlhC41xHeekzpd/ViuFb0RkdPEXjc6I+DVN6poTyg3BJzFRPW888A7MSMo89LXaWUEllogMHRdMMbc/o2D56ecz6LTGyhVVE0qugAc6iOuzuL1poVVxUBwfD65jMCp1AqmA2dtJsGhDQRBu5hRRmDGCXNOKCN4KVFDuoFgMpVQzmeV5zfzTCNoxwuYK31VQW8wxGbL8gYRiWKxaq73oTdg6A9Z4HkvubdZffmdadvqg8ixqhiHyeZMP7q9ARrdvgY1VMZG04bVj9/wrWUdLIzg4J+FahZsGoc0EBz0uwF8H452IAjfofqxUiuiZQ+mPsReXCNQpyv4jj9INOU7UxV4FEV+9qqG1hsWGJMvdVyoFIxZZ3dCznslr37Nt+0BKvmD3cqAGWvxIPDsWZ0acp6XhOtvWEZQNqRHmsIhDQTBkbpsKEo3uk47v4hXOt/ZTFsn2A0Ysj0O3SaYsEBQ1AgE/HWDsjzAWZQyNJ2qIV6qKJ0RGDTK4+dnXBMD9K75dm9wwMGXw8TUuSBsRoyAjcIx17E0CZ2gPaF3AxixD9PeAHIcykDQiZ0aOmjNOwlxzaiVwXDI0LD6kYGgWsih2xsqe7VwUTKonK6czyhrBO0JHa4cRKRNa6mCB4IjdXmNYLfT05rRwOGdn8LBrzsPykqBwArOrAFeNWS+m3s0C1yNGuK2FEnoBM0Ag0UOHpTTjGCKCLJCBsxRQ3udyZbI4+CBYHOKNhOO/cJB3/Rx8DS3rblzD+KUywV1jaAToj1w6Ja+quKmS0HIGqQtVgoYMjOVTpOsIPy3KVNDkwJBMYchUy8JnoSNhvM9Uc0IOEWXRCAIMljkMMU+mMKhDARORnBwodbZHfnRsHrCgWB5BqihqK5iDt1KhzCuWkcjCKOcOOZK+amUj97c6yKXISxFNBeOY7Hq2kwYoIdCz7tGE2VYIODCvWl6iDv1qgaCuVIOlUI2EeO5ptUPpOMAfwB+GVUNEdF9RPQUEV0kog8G3P93iWidiB5x//28774HiOgZ998DJo4nCo5GEMBT55xBHfpicV+aGppmCWlSgSCMGippicWzmxHc2HNm62YEZ+tyLFTM2UyMMqbg8lFAkRoK4cD53zJdHrnRsFEtZCfqQVEgIhybL8VuM8FLdifZnphqXjUF7cE0RJQF8JsA3gbgCoCHiOjBgEljn2aMvX/suUsAfgXAeQAMwMPuc7d1jysMbXsQuBgRESqFnJHy0VuWKkKPLeWzqBVzxidSyUA4EHjmcHo792IQNZTPoqtKDQlkBPVSPvHB5YBTnXJEsmIIGNlMmOgu5udnUgAG1KmhSTvzuIbTbDQt5YohjmNzpdhtJqz+EIMhO2CnwjFrgcBERnAvgIuMsecYYzaATwG4X/C5PwHgC4yxLXfx/wKA+wwcUyi6vYFXPz0OZ2eq31kcxbf7sVQtTNUvP2oWAYd+RhBOUahmBB17gGIuE1qlNVeelkbQlZ6kBTgzFAAzA+C9QBAgFmtVDYVSQ/GIoTr2EhzH5kqedhMXwqaTAeZ8zUzBRCA4CeCy7/cr7m3j+OtE9BgRfYaITks+1yi6vQFKucmRWlssDpmfG4SlasHoNCpZiGcEfICMZpmnYY2g0wuuAvNjrpSfSh+BYy8hv4PlGwkTugbPtCZpM4CGWDyJ+uAD2g1nBJtNW1kf4FidK2K9acU6n4JnzVEawcspIxDBHwM4yxi7B86u/5OyL0BE7yOiC0R0YX19Xetguv1hYOUKAG0fdas/gN0fCnUVc7xkAoHm5Klub4hshpAPmMNbcj1vhgrlkpOoPj/qrsmXyuuromMPsNftK1FDnj+SgSymPcFbC9DTCDp232tIG4eJ8aNB2GhaWKlrBoJaEXZ/GKsJIRfJJ3W757IZFLKZl1UguArgtO/3U+5tHhhjm4wxnov9FoA3iD7X9xofZ4ydZ4ydX11dVT7Y3sDh7iYtHDoUBTCyMZDNCEwOIZHFbqeHfJYiF1PduQGd3gClCR7yfEevYnUgmhEwBjQTrNIYNZPJB4J8NoNKIWumfDSsf0ORGmKMhZ53TiO2DXYXD4YMW20bK1U9amjVDSRx6nI8AE7KCABeMv3yqRp6CMAdRHSOiAoA3gPgQf8DiOi479d3AnjS/fnzAN5ORItEtAjg7e5tsSGq1FCXGlINBJste2qjFLm9RJBVgB8Vj/dV1wgmLRx6O1OxjABI1m9ItauYwxSdxc9pMSAI89tkhXp7MMSQTf4e8cICk9TQTtsGY6PBParggWCtEV/lEKdPJ1VVAc5aMysZgXbVEGOsT0Tvh7OAZwF8gjH2OBF9BMAFxtiDAP5HInongD6ALQB/133uFhH9UzjBBAA+whjb0j2mMPASxjBqSMfjxbOgnmCJHITFSgFWf4hObxC6g4gLex0xcZvTAE3lqqEhihO0mdFMArVAEFY6Coz8hpzPR2xkpC64jYGKWAw4AvdeR38h7fYGKOUzgSWsRKSkz4y+R5M2VHqbhiDwUtpFzUBwJMGMYFJDGaCni5mGkVWHMfY5AJ8bu+2XfT9/CMCHJjz3EwA+YeI4RDAqYZxMDeko+SoZwbJ7YW82bVSWkg8EIoZzgDM3oFLIoq1RNTQpIyhpVK90eoPI883vT3IqFF9oZO0lOExlBI7JYgRFIR0Iwm09CrkMchkyutDxUtqoyX9RWK05n0cigSCSGpqNQHDoOou5/WwYNaSTrskMpeFYrJofTSgD0UAA6JmJ8Z1pEHSqV0QygtoUqKH1hoVCNoO5slpwnysboobsYSh15liAy2kzYXYh3usapj54QYVsl/Y45so5FLIZrMfYzT/KCF4a1NChCwT8gp8oWmqmazJDaTg45zmtyiGpQFDIqlND/cllu1rUUE9AI3C/kI0EB4GsNy2s1ouR2sskzJXMUkOTUFIw/BNp4tOZMRGE0Sxw8U1WEIgIq/VivBmBpxGEnJ9CTtm3yzQOXSDoRmQE5UJO6+JtvtwDQTGnTA1Ncn0FRs1Oqo1Nk+yQOXiGljQ1pNP8ZCwjiKiqUqOGJlcicZje8fKMWVcjAICVuAOB1XemIAaUSnOU8xnlbnrTOHyBIGInU85nYQ/UrZZFUsJx8FR3GoFgOGRCYyo5dCZPhYnF/HaVINwVyAhG1FByTWXrDcurUFEBN8rTrSZr231UJgztAdR27vzxQXYh3usasGvxY6tto5DNBPqEyeJIzIGAjwYNywYrhRzami4GpnAIA0F41ZDuCLmWPUAhlwlsmpqEuXIO2QxNJRA0LMeCWoYaUv1yh2oEGvXsbbsfaJ/gR7WQBZH5TtcwbDQ1A0HZsXJW7eTm6PSGEy1VADXDP55ZR2UEunYtfuy0elioRJc5i2C1XozV8deZRRAesFKxeIqIqnbwFiTFD6htR18A4yAiZ1j5FMRi3rAk2gldLea0vIYmnndFjYDXs0eV3RIRasXk/IYGQ4atlq08ZB0YfSa6TWVde4By2M49L18pF2ZbwWHCrsWP7bbtmfHpYrVWxGbLVs78oxDmzMpR0XQxMIlDGwjCqCFAIyOw1HoBlqdkM8HtJURN8qoFDWqoP4w+75JfjK4dXs/ux1yCU8o2WxaGDFp2CDxL09UJovpTlDQCgYxA165lHNtt25vToIvVehGMxUfHNq3JPkwc/LxPq5HUj8MXCFwLg0ncpq49bNjA6jAsVvNTDQRSYrHGJLFoakhuh8Y51qjyUQBuRpCMRsD5Z62MwDOe0wtebXtgvLqnIxCAde1axrHd7pnLCLzu4njoobbVn+gzxFEuZMGYmq2KaRy6QGBFZAQl3UAgkBIGYVrGc7KBoFbMomXLz6JljKHbn0wNcasD2YUjbAzjOGol9WxGFhvu6FFdsRgwQA1FiOlxNJQB5quGdtq2djMZh+c3FJNO0LKjmQHeqT8L9NChCwQeNTTJhlqjnh3g089egoFAsDa7UsyBMfmL1x4Mwdjkjm5udSB73keD2aMDQT3BQMAzAh3LZN6IpkMNjczhDGsEfYGqobxeKbYfjDFst3tYMkUNuZ/LekxzCVqCYjFg1oZDFYcuEHR6A2QIyGeDKw90B0a0rL4QTTGOpUoBO50eBgnaJANq1BAgP4tWhMtXqaIQ2ZlyJCkWe9TQlDMC23XbDdUI8ln0Bgw9CeG0aw9AFGxkx1ExyIHvdfsYDJlxaiiujEBELOa9L7NQOXToAkG35wiWk0rQtMViDWqIMTMTqWSw1+khmyHhSifVcZWi4qLseZfLCJITizeaFiqFrNK1wGFiJoFoAAbkNj/d/hCl3OTvEX/dwZDBNlCZY8pniKOUz6Jeim9EbNMSqxoC1NcakziEgSBcONOZ4Qo4/utqYjFvKkt2drGoBTVHRTGdFfGmKeUz8hqBREbgDLBPTizWnaSVc5undDICkfNTUliQwoR/Dh3/qHF4PkOGqCEAsdlMDIYM3d4wkiKepbnFhzAQDCf6DAGjL4UyNWT3lTUCANhqJZsRyNhLAOrprIg3TUlhgH1HIiOoFXOw+kPYCVRp6HYVc+jaTITNK+ZQ2fyIdHObXOhGPkNmMgIAWKnG01TGadOoDWFJs2fJJA5fIOhPHlwP6A3z5jsBlT6CpSlmBKI9BIB657WIN005n/UoJFHw4xDRZTwr6gQE442mpVU6yuHYTKgfL8/cyhEWE8DoMxJBJyKzBvxiqP5C5/kMGQwEy7V4CjT4VLZIamiGBtgfukBghQyuB0aupLK2vID4TiAI08oI9mQzAsWSt9EciPCdqcxiBEiWj/JRmwnoBOua9hIcc+WcVkbgiemhFhOZfY8Ve93JzYEcFYNiKB9Ko2tB7QefDGgaTUust4WvQy8bjYCI7iOip4joIhF9MOD+XySiJ4joMSL6EhGd8d03IKJH3H8Pjj/XNJwLePLb5kOllVwwBXcCQeA7naRtJmSpoYpiOitGDanbIYuKxQDQsOINtlZ/gJ12T1sjAPSH0/ANjYhGIBcIojUCXd8uP7ZbNjIk5+obheVaEdtt23ilXtsbXB/dWQy8TAIBEWUB/CaAdwC4G8B7iejusYd9B8B5xtg9AD4D4Dd893UYY691/71T93iiECUWA2oLEjDKCFTKR0v5LKqFLDab0wgE4l+u0QhCufNjCYiWRYWqoY7tlAOH2f1yJDW3eNNAMxlHXXMmgZhYLN/MFzZtjsNknfxOx8Z8OR84blMVy26lnunNV1NgcD2gX5hiEiYygnsBXGSMPccYswF8CsD9/gcwxr7MGGu7v34DwCkDf1cJ3b5IIFAbVykyni4Mi9VkjecYY9jr9hWpIdmqIYEyxnwWlqzFhNvBKVL1lNS4Si5AmggEut3QnkYQ4T4KKGgEIRQrYLZqaK8jd52KYLkWj/07ZwYiMwLNwhSTMBEITgK47Pv9invbJPwcgD/x/V4iogtE9A0ietekJxHR+9zHXVhfX1c+2ChqCFD3SGlpUEOAs0OJg7OchKblNOnIVQ3pUUNRO1MVakjEcA4YfTHjpoZGXcX6fHatmNcKXGIagXOfJSHUi2TWJquGZIsaRMB1OdOVQx4zEKEV5rOErOG5zqpIdFI6Ef0dAOcB/Jjv5jOMsatEdCuAPyOi7zLGnh1/LmPs4wA+DgDnz59XJvU6tthORmUX09YQiwEnI0iSGpLtKgZGQ8llR+wJ9RHk5DOxjsAsAo5aQhmBia5ijnopB3swhNUfTBzqEwYRMV1NI4gWiz1qyMBCJ6tliYBrOKYzgpZgRsBtVVQKU0zDREZwFcBp3++n3Nv2gYjeCuDDAN7JGPNCMGPsqvv/cwC+AuB1Bo5pIqz+YKLfDYfKoA5gNEBEpXwUSN5vSCUQAKpWENHUED/vMpYEnd4gdPqWH55lQ0LUkAmxmC8msp3cHNzNNUy34pVyMtSQmFjsHLuJcYx73fgyAtObr5Zg1RCgvtaYholA8BCAO4joHBEVALwHwL7qHyJ6HYB/AycIrPluXySiovvzCoA3AXjCwDFNhBA1pKsRKGYES5XpBALZL5jjKim3mPKLPcybplzIYsiA3kAmEIRP3/Kj6GYzcfcRrDcs1Es5YcoqDLolrx33cwo77yqdxSINZaqlxkGQLXMWwWKlACIYp2NHRSPRG5RyQa0wxTS0AwFjrA/g/QA+D+BJAH/AGHuciD5CRLwK6P8CUAPwH8fKRF8J4AIRPQrgywB+jTEWcyAQuIAL8vXsgNq8Yj8WqwV0eoPEqgj2FDOCisIsWsvdQYaJunyxkmkq69h9z7MlCkTkOJDGTQ0Z6iEAfLOWFXWNjnu9h513WWqIO5pGBbpshlDIZbTn8jLGHI1AcIqeKLIZZzLgpmmNwOqjnM8iK1DhpEpDm4YRjYAx9jkAnxu77Zd9P791wvO+DuA1Jo5BBP3BEP0hi+Y2FdM1vjiKLkzjWOZNZW0bJwtlpdeQgTI1pDLIRKhsd7QgiX7pO70BjtTFj7+WgN/QRkNvRKUfdd2MQKDMM5shFLIZ4c1Pb8AwZGK9GybGVXZ6A/QGckUNoohjMmDLHVwvAtW1xjQOVWcxn04WRQ0V8xmli7dl9x36QWJwvR/ceG47IXpINRBUFKqqRDIxLxBIiGdtO3qh86NezMdPDTUtrRGVftQ0bTE69lCo67ooUbElQvNxmJjLy/so4ggESzEUaMhMKXw5aQQvGUTNK+bQ0Qh0bId5RpBUCelup4cMyfc9lBUmTwlVmfBAIFPGaEcHGD9qpVzsYvF6w4zPEODTCFQDQa8vFChleme85kCB11UpLBjHSMsyX+S4Uiti07C/V8sSH07l0NBpIEgUUdPJOJSpIUULao5pZARzCt2aKul+pzeI3EGqeN60BTINP+rFeDWCjj1A0+qb1wiUxWKx8yOz+ekIfo8AR0/S3fGqZq4iiMNvSCYjmBWN4JAFgvDB9Ry8oUx2spKqBTVH8hmBWrdmpZCTFgBFLAmUOlztgZSlR72Ui7WhzGRXMeBQWYBORiAWCJxmPrHzLlIKzFFWqDAbh2pRgwiWawXstHvoGxiewyEynYwj1QimAFFqqJTPgjHAkvStb0suSuOYK+WRzVCiGYHKl6uksIuxesPIHaSs581wyGD1oyknP2oxVw2t8WYyQ9RQKZ9BNkMa5aNiGkpJwgJcZMYBh4kdb5wZgb9AwxSalviGsJRSQ8lDRiMAIO17IzKeLgyZDGGxkk9UI1DLCOQ1go5AA5JsGaPMLAKOeskRi03M0Q2Cya5iwCl5rRXV/YaEM4Kc+IItSrECatfKODyNwHD5KOA4kAJmu4vbtjhFnFJDU4CX0kZy1Wr2sG0JkWgSnO7iZIbT7Cn6t6gMJZejhmR3phIZQTGH3oBJZ3uiME0NAc4xK2sEAucdcKuGBM+JpxEIisXGAkFMGgFgtru4afWF3QU4NRTXxkQUhywQiC0cPOWVDQQtux9pNBWFxUoB2wkNp1HNCMoFhzqTsiToR3s8SQcCiaE0HHMxW1HzjIAvMCZQL+XQVG0os8WoM8f5Va5qSDQj0KU+9ro91Is5oQYtWXBjQFNZOGMMbXsQ6TPEodJNHwcOVyDoy1FDsilbS4IbnITlWsF4OVsQeLemEjWkYEXdsYfRHk+SnjdKGYEXCOIJthtNC4uVPPKKvSRB0KKG7L6w500cmZhKF/o44nAe5ViqOpmbqe5iqz/EYMiEN4Sq7INpHK5A4FFDYjtT+YxAvKNwEpIynmvZA2kLag6V4TSWoLUHIJ4ReJ3cUtSQXhVOFDaalhGzOT9UBW5uBRFf1ZCgWNwbYKgxBUyVwhTBQjmPDJmjhrjNjHBGMCMzCQ5ZIIi2QgbUPpzeYAi7P0RVo2oIcIzndjo94+PzxqFTiSG7YAN8IFCENpOTKx/lGZtM1VDcU8o2mrb5QFDMoaEQuOzBUNgKQqbDVYaS864ViSbBcThDaeJxzM9kyGgvwWhzIkoN8RnpaSBIDKMB6mI7U5kPx7sADGQEjAE7MU8q222rBwLZgSP9wRC9AYtcODKu543wguT2Mkh1FhfjDgTm7CU4VI3yuFWHqEYgGthFKVbAzHCaOGYR+LFcLRqjhprelELxqiEgpYYShSXoNaRiddCSvAAmYSmmYRnjMJERiH65Rx5Phj1vbO61Lx58eQlibNRQwzIymcwPVY2AN/2JUGfFfBZWfyhUvcIzNpE50SbGVcbhPOqH2YxAzoE41QimgI49AAkMOlcZKi17AUzCUiWeOarj2OvqZATOe+wIdheLUnKAW70i29gk2VAGxCMWd+wBWvYgBmooj7ar6cgeDyB2fvhnI1JW23XtQkSsSUbXyuxmBEu1grEmzqY3rlYuIzAxvEcHhyoQdN2B21GDzlVG97UkL4BJ4GWHM50RSA4ckeHyneoVUY0gejD7OHQHvYTB6yGIQSwG5LMYr95fsKEMENv8iMwr5tClhuz+EJ3eIGZqyGBGIDmTxKOh04wgOYgIloDahyMzlSgMy4brmidhT6NJR/bLbUlwyiUJC3CV8tFCLoNiLqMkvkZhnY+orJulhuqKDqR8IyNCDcmIuiKW4hwlb9Ogdr69zLUSLzW02+mhZ8BvaKQRHEJqiIjuI6KniOgiEX0w4P4iEX3avf+bRHTWd9+H3NufIqKfMHE8kyBihQyM6tllhkp7GYFmIFhwL/gkMgKi0SIjA1kxXcakTMbzpq3QUAa4xnNxZAQNc7OK/fAyAslj9s6PUNWQeA+HyLhXjopC4YUfcdpLcHC/oW0DBRr8nMuYzgEvg6ohIsoC+E0A7wBwN4D3EtHdYw/7OQDbjLHbAXwMwK+7z70bzozjVwG4D8D/675eLBDdyeSyGanqFcCvEegdfjGXRb2YSyQQzJXkLagB+YxAhsuXbWwq5DLSHaf1Uj4WjWDd4NB6P0YzCeSOWUoj8Ep3Z4saitN5lIM3lZn4zjUlBtcDajR0HDCREdwL4CJj7DnGmA3gUwDuH3vM/QA+6f78GQBvIYeovx/ApxhjFmPseQAX3deLBd1edHcrR0miegXwawT69c5LtfibynQEuBGfbF4sltMI5GYRcOh06oZho+F8Zsumq4YUex+kNAKJBanbF/8e6XLgcfoMcSxW3SzcQFNZ2+4jlyGh6W2A3Pm5cGkL/8PvPYxrOx2tYwyCiUBwEsBl3+9X3NsCH+MOu98FsCz4XAAAEb2PiC4Q0YX19XWlAz06V8Rtq1Whx8pODmrbcjuBMCxWZjsQZDKEssQIQimxOCdTPqpm+x3XAPuNpoX5ch5FAQ8eGSShERQlLMC79iDSuJHDqxrSpIbiaigDnD4CwIwu17KcazKqIIVDhoa+vN3Gn3zvRiyGifGdXcNgjH0cwMcB4Pz580pttx/9qdcIP1Z2lugoJdQ/pcvVAq7vdrVfJwy6JXmVQhZt4QYkSY1AghpSzQheaLalnxcFx17CbDYAGNAIBBvKADHr9W5/gMWK2Ps0RQ3FmREsGdQIWlZf2F4CkKOhZaw9ZGHiFa8COO37/ZR7W+BjiCgHYB7ApuBzpwJZn/C2S1OYcEhMwm9INxCUC1nh2mfZPgIpakghI6iVYqKGYvAZAtTnFstUVUlRQwKzJTiKuQyIxGnEcfD50nFqBItugYYJvyHHgVhuMyhKQ8vMgZCFiUDwEIA7iOgcERXgiL8Pjj3mQQAPuD+/G8CfMaeF8UEA73Gris4BuAPAtwwckzZkMwKZOaVR4IEgTo9yXSMvmYEjogOBnMdkpCZlqWQEc6W8V5ZoEhtN27i9BDCqRJPVCLpuA6UIX+0FAqHy0aHweSeSoxHHsdvpoZTPGKfb/MhlM1io5I1svlqWvPFkWXAGOKeEokbtqkCbx2CM9Yno/QA+DyAL4BOMsceJ6CMALjDGHgTw2wD+PRFdBLAFJ1jAfdwfAHgCQB/ALzDGpj+uB3LeKwAfU2mGaVuqFmAPhmhJ+JrLgFtQz2nwruVCTpwakqwaEs3E2vbAM5GTAReLGWPCXK4INhqW8WYywNFkVARunqWKvEdvTKgAVy1TNQTI0Yjj2G3Hay/BYSoLd6zo5YKW6NziODMCI6sMY+xzAD43dtsv+37uAvgbE577UQAfNXEcJlEuZLHWEN816o6p9MPrLm7asQSCTm+A3oBhoazOZ1fyWYmqIRmvoZHnTdQC1u0NcERhB14v5cAYjAbabm+AhtWPRSMA3OClUDUkunOXcdyVDQSiO94g7HXjtZfgcLqL9Y3nWvYAi5JDiUTZh25viEJWzNpDFoeqs1gGMlw14FQN6RrOcXjj82IaULOj4TzKITOCsNMbIJ8lIf3EEy0FKiPailVDquJrGDZi6iHgUNE1OhILthQ11B9K0RPVQk65szhunyEOU5V6ShmBYIUi93iKA2kgmICihNUB4JaNGc4ITFQxBIGX5C1otO3L7PJkdpCjDtfo1xadxzuOuudAak4n2HCFxtgCgcJMApE50RxFwelwgyGD3R9K0RM6c4vjnE7mx7Kh3p22Lc8MiBamWBL9G7JIA8EEyGoEKjuBSfDqmg0O1PbDREZQkRAARa09ADnvlY4tR1Fw8Lr8PZMZAbeXiEEsBnjvg1zgksmYiJwmqKhrXsY3iqOqMa4yqYxgqVrAdrunNUkNUKOIRTUCS6JaSxZpIJgA0Q+Ho21gTCWH1+kYUwmpjvMoh1M1JN5ZLHoBi3re8DGMs0cNxagRyFJD9kBq5y7Sw6FSy66TEewlFgiKGAyZVjXZYMjQ7Q2l/cZKBUGNoK+28RFBGggmoOx+OKIlnC2DGkGtmEMhm8FWbNSQ87p6GkFOOFDKuFWKipa9AcNgGD31LAhxjKuMXSNQFYslrkmRLFimAoxDZtPgx3DI0LD6yVBDVX3X35ai31g5L9aT0+0NU40gaZTyWTAmJloCQNugRkDkzFE14X0SBBMaQaWQRW/AhKx7ZTSCoiA15BmqKZTsqpq4hWGjaaNezMW2Y6uV5DUCWQsOkQH2Mj0hHBVFaqjR7YMxYE6hRFgWJuaAtBX9xoSpoTQjSB4yLfd2fwh7oD+43o/FGLuLdzs9ZN3adFXIWAdIVa8IumCqTCfj4GKxyYxgPYZZxX7Ufb0PouB9BKKIixqqKJaP6kzRk4VXqaex+ZJ1HuUoi1JDEvbfskgDwQTIuAKaGlPpx3K1EBs1tNN2eFedZiqZmQRyYrE7MjEiAOuY/MUxwD6OWcV+1NzeB5mdtUzVEOBkY1HXOy8vlaleqRSyaNlyQQwwo2WJgjvGamUE7jUpu8HijrtR54dPWIwDaSCYgJKEG2OLD6Mw1FkMxOs3ZKISY5QRRC+mzgUsZ8srmhGopMrZDKFayBr1G4rLZ4ijVuQlr+LHLJsRlPOZyADMuWyZBalSyEnRrBxJWFBzLHqzwtV7d7gVvazDgGjvjCXZvyGDNBBMgMzkID6ntGLIawhA7BqBbiAo552LXWSHKrMz9WYdCGsEaue8VsoZHU6z0bTjDQSSArdKVZXIdLiuVz4qRw0B8g6kSWYEpXwW1UIWWy31a6JlqWUEZc/eI1qoTzOChCFTzy47p1QES9UCGlYfdgze4yYzAmFuU/ACHrlghr9v/ndV5z+YHE5j9QfY7fRiDQSyMwk8Ll8mEOTENQKpaiT3sS3J853EdDI/nIFQGhmBrbYhFKWhZQZrySINBBMg470iO6dUBHF2F++0e1oVQ4DcLs+pf5btIxDMCBS/GM64SjOBgAuMpofW+yHb++AFSimxONoXX8X4jG+QZKeUJZkRAE4vgVb5qOLcctFNp5VaTCQPGTG0pVgtEAYTVQyTYIQa8s5P9MLUsQfCO1NRzxsZr/0gmBxgH3cPASBf8joS08UXJcfzJqp8VNxAkKOimBHw6jaT36swLGvqcvz9qfQRAALUUFo+mjzKggsS8NLKCIZu9+SCNjUkphEMhwyWhDcNH2QS1WCjnxGY0wh4IFiNsXxUttLJ27nLVA0JUUPqGoFsCSl3HjVpFR4G3QINVYpYpEBiMGToDdQaKEWQBoIJKEmIxU3FnUAYTHQ6BsFr0jFWNRTlTSO3g/Q8byK0Ef53Z0Ej4EPr45hFwMG7oUWP2Ts/kn0EkVVDCl5DopuGcex2+onRQgC3olYfCMX9xmRtossC1JBKAJZBGggmQGZ0n9dHYFAsXvRmEpi1oh51Fevx2aLU2ciSQPxSE2ls0ikfBRyNwJTX0HoC1BDPNoU1AoWqqlI+A3swxCDEeI1najJctScWS9pM7HZ6iXQVcyxWC7D7Q68cXBaqM0lENp2613sUtAIBES0R0ReI6Bn3/8WAx7yWiP6CiB4noseI6G/57vtdInqeiB5x/71W53hMQqahjItEJtO2xUoBRMBW2+xIxR0DPkPAaKcZtctT2UGKeN507AEygmMYg1Ar5tCyB6GLnig2mhaqhayyXiGCfDaDUj4jnhEoaCgim59uf+jSd+K7Xp4py1JDSVlQc3h0rGIW3pQcXM8hIhareDzJQDcj+CCALzHG7gDwJff3cbQB/Axj7FUA7gPwL4howXf/P2aMvdb994jm8RgDb4ASGd3XtvuoKKSEYchmCAvlvFY5WxBM+AwBzpzXQjaDdi98YeJffplA4Exsii4fFR3DGARZqiUMcc0qHketmBf2G+oqaCgilXKy3coAUJHoOfGjkZDzKIcuHdtSzAhENAIu0s9qQ9n9AD7p/vxJAO8afwBj7GnG2DPuz9cArAFY1fy7sYMvdGJ9BOYsqP2Io7vYxCwCjkox2kNGxZtGxBe/basNpeEYOZDqZ1yOvUT8gcCZSSCpEUhSQwBC9RmVpqaypyfJU0NJBoKR8Zza5ssZXC9/TYpUDamY/clANxAcZYxdd3++AeBo2IOJ6F4ABQDP+m7+qEsZfYyIJn6biOh9RHSBiC6sr69rHrYYHDdGMY3ApOEcx3Kt6AmRpuBlBCYCgcBwmlGZp3igFDM/0wsEKpYNk+DYS8TXQ8AhI3CrmPIJUUMKxmeFXAb5LEllBIyxxKkh3YFQqtTQSCwOD8D+x5pG5CdKRF8kou8F/Lvf/zjmSO0TCVciOg7g3wP4e4wx/o4/BOAuAG8EsATgA5Oezxj7OGPsPGPs/OpqMgmF6CzRljWQ9hcRwWqt6JUmmoJJ/xaRcZUqF3BZoHqlI+mjMw6TMwni9hniqBXFS15VxOJiTmxnqrIrLUtMtAOcQNYfsmQzAk3juZatFgi4zhWuEcj3b8gg8qgZY2+ddB8R3SSi44yx6+5CvzbhcXMA/guADzPGvuF7bZ5NWET0OwB+SeroY0ZJ0Cfc4QbNf0ArtYJXkWIKu50eSvmMkQuqIjCUXKXev5TPeDOAJ6HdGyjNIuAwNaWsNxhiux2vvQRHrZTD5a220GNVMgIeNKyQ3plOb6BkcyByrfiRdFcxAFQLWRRyGeVA0OyqaQSZDEWyD6OqodnUCB4E8ID78wMAPjv+ACIqAPgjAP+OMfaZsfuOu/8THH3he5rHYxSiQ6UdsTiGjKBeRKPbl5qdHIWdtm3syyUygnBEDZktH+3aA6mS1HHwskTZYS/j4ItGEmJxXYIaatsDFLIZ5LIS511ggL3VGwo7yfpRKcplBF7mWkouEBCR10ugAlVqCIhea6ZODUXg1wC8jYieAfBW93cQ0Xki+i33MX8TwI8C+LsBZaL/gYi+C+C7AFYA/DPN4zEK0YxA5wIIA99lmmwqMynAVQQGaqjUP4u4YLZ7esGXawS6YvG6O7R+NQmNoCQeCGTmRHOIlY+qUUMVybnFuwaLGmSwWCkolY/2B0NY/aFy0UjUlLK4xWKt1YsxtgngLQG3XwDw8+7Pvwfg9yY8/806fz9uiNSzA3xwfRzUkBMINhoWTi6UjbzmbqeHhbKZRatSyOLKtnmNgA/qCIOuRmCKGkrCZ4iDzy1mjEWWzapkqaL17Crn/aVADQHOgBqVjVdLcUwlR9QAe/49mtXy0Zc1REfINa14qCFON5gUjHfa5ioxyvmcuFgsOztXwGtIZ3dULWRBpC8Wcy0jKY2g73o3RaHTG0pXVY2cX8OqV9TGJcqOq5xWIFAt2W5608nUrsmoAfae/feMUkMva5QFdqaMMbRio4acnTunH0xgu21jqWqOGooWi91qB4nacxFqSHboyjiIyIjfkEcNJaQRAGLBq2P3pRcN0YYyVWpIxrrhpRYIRkNp1I532tRQGghCUBIQi63+EENm1nmUw6OGDGUEjDFst3qej5EuRHjfjuuhLtN1Xcpl0Rsw9AeTg3BHs48AcITIPU2NYK3RRbWQjeXzH0dNohta5fwUYw0E0dmjH3vdPohGZb5JYblaQNPqh1ZOBYEHZ1WKOIp96PQGyGYIeQnxXwZpIAiBSENZHM6jo7+fRb2YiyylFEXbHsAeDLGkaTjHUS5kYfUjTMoUFiReYTSpw3U4ZOj2htppMufcdbDWsBLJBgBfE5zAMbdt+YyJUz5h1JMzJUuNGpLRCPY6PdSLOaO2LSJYcpvKZLMC1TGVHFGbThPXexjSQBCCqHQN8A2jiEEjABydwFQvAb+4TWYEQLi4qCLqRlWvcNpINyOoS1ThTMJ6w8KReknrNUThzSQQGE6joqEUss4siEkL0mDIYA/EZ0v4UVaghuY1/bBUoDoQajSURr1qKLpaK77lOg0EIeDpWpg/uW61QBRWa0VsGNII+JAbcxkBNxObvJh2FKpM+EIz6YuhO4uAo2ZgStl6w8LqXDIZQV2i0klFQyGi0AXJUnCS5agWcrD7w1C6z4+kfYY4VAdCNTUzAhGNoBjT4HogDQShKOWzYCw8VeYe63FQQ4AzB9eURmA8IxD0UZddOIoR1SsqjqZBMCEWr+11cSQxakhCI1Asrw0T6keVK2rUEDCyx46CM4tgeoFAlRpSzggiqqp0vbWikAaCEIhUUTQ1L4AorNSKxjQCLyMwTA2FCcZKGkHEeVexTwiCM8BeXSxuWX207EFi1JCMdXZH0Z21lMtMDMA6lSsyM8CB6WUEy4rUkK5WGNU7o1q2K4o0EIRg5BM++QNqu9RQHOWjgBMIdjs92AK141HYajmLnkmxGAgPBA5XbbbDdTQjWl8j0KGG1lzKLrGMQMIoT4WSA8K76XUCQVVyXOW0AsF8OY9shqQzgqblWHqo0jflfDZ0OpyK/bcM0kAQAr6AhXF3PCXU5asnYWQzoU8PbbdsZDNkrCSPN9FFUUPqYnFw8Gu757yc13sf9WIOVn+oHGST7CEAHHfQQjZ6SpndH6I/ZErXpDO3OJwaUtmZeuMqBam4aQWCTIawWMlLdxfrGk96lXIhWXBKDU0JIgMjWraeSBQF3lRmYi7BVtvGYiVvrCRvRA2Fi8WyO8hRh2v8YjGgPpNgrdEFABxJSCwGXL+hiIxAZ76tUzI9QZvxbA7UMwKRTv1ubwC7P0x0FoEfTlOZ3MZLdToZR9QA+25vmIrF04KI98ooI4ivfBQA1ptd7dfabtlYNEQLAWJznbsa5aOTXpcLjrrUkCe+KtJDa3ucGkpGIwDEBO6OFyjV5udOrBriAUaxfBQQo4am1VXModJdrGs8GTXA3lIwEZRBGghCICYWO9xgQXGIehRWPeM5AxlByzZWMQSIicUqKW2kWOxmIDrzCABHLAag3F281rCQzzpUQlJwhtOIZQQy1t8coRqBVz6qUTUkkH1NOxAsV4vyVUO2ZkYQMbdYVfMRRRoIQiBS6dC24xlKw8E1AhNNZTvtnjGhGBAbSq5yARcjZufy3o2KdtWQPjW0WitGOoGahGNFHR64OFWnoqGEddN75aMKlJyMWLw35UCwWM3LZwRdvYwgmhrSM1mMQhoIQhD14QDxOY96x1DIol7KGTGe22qbzQhGgTJ4IeVWEPIagTspK6p81EBnMaDuQOo0kyVHCwFiw2lUHF85wsoYPW1GIcDIDLCfdkawVC1ip9MLtU4Zhy41FKVHznT5KBEtEdEXiOgZ9//FCY8b+IbSPOi7/RwRfZOILhLRp91pZjMDkUEdcTmP+nF0roSbe3oagWM4ZxulMQq5DHKZyUPJeSOetB1yxOzctt1HNkPerFdVjBq01Kih9YblUXdJQUQs9jIm1aqhCQ1lI0pO/nVH2dfsawTL1QIYk+subll6M0mKIZtOxphS0YUMdEPMBwF8iTF2B4Avub8HocMYe637752+238dwMcYY7cD2Abwc5rHYxQigSCuoTR+HJ0rageChtVHf8iMNZNxhI2rVG38ymcJ2QxN7HBt2wNU8lltSoZrBMpiccNKtGIIEBOL+a5bxf+qlJucEehkYkV30yASdKcdCFS6i01VDQWtNXxDNcuB4H4An3R//iScucNCcOcUvxkAn2Ms9fwkIFIV09S8AETgZAR61BAfv2eyaggIHziiGgiIKLTDtW2Zqanmu9Q9hUBg94fYatmJNZNxiPgjjfyv1MpHJ1Zr2eod3USEqqDbKw8ESVtQc8h2Fw+GDA2rr2WJEbbWWL3ZDwRHGWPX3Z9vADg64XElIrpARN8gone5ty0D2GGM8SvjCoCTmsdjFHxINx+uEoSW1Y/NeZTj6FwJa40uhhKc5Tj47sZ0RlAp5Cb6x3ieQMpc9eTyURPBd7RLlQ8E3P8pydJRQKwJbuR/pcDl57MYDBl6AeZwHduZLZFV7EOpFXNoCFYN1Yo55GLy3o/CUk0uI+DBTafvYaQRBJx3ry8kvvMReaUQ0RcBHAu468P+XxhjjIgmrVRnGGNXiehWAH/mDqzflTlQInofgPcBwC233CLzVGXkshkUspN3SADnBmMOBPUiegOG7baNZUVOmvOdJsViwHVNnCAAqswr5ggrY1SZvhUEInJtJuQ1gvWE7SU4uK7Rsvoo5II/Sy8jUOwjAJzPbnwIim53a72UE+osnlZXMceIGhLLwnn58ZxGBhNWmKLzPRJF5JEzxt466T4iuklExxlj14noOIC1Ca9x1f3/OSL6CoDXAfhDAAtElHOzglMAroYcx8cBfBwAzp8/r741lkTUcJpWzOWjgJMRAMDNPUs5EHDjumXjGYF5jQBwzrs1gRpqWXpjKv2ol/LY68hnBGsJ20tw1LiuYfUnBvWW1UeG1HaQ/rnF48kO12ZUIer2utcxN1dbBZw+5d5cUfACgcYxl0IsJnQ6xUWhm2s8COAB9+cHAHx2/AFEtEhERffnFQBvAvAEc0z+vwzg3WHPnzbKhfCBEboikQiO8EDQUBeMOZVhesh6pZibHAg4p6zY2BRGDZnyXVms5KW954Hp2EsAvuE0IVx7y3boShUxPWxcpaqjKYdIxRPAM4Lp6AMAkM9mMFfKiWcE7kZCRyMoZDPITBgK5GkzM+w19GsA3kZEzwB4q/s7iOg8Ef2W+5hXArhARI/CWfh/jTH2hHvfBwD8IhFdhKMZ/Lbm8RhH2MAIuz9Eb8ASKB91FpubuxqBoGGjWsgav5iqhezEdF/P8yacGjKlyyxUCthpy1NDa3sWiMwH1iiINMG1rD4qGnbIwOSdqVYgkNAIpkkNAcByrShsPDfKCNSvST4UKOia9yxDpkkNhYExtgngLQG3XwDw8+7PXwfwmgnPfw7AvTrHEDfCZonG7TzKwQVJncqhjabl+RaZRK04mffV0wgyIX0E5qihpWoBz643pZ+31uhiuVqIbZj4JIj0PrRsdd1qVMZ4kJZr232lZjKOulRGMN1AIOM3xDuhdQfpTBpg39YQ/0WRdhZHIGxnqlOdIYNCLoPlakGbGopj91oN2eXpTBIrR3S4mspsFip5pYzgxm4Xx+aTrRgCxGYS6FSyeRpBQA+HNjUkrBH0X1qBoKtPDQEuHRqw+THVSR+GNBBEIGyGq051hiyOzJWwptFUttGMpwuWZwRBc535sHKVQFkMGZnYtvvGMoLFSgFNqy89k+D6bhfH5spGjkEGdQGNoK3R5RpFDemc91oxj7Y9CLVusPtDdHqDqQeC5WpBnBpyM4KaZt/DJGpIp1NcFGkgiMCkdA3QH08nA6e7WJ0aWm9YWKmbd/ColXIYsglUggZ1VsoF744Grn+RKX8nbrmxIykY39jr4th8svoAIOaY2tLQUMLsPdqKc5A5ROY/8M9hwXDjoyyWqgVst+zADc449ro91Is55f4KjihqSIeWi0IaCCJQDtEI2jEPpfHjaL2EG4oZQW8wxHa7Fxs1BACNAM66ZQ9QyGWUePRSPhPoPsq/KMYyArcEc1uCHur2Bthp93B8PvmMoJR3elvCSl4dsVh1iPpk51d9ash5blgg2GrH0wEvi6VqAf0hE+o6b3T7RspdJ+mRnZdA1dDLHmFujFz4ilsjAJyMYKNpBXZ8RoFznXEEgrrX4BS8k6kqXryTKDlvd2SQGgLkDMZuuNVbxxJ2HgWc6pK5ct6zYQhCyx54i64s+BSsuKghINzbadut3U9yxkMQZPyG9jo9I3YYE6/53gD5LMU28wRIA0EkKoWsJwqPg/O0SXiinFgogzEomc/xLtg4M4KgL7eODxPvIxhPzXWmbwVhQYEauu4GguNTEIsBYL6c83jpILQ0rNEnWYBzB0wz1NDkY58laggQ6y7e65ppgJukEbQtM530YUgDQQRqIW3xnKeta1YLiODEgkNDXNuRDwS8mWw1Bo2gGpLut62BVvXKkAH2WAZkal4xxygjEKeGbux1AABHpxQI5sr5iRrBcMhcR1y9qqHxBanbG4IxvalwIs1w/HNYrE5bLHY2TSLGc3udvpa9BMdkjWAQ68wTIA0EkagVc+gNWKBHO7+gk9AIeCC4utOWfm6cGUG9OLI8GEfLVm9s4hd+e4xyamt44gdBjRpyzuc0qCHAsWeeRA1585w1KDngoPmZCW2GZ85BNCLH9qxoBBLGc3vdnnbpKMA1goCiC01KTgRpIIhA2IDzhjueTrdaQAQntTKC+DQCnhEEZU1tWz0j8MzVxmi5tmFqqFzIopTPeDbdIrix28FcKZeINhSE0EBg6elWOXf+9vgksdH4S70+AiCcGtpu2Sjns7H66ojAs6IW1AhMUUOTrD1UN1SiSANBBKohYmija0YkEkG5kMVStYAr2x3p5240LVQK2VgWrrCSQMeHSe0CnnTeTVNDgLP7lKGGrk+pmYxjrjQ5EJgoaQ5q/DJRuSLSDLfd7k1dKAac3XmlkI3MCIbeLAIT1FCw07FuR7cI0kAQgVpIeWSj2090eMbJhTKu7cgHght73dhojNEuL5gaUs0IJmkPnZgCgYxYfHOvi2NTKB3lmC/nsdfpBda48/PFK3RUUC0edJQ1QQ3xayGqj2DaQjEH7yUIQ8vugzE951GOSbMgTHbST0IaCCJQC8sIrF4iQjHHiYUSrqoEgt2uZ2VtGuV8FhmaQA1Z6imt33ffj9FCZy4AL1bz0hnB8SnpA4ATCIYseEFteHYH6uenWjiYEfDrX2dBymYI1UI2tHx0q21PXSjmEOkuNmUvAYwqtsazApPeWpOQBoIIhJW8JZ8RVHBtpyPU7ejHjd1ubKWOfARhULrf1PC84RrAeCDwBHqD532xEr3z4+gNhlhvWtOlhlyXyyB6aK+jX8lWDTAS5IGhrpFpAK4VdWhG0Ju6UMyxKOA3xDNJHedRDh5kxzvqO2nV0PQx6oYMrhpKOiNo2wMpk7ThkLlURnwLV5ADaX8whNUfKusSkyinptVDNkNG66pXakWsN8XsO27udcHY9HoIgNFQ96DuYhO9LdVizvOJ4uCfr24ArofoG4BTNTQrgUDEeG7UAKd/zJOmlJn01pqENBBEIKwbstHtJVI6ynFqkZeQitNDGy0L/SGLPxCMV5locsqTqpGabqWWytCVSVitF9Ho9kMHEHFwsf7k4vQ0As5HB2YEBqZl1YoHZ0w0DIjQALAQUvE0GDLsdmZDLAYc+/f1hhWagfNyVxOzwCcFglZKDU0fYeWRe10z1QKiGDWViQeCJOwQgqghXv+vmhF4VUNjO9OG1TcefPm4Sd5vEYarbiA4tVgxegwy4Hx0cCDQ11AqhYMZXssQNRRW+uoI4NPvKuY4OleE7fp0TYLJWeAld7H3C/WDIYPdH862WExES0T0BSJ6xv1/MeAxP05Ej/j+dYnoXe59v0tEz/vue63O8cQBznGPe+5b/QHs/jDxqiFALiPwAkHC1BCndFR3MsVcBrkMBWoEps85DwRrAoGAZwSzQQ0F6Vb6TpiBn2dXfQ6yH/Mh8x+2DO6uTWA0K3xy7w6njhYMVA1VA3Qx095ak6CbEXwQwJcYY3cA+JL7+z4wxr7MGHstY+y1AN4MoA3gT30P+cf8fsbYI5rHYxwZt9JhkmiZpEawVC2glM9I9RJwx9K4A8E4l6/rzMpF6KAFyXggqElkBDttHKkXp9rwNF+ZbEW919E/P9ViFi17v89T0zJDyS2UCxMzgpHP0GxQQyKBYLtlY66UQ87ApLp6QJ+F6QbKSdA9+vsBfNL9+ZMA3hXx+HcD+BPGmLxPwhQRNHQ7ScM5DiLCmaUqXtgUP33Xd7vIZQgr1fi8850Fe1xc1L+AnQCz/3WbMVBDRzg1JCAYX9nuTFUfAIBaIQeiYGqoYcAArVLIYTBksHxW1KbO+0Ilj6bVD3TR5R3wyzFeqzLwZoWHZQTtnrEMZhQIRp9rUuuMbiA4yhi77v58A8DRiMe/B8Dvj932USJ6jIg+RkQTrwAieh8RXSCiC+vr6xqHLI9qMYemPR4IkjOc8+PMcgUvbLaEH3/T7SHIxGiDUQ8oCWwZEBerAaJl0+qjZvicL1ULIBLNCDpT1QcAJ0ud1F28Z6DbPaiHo2X1jZTs8t1+0LFzc8Q4BiipgFOGYQOhdtq2EX0AGK0l/ozAK9uddiAgoi8S0fcC/t3vfxxz8siJ8joRHYczxP7zvps/BOAuAG8EsATgA5Oezxj7OGPsPGPs/OrqatRhG0W9eDAj4Dxn0mns2ZUqXthqYxgy7s+P67tdb2cTF6rFLJpj4ypHF7BmPXtAADb9pchlM1iuFiMDwWDIcG2n42k108SkWcuNbl+7uSnI3kPHUtwPrm8EHftGY7YygmLOsXWJ0giWDInbPAD7h+E0PfE/3nUm8pNljL110n1EdJOIjjPGrrsL/VrIS/1NAH/EGPOuAF82YRHR7wD4JcHjThRBXPXIJTHhQLBchd0f4vpeV2hBurLTxutOH9DwjaJeymMwZn/slTFqLNpB2kOj2/eG4ZjEaj06EKw1uugNmFfGO004/kgHa9wb3T7uOKKbERy09zAl0s+HlL5uNC3Ml/OxDmCRxdG5UqRGcNexOSN/K5sh1Iq5fdQQb2SNu0xd94w/COAB9+cHAHw25LHvxRgt5AYPkKNAvQvA9zSPJxbUS7kDwhy/kJMudTu77NASL2xE00P9wRDXdro4vRTvwuXN/fV9uU10uFbGRHq77zSpxfGlcAJBuLPr1RnoIeBYrhYCvfJNDEnxLMDt/dSQiUDAvy+7nYPHvtG0sFKbDVqII2pW+FbbxpJBS4x6aX8p9ktFI/g1AG8jomcAvNX9HUR0noh+iz+IiM4COA3gv409/z8Q0XcBfBfACoB/pnk8sWChXDiQyvKOwnkDZWMyOLNSBQBcEhCMr+92MRgy3LIUL6c9X3a+vH7jtr1u35mvq7G7GxehTXW3BmG1Fp0RcJH+9JQ1AiC465UxZmTn7k2ds/Zz1ap2IX4shFBDm007Fqt0HRytT84IOvYA3d7QmEYA8EDgzwiSCQRar84Y2wTwloDbLwD4ed/vlwCcDHjcm3X+flJYqDp8LGPMK5/bbtuoF3NKg9l1cHyuhEIuIyQYX95KZuHyBMC2v9pBf1jHeMdynCW7q3XHZsL/GY/j0mYLGULsgVUESzUnEPiPt20PMBgyI+cdOKgRmBSLAzWCpoVXnjBDs5jC0fkSNpoW+oPhgRJRT9w2qGnUS/n9YnFCc9Fnh4ybYSxWCrAHw32t3zttGwtTcEnMZAhnlip4XoAaepEHgpgXroVAakh/Z8rTZC5CN2LkS1frRfQGLLSL9PmNFk4tVmaCw16uOtekf9fO6Up9amh/Nz1jzKkaMnDeeRDfCdAI1puW19MxKzg6V8SQBZcW80zhiMFijAPUkOVk1nFvOKd/Rb8EwDlw/yKxPUWXxHMrVTy73ox83OXtNrIZir0LdsGjhnyBwABXvVAuYDBk3mLXjJEvPSlg3/H8RgvnXGpu2lhyd6F+eoj/rFvXzj83rot1egMMmZkAnM0QFir5A0Phu70BGt3+zGkEYdcF70Q3afE+V8of6COIu2IISAOBEDgH7rcqnuYAjTuP1XFpsx1pkvbiVgcnFkpGuh7DsOAFyv0agS5FMV5hshdjIOCVQFe2g7UXxhguzVAgCBqlyAPBsmYgqBf3N6yZpidWa0WvVJSDv49Z0wh4z0hQN7+XEdTjywiahkT6KKSBQACLAU0w0xypd+exOgZDFpkVPLfexLmVWuzHU8o7c3/956fR0a/3nxsTFuMcbD4KBMEZwXrTQsseeFVb0wbf9W/5KodMGaBlMrTPHM50AF6tF7E2VqEVB81iAmHXxVrDQj5LRq/HcY1gz8D3SARpIBAA/2L5d7zT9E2/82gdAPD0zcbExwzdQHH7avyBAOCVVf6MQH9627i52o5Bp8egv1UtZCcGgufXHU3mXELnMwpeIAiihgxcl/5AwEs9TWXAR+oH5z9c33ECwfEpjgANQimfxUqtGJgp3tzr4kjdbNd+vZSDPRh62X5SzEMaCATAS964RtAfDNHo9hMvHeU4u1JFPkt46sbkjODqTgfd3hC3H0koEPg6XYdDR3TVra8etyPYavWQzzomgKZBRDi1WJno7HrJrdI6tzwj1FAtmBrKkJmS5vny6PMcDV8xc72v1otY29vv83991znvJ2YsEABOVhCYEexZxjOYuTHjuaSYhzQQCMBrgnF3pLziYVrUUD6bwW2rNTx1Y2/iYy66tFFSgWC+nPfOy163h8GQeYKmzmsCo/PNd0cmh9L4cXLCFx4AnltvoZDN4MTC9Oyn/agUcijns9j07ay3Wk6WamKH6s8ITFNyR+olWP3hPmv3aztdVApZIyMfTWNiIGh0jeoDwMGhQ0kxD2kgEEAhl0G1kPUyAi8Fn6KwdeexOp66MZkaenYt2UDgZATOedk0JFqOi8XbbXO+LkFwvvDtwIlUT95o4PYjtdiFdxkcmy95NuOAc12a8r6aL+d9lJxZX62gQUDXdzs4Pl+KLcjr4NRiBVe3Owf8vW7uWUYrhoAR5bfdtj3mIQk/s9m5qmccCz5vFy5sxTn1KwqvPD6Ha7vdiTNVn77ZwFK1kNiQj4Vy4WCg1PzblUIW+Sz5xOJerF+Ks8tVNLp9zw7Zj+9f38Mrj89Ys9Nc0Rs8BDji5ZG6mWvSn+Ftt23kXB8cE+C76DWfdcO13a43gW/WcGa5Answ3EcbNq0+djs943M+uOHeZtPyMQ9pRjAz8HPg3HskblfPMLzu9AIA4JHL24H3P3ZlF68+OZ/Y8azUnU7XwZB5Hji6gYDIqcjgNefbrXjT5Fe4Ivwza/szrc2mhbWGhVcer8f2t1VwfL68LyO4sds11jPCqSHGmBeATe3WVwPmP1zf6Ux16lsYeFZ9cW2kyfGu/TNLZjUjrv1sNO1EB/WkgUAQR+pFLxMY1Q9P78J9zal5ZDOE77y4c+C+jj3AM2tN/MCp5ALB0bmSGwSsUT27geYgx/3RWTC2Wua834Nwx1HnC//Mzf0iPKfgTLlMmgJ3xhwOGYZDhrVGF0cNLaYrtSIGruhvunKFf2/W3O+R3R9ivWnNXMUQB6+88wcC7jtl2m6Eb3Q2m7aXYacZwQzh+EIZ1900fG2vi7lSLvaB0mGoFHK461gdj1zeOXDfE9d3MRgyvCbBjGA01s/ydvAmaKkj9SLWGhas/gCbLTvWXeORehFzpdyBstzvXdsFANw1cxlBCb0Bw2bLxmbLRm/AjNGV/PNca3RdEdrcrnSunEOtmPME2Ks7HTCGmbD3DsJitYDlaiEwI7jFcF9JIZfBfDmPzdZoQ5UGghnC8bkStlo2ur1BLCKRCt5wZhEPv7ANu79/7N+jl52F6wdc+igJ8AXoxl4XN/a6mC/nUczpB8ojc449NOeT45y9TER4xdE6nlnbnxE8dGkbZ5YrM9f1yu0PLm+3R7qVofMzGtNo4cZeF8cM7taJCGeWK15JLi9suC2hwgYV3H6k5lXiAU458Xw5H0sJ+XLNsRjn+s/xBCrV0kAgiOPul+7GbhdXdtre79PEX75jFW17gAuXtvbd/o3nNnFyoZxosDrqCwSXtzrGZiCs1kvYbNneDizuOvM7j9Xx5PU9r0KEMYYLl7bwxrNLsf5dFZxbdfjp59dbnheOqYzJ+zx3O7i+0zVeNnt2eTR7m3fI35ZAF7wqbj9SwzM3G15F2fdvNHDnsXgyxBV3Wt61nQ4KuYx29Z0I0kAgiBPuF+zaTgfPr7dw6wx4zvzwbcsoZDP4ytOjGc79wRB/8ewm/vIdK4key0qtgAw5C8fl7bYx6+ujc0UwBnz3qpPlxJkRAE6W1ej28bQrGD+73sR2u4d7ZzAQnF6sIJshPL/R8rIYU15IXNB94toe7MHQ+HjOM8sVXN5qoz8Y4tn1JlZqRcxPqS9HBPecmsdet4/nNloYDhmevL6Hu2OqIju9VMELWy2nkiqhkto0EAiCWzl/47lNtOwBbludfiCoFnP4wVuX8KeP3/B2Kt98fgsNq48fe0Wyc51z2QzOLlfx9M0mrmx3jFlf8x3uhRec6qi4AwHf+X/reSfL+vNnNgAA956bvUBQyGVwy1IFz200cXGtiRPzJWOzGkr5LBYqeXzbLUYwnYndcbSG/pDh4noTj13ZnbmKrHG84Ywz7vXhF7bxwlYbbXsQWyA4t1LBzT3L+UwTYh60AgER/Q0iepyIhkR0PuRx9xHRU0R0kYg+6Lv9HBF9073900Q0Wx60PpxaLGO+nMdnH70GALh1Rjxn7n/tSVzabOOb7sL1h9++gnoxhx+/60jix/LK43P4b0+vw+4PjQl/3DTvi0/exEqtEPvs1lOLZZxZruBPH78JAPjcd6/jrmN1nJ2BDDAIdx6t47Eru3j6ZgO3HzW7mJ5ZqniZmGme+vW3OAvrl7+/jqduNnD+zOwFWj9uXalhsZLH1y5u4P+76GwOXn8mnlng/Fp78vpeYpVUuhnB9wD8NQBfnfQAIsoC+E0A7wBwN4D3EtHd7t2/DuBjjLHbAWwD+DnN44kNRIR7Ts17vOZdMfGDsvjJ1xzHSq2A//tPn8LTNxt48JFr+KnXn0Qpn3xF0yuP1z3h2lSp5enFMiqFLBhLpnyTiPBX7zmBrz+7gT9+9BoeurSNd772ROx/VxVvun0ZV7Y7ePyaeariDjewZMhZCE3ilqUKVmoF/D9/9gwYA86fjWdRNYVMhnDfq4/hC0/cxB8/eg23LFViYwX89F5S64xWIGCMPckYeyriYfcCuMgYe44xZgP4FID73YH1bwbwGfdxn4QzwH5mwXniu4/PYXlGKkjKhSw+cN9deOjSNu77F19FrZTDL/z47VM5lvM+Hv0eQz0MuWzGS8t/+PZlI68ZhZ/+oTOoFnL4h7//HSxVC/jpv3Qmkb+rgh/1UYBvu9tsFvhDtzrn+44jdeOl0kSEt7/qGNr2ACu14kxSb+N49xtOo20P8K3nt/Cu152Mjbt/hS+zS+q8JOHwdBLAZd/vVwD8IIBlADuMsb7v9gNzjTmI6H0A3gcAt9xySzxHGoEH3nQW2+0e3vW62doh/o3zpwEA33huCz/3I+emVtr6g+eW8Mv//d04sVA2mpH8yl99FT71rRcTW5CPzpXwb37mDfhP376Kn/mhM7HMSDaFM8tVfPSnXg2rN8QbDNMrf/UHTuDSZgtvu/uo0dfl+KW334lyPot3vPpY4rO/VfCGM4v4jb9+D55db+If/He3xfZ38tkMfvfvvRFP3WgkVgJOQQZb+x5A9EUAxwLu+jBj7LPuY74C4JfcofXjz383gPsYYz/v/v7TcALBrwL4hksLgYhOA/gTxtirow76/Pnz7MKFA38qRYoUKVKEgIgeZowd0HMjMwLG2Fs1//ZVAKd9v59yb9sEsEBEOTcr4LenSJEiRYoEkUQ+9hCAO9wKoQKA9wB4kDmpyJcBvNt93AMAPpvA8aRIkSJFCh90y0d/ioiuAPghAP+FiD7v3n6CiD4HAO5u//0APg/gSQB/wBh73H2JDwD4RSK6CEcz+G2d40mRIkWKFPKI1AhmEalGkCJFihTymKQRzL5UnyJFihQpYkUaCFKkSJHikCMNBClSpEhxyJEGghQpUqQ45HhJisVEtA7gBcWnrwDYMHg4LwWk7/lwIH3PL3/ovt8zjLED1sQvyUCgAyK6EKSav5yRvufDgfQ9v/wR1/tNqaEUKVKkOORIA0GKFClSHHIcxkDw8WkfwBSQvufDgfQ9v/wRy/s9dBpBihQpUqTYj8OYEaRIkSJFCh/SQJAiRYoUhxwvq0BARPcR0VNEdJGIPhhwf5GIPu3e/00iOuu770Pu7U8R0U8keuCKUH2/RPQ2InqYiL7r/v/mxA9eETqfsXv/LUTUJKJfSuygNaF5Xd9DRH9BRI+7n/d0xtdJQuPazhPRJ933+iQRfSjxg1eEwHv+USL6NhH13YFf/vseIKJn3H8PSP9xxtjL4h+ALIBnAdwKoADgUQB3jz3mHwD41+7P7wHwaffnu93HFwGcc18nO+33FOP7fR2AE+7PrwZwddrvJ+737Lv/MwD+I5yJelN/TzF/zjkAjwH4Aff35Vm/rg28578N4FPuzxUAlwCcnfZ7MvSezwK4B8C/A/Bu3+1LAJ5z/190f16U+fsvp4zgXgAXGWPPMcZsAJ8CcP/YY+4H8En3588AeAs5E6jvh3PxWIyx5wFcdF9vlqH8fhlj32GMXXNvfxxAmYiKiRy1HnQ+YxDRuwA8D+c9v1Sg857fDuAxxtijAMAY22SMDRI6bh3ovGcGoEpEOQBlADaAvWQOWwuR75kxdokx9hiA4dhzfwLAFxhjW4yxbQBfAHCfzB9/OQWCkwAu+36/4t4W+BjmDMzZhbNLEnnurEHn/frx1wF8mzFmxXScJqH8nomoBmcQ0v+RwHGahM7n/AoAjIg+71IK/2sCx2sCOu/5MwBaAK4DeBHAP2eMbcV9wAagswZpr1+RM4tTvHxBRK8C8Otwdo4vd/wqgI8xxppugnAYkAPwIwDeCKAN4EvuYJIvTfewYsW9AAYATsChSf6ciL7IGHtuuoc123g5ZQRXAZz2/X7KvS3wMW7qOA9gU/C5swad9wsiOgXgjwD8DGPs2diP1gx03vMPAvgNIroE4B8B+CdE9P6Yj9cEdN7zFQBfZYxtMMbaAD4H4PWxH7E+dN7z3wbwXxljPcbYGoCvAXgpeBHprEH669e0RRKDYksOjkhyDiOx5VVjj/kF7BeY/sD9+VXYLxY/hxkX1TTf74L7+L827feR1Hsee8yv4qUjFut8zosAvg1HNM0B+CKAn5z2e4r5PX8AwO+4P1cBPAHgnmm/JxPv2ffY38VBsfh59/NedH9ekvr70z4Bhk/mXwHwNBz1/cPubR8B8E735xKcipGLAL4F4Fbfcz/sPu8pAO+Y9nuJ8/0C+N/g8KiP+P4dmfb7ifsz9r3GSyYQ6L5nAH8Hjjj+PQC/Me33Evd7BlBzb3/cDQL/eNrvxeB7fiOcLK8FJ/t53Pfcn3XPxUUAf0/2b6cWEylSpEhxyPFy0ghSpEiRIoUC0kCQIkWKFIccaSBIkSJFikOONBCkSJEixSFHGghSpEiR4pAjDQQpUqRIcciRBoIUKVKkOOT4/wEvwj3sw7mOBwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABFJUlEQVR4nO29eZhdZZXo/Vs1ZayqpDLWkKQyEkICSaiEgIDNIIPaxLZpBNoreIHYtti3pdtWr/eqn930dehu+9P2a42CggOD2Gq8ooCIApKEBBLITCpzTakpNaSSVGp4vz/W3lWHSlXqDHusen/PU88+Z5+93712nap37TW8a4kxBovFYrGMXrLCFsBisVgs4WIVgcVisYxyrCKwWCyWUY5VBBaLxTLKsYrAYrFYRjk5YQuQDlOnTjXl5eVhi2GxWCyx4rXXXms0xkwbuD+WiqC8vJytW7eGLYbFYrHEChE5Mth+6xqyWCyWUY5VBBaLxTLKsYrAYrFYRjlWEVgsFssoxyoCi8ViGeV4oghE5GERqReRnUN8LiLydRGpFJE3RWRlwmd3ich+5+cuL+SxWCwWS/J4ZRF8H7jpPJ/fDCx0ftYB/wkgIkXA54HLgNXA50VkskcyWSwWiyUJPFlHYIx5UUTKz3PIWuBRozWvN4nIJBEpBv4EeM4Y0wwgIs+hCuUxL+SyWIKk6WQnj285RmdXT9iiJMXYrhaWNDxN+5iZ7C+6BkTCFikQyk9sZOqpSvZOvYGTY2aELU7K3HVFOVMmjvF0zKAWlJUCxxLeVzn7htp/DiKyDrUmmD17tj9SWixpUt92hr/87mb215+MxXyazyk25H2WcjkOwDe71/IvPR8IWSr/+VDWM7w/9xEALjj8A9ae/SeOUxSyVKlxy/LS2CqCjDHGrAfWA1RUVNhuOpbIUNd6hju/s4m6tjM8vm4Na+ZNCVuk4dnwcdjWCB/6Jbz5BB/b9kM+9ld/A2UVYUvmHycOwzc+BAtuhnd+khmP3MKmxU/DHdYBEVTWUDUwK+F9mbNvqP0WSyyobjnNB9ZvpL69k0f/++p4KIHWKtj+Y1h1D8y9Gm76MoybDC/9a9iS+cuL/wJZOfDer0HppfCO/wH7noaa7WFLFjpBKYINwIec7KE1QKsxphZ4BrhBRCY7QeIbnH0WS+Q51nyK2761keaOs/zgntVUlMfExfDaI2B64fL79f2YibB6nU6KLcfOf25c6WyHnT+FS26HgmLdd9lHIGccvP5ouLJFAK/SRx8DNgIXiEiViNwjIn8lIn/lHPI0cBCoBL4D/DWAEyT+R2CL8/NFN3BssUSZQ40d3PbtjXSc7eax+9awYnZMkt2M0Qmx/EqYPKd//yW363bXz8KRy292b4CuU7D8L/v3jS2Exe/R30d3Z3iyRQCvsobuGOZzA3xsiM8eBh72Qg6LJQgq609y53c20d1r+PG9a1hSUhC2SMlzfBc0H4ArPv72/UXzoGQl7P45vONvQhHNV/Y9DQVlULbq7fuX3Qo7n4Ijr8D8a8KRLQLYlcUWSwrsq2vn9vUb6TXw+LqYKQGAgy/odtGN53626Caofh1OjTCjvLsTDrwAi244N0V27tWQnQeVvw1HtohgFYHFkiS7a9q44zubyM4SnvjIGhbNyA9bpNQ59CJMWQgFJed+Nv9awPQri5HCsc3Q1QELbzj3s7wJ6ibb/1zwckUIqwgsliTYUdXKHd/ZxNicLJ5Ydznzp00MW6TU6elSF8jcqwf/vGQFjClUZTGSOLoJEJh9+eCfl18FjftGniWUAlYRWCzD8PrRE9z53U3kj83hiY9cTvnUCWGLlB7Vr8PZkzDvnYN/np0DZZdC1Qjr/nd0E0y/EMZNGvzzWZfp9tirgYkUNawisFjOw5bDzXzooVcpmpDHkx+5nFlF48MWKX2qnIlu9hVDH1O2Cup3a7rlSKC3F6q2wKzVQx9TskLXFxzbHJxcEcMqAotlCDYeaOKuh19lesEYnlh3OSWTxoUtUmZUvw6Fs2HiOb3L+ylbrWsMql8PTi4/adgDnW0wa83Qx+SNh5kXW4vAYrG8nZf2N/Dh779K6aRxPL5uDTMLx4YtUubUbIOS5ec/ptSpEF+1xXdxAsG9j/NZBKDuoerXoKfbf5kiiFUEFssAXthbzz2PbKV8ygQeX7eG6fkjQAmcaoYTh9QNcj7GF8GUBTopjgRq34QxBbpO4nyUrIDu09C0Pxi5IoZVBBZLAs/uqmPdD7ayaMZEHrtvjedVHkOjdrtuh1MEoG6S44P2mIofx3fCzGXDl9ieuVS3dSPkvlPEKgKLxeGFTVv51WP/wTtm9vCje9cweUJe2CJ5h1tYbTjXEMCMi6DlKJxp9VMi/+nt1Yl9xtLhj526SBeWHd/hv1wRJDZlqC0WP9n0mx9x2cZPcE1OJ6bjh0jLBhh3cdhieUf9bi2xMC6Jmkgzlznn7IHZ5wmyRp0Th3QhmXs/5yM7F6ZdAHWjUxFYi8Ay6nn65a0s2fj3HM8t4/TtTyF54+End4+sQmT1ezWXPhlmXKTbuLuH3Ek9GUUAMGOZdQ1ZLKORJ7Yc5cQz/8w46aL4vicZt/hd8Kdf18JsW78Xtnje0NMNjW/B9MXJHV9QqpU54z4pHt8Jkg3Tkrzvmcugox5O1vsrVwSxisAyavnBpiN85acv84HsPyAr/xtjZyzQDxZer/n0r65XP3PcOXEIejph+pLkjhdRv/rxXf7K5TcN+6BoLuQmmfXlWkwNe/2TKaJYRWAZlTz88iH+98938qmSbeTQTc7lf/X2A1bfp1bBkT+GI6CX1O/RbbJPxqD+8sZ92r8grjRVahA4WdxjG9/yR54IYxWBZdTx7T8c4Iv/dzc3L53JrTl/1LIK0y54+0GL36Pdq/ZsCEdIL2nYC8i593g+pizUrKFTTb6J5Su9PdB0QNdEJEtBCeROgMbRt5bAqw5lN4nIPhGpFJFPD/L510Rku/Pzloi0JHzWk/DZCPivs0SZbzy/n//z67386SUlfOPmKWTV74ILbzn3wLwJsOA62PPLeD8VgyqCSbP1npLFnUCbKv2RyW9ajqo7bOrC5M8R0eMb9vknV0TJWBGISDbwTeBmYAlwh4i8zRlpjPmEMWa5MWY58A3gvxI+Pu1+ZowZ5D/SYskcYwz/9uw+/vW5t3j/ilL+/QPLyal8Vj+84N2Dn7ToRmivjf/EkOqTMcBU5/i4Ph27cqfiGgLHJRbTe84ALyyC1UClMeagMeYs8Diw9jzH3wE85sF1LZakMMbwlWf28fXfVfKBill89S8uITtLtH3hlIX9k95Ayq/S7eGXghPWa4yB5oPDl1gYSOFsyMqNb8kFV+4pKVgEoBZBWxV0nvRepgjjhSIoBY4lvK9y9p2DiMwB5gK/S9g9VkS2isgmEXnfUBcRkXXOcVsbGho8ENsyGjDG8E+/2sN//v4AH1wzm//z/mWqBLrOaCB4sK5VLpPLdUI89IfA5PWcjkatvjllfmrnZeeo8mg64I9cftP4FowrgglTUjvPtSDi6hJLk6CDxbcDTxljehL2zTHGVAB3Av8uIoP+xRpj1htjKowxFdOmnaeMrsXi0Ntr+PyGXTz08iE+/I5y/nHtUrKynJoz1Vuh56y2KRwKEZh7FRx+Ob5ppM3ORF6UoiIAdSfF1U3SWJlafMDFtSCsIkiZamBWwvsyZ99g3M4At5AxptrZHgR+DyRRFctiOT+9vYbP/nwHj248wrqr5/G59y5BEguPHXkFEJgzRPtCl/Ir4fSJ+OaWu0/0qVoEoC6z5oOagRM3mvanpwgml+v2xCFPxYk6XiiCLcBCEZkrInnoZH9O9o+ILAYmAxsT9k0WkTHO66nAO4DdHshkGcX09Br+4adv8tirx7j/mgV85ubFb1cCoE/5M5YOX3un9FLdutU740bzQV1dO2l26udOWQC9XdByxHu5/ORMG5w8nnqAHLRJzcQZ0HzYc7GiTMaKwBjTDdwPPAPsAZ40xuwSkS+KSGIW0O3A48a8LRfvQmCriLwBvAB8yRhjFYElbbp7enngye089VoVn7h+EX9/4wXnKoGeLm1YMuc8LRtdpiyAvIna1CWONB9QJZCdm/q5rpukMWZukhOHdZtqgNxl8txRZxF4Un3UGPM08PSAfZ8b8P4Lg5z3CpBkRSiL5fx09fTyt49v51c7avmHmy7gr/9kiCfC+j3QdWr4rlUAWdlQfEl8FUHTgfTcQtA/kcZtUnQVwaQ56Z1fNBcOveiZOHHAriy2jAg6u3v42I9e51c7avlf77lwaCUA/ZN6Mk1a3OPqdqglESf6UkfTVAQTp+vq6hMxcw25isD196fK5LnQVqOZZaMEqwgssedMVw8f/eHrPLv7OP/PLRdx71XDuARqtsGYwuRdByUroPtMf82euHCyHs6eTN8iEFG3UtxiBC1HtHrquEnpnT+5HDDxu+8MsIrAEmvOdPVw36Nb+d3eev75z5Zx1xXlw5/kNnEfrn2hy0ynQU3cqnG6E1m6T8YAk+fE0yLI5J6L5uq2OWYusQywisASW06d7ebD39vCy5WNfOXWi7nzsiQyY7o7dUJP1i0Eajlk52mXrzjRclS36WQMuUyaowolTvWWMlUEk+f2jzNKsIrAEktOdnZz98Nb2Hyoia/dtpzbKmYNfxKoEujtSk0RZOfoitO4rSVwFUFhkr+bwZg8R1cmnz7hjUx+09ur951uoBhgwlTNFItbkDwDrCKwxI62M1186KHNvHb0BF+/YwXvWzFoRZPBSTVQ7DL9wvjFCFqOapmFMRPTH8OdUOPiL2+v1RXjmVgEInq+dQ1ZLNGk9VQXH/zuZnZUt/LNO1fy3otLUhug9g1dRJaqu2T6hdB6TBcrxYXWYzApA2sA1CKA+MQJMs0Ycplcbl1DFksUae44yx3f2cTe2na+9cFLuWnpzNQHqd+jK4qTDRS7uG0e41SSuuVoZvEB6J9Q42IReKUIJs2G1qp4xUYywCoCSyxoPNnJHes3caDhJN+5q4LrLpyR+iDGqCJwe9OmgtvmMS4BY2Og5VhmvnLQNMyxk+JjEbQcASSzuAhAYRl0dcQnNpIhVhFYIk992xluX7+Jo82n+N7dq3jnojSrz7ZWwdn21Hr3ukyarZlDcalK2dEI3acznxBB3UNxsQhajmrLyZy8zMYpLNNta1XmMsUAqwgskaa29TQfWL+J2pbTfP/Dq7hiwdT0B3ODvdOXnP+4wcjK1rTC5oPpXz9IWj1IHXWZFKO1BK1V/ZN4JrgKtPXY+Y8bIVhFYIksVSdO8YFvb6KxvZNH71nNZfNSbDIyENetMz0NiwC0AF1cGrX0rSHwwCKIk7/cc0VgLQKLJTSONqkSaDl1lh/eexmXzinKfND6PZBfMnzp6aGYMs+pzx+DJjUtzpOsF66hglJ1M0XdX97bC23VKm+mTJgK2WOsRWCxhMWhxg5u+/ZGOs528+P71nDJrEneDFy/O71AsUvRfOjp1J62UaflqNZTSrfeTiKFzsQa9afjU426hsAL5SeilkWLVQQWS+BU1rdz27c30tXTy2P3rWFpaaE3A/f2aOpnJorALd4WB/eQF6mjLgUxCZy6T+9euIZA3WpRv2ePsIrAEhn21rXxgW9vAuDxdWu4sLjAu8GbD+nTfDqBYhe341UcMoe8WEzm4k6sbUN1oI0I7qRd6IFrCPS+rSJIHhG5SUT2iUiliHx6kM/vFpEGEdnu/Nyb8NldIrLf+bnLC3ks8WNndSt3rN9EbnYWT6xbw8IZ+d5eoC9QnIFFkF8MueOjnzlkjLcWwYRpkJUb/Umx1VFUXriG3HFO1mmhwhFOxh3KRCQb+CbwLqAK2CIiGwZpOfmEMeb+AecWAZ8HKgADvOac60tUqvV0F109KQT6TK92ssrLoFZLHOk6DVk56bU3TIODDR3c+8gW8sfm8uP7LmPOlAneX8RdETztgvTHENFKpFF3DZ1p0T4EXrlIsrI0Nz8OFkHu+PSTAQbiKpS26vTbXsYEL1pVrgYqjTEHAUTkcWAtyTWhvxF4zhjT7Jz7HHAT8JgHcp3D3z6+jRf2NSR17J3Zz/NAzk+YKm282TuX/9l1DzvNyP5jKKGRf859iD/JfoOTZizf77mRr3XfSg/Zvl97VtE4fnzvGmYVjffnAk2V6uvOy1DJFM2Lfl+C9jrdFqRYh+l8xMFN0lalGUOplg8ZisRFZVYRDEspkBharwIuG+S4PxeRq4G3gE8YY44Nce6gDj4RWQesA5g9Oz2T979dPodrF08f9riLDj7Eyv0PUVe0iu1Fq1hY9VN+1vUgz656mObCDHzMEWbcmXpu3vwJcrs72DHrHvJPV3F/3S9496xu/rjsQe/+uQYhK0u4YclMpuWP8e0aNB/Q9M9MKZoH+36twecs/xVkWrTV6Da/2LsxC8vgyEbvxvMDr9YQuIyi1cWeNK9Pgl8CjxljOkXkI8AjwLWpDGCMWQ+sB6ioqEhrZcu1i5OoT3P4j/DMN2Dprcx8/3eYmZUFbX8D372e9+z9FHx0Y2ZlfaOIMfDI/dDTDvf8hmXFl+j+P3yFeS88yLxL3wUVHw5XxkxpOgBL1mY+zuQ52s+gvc67oKTXuBZBfhpF+YaioBTaa6KtAFurYaGHD2oFMUmb9QAvgsXVQGJ0pszZ14cxpskY40Zcvgtcmuy5gdLbC7/+Bw2y/en/q75RgIJi+PPvagDupX8NTTzf2P0LOPwS3PBP4CoBgKv+HuZeDb/9ApxuCUu6zDl9Ak43p9+7NxE3ABvl2jvttbr11CIohd5uOHncuzG9pLtTA7teWgS5Y2HijP5V2iMYLxTBFmChiMwVkTzgdmBD4gEikvgXeQvgdvh4BrhBRCaLyGTgBmdfOOz8KRzfCdd97tyn/jmXw7K/gM3fgo6mcOTzg55u+O3nYfpFcOndb/8sKwtueFCDj698PQzpvKHJyfIp8kIRuI1aIjw5tNdqxdDccd6N2beWIKIBY9cd5qUicMezFsHwGGO6gfvRCXwP8KQxZpeIfFFEbnEO+xsR2SUibwB/A9ztnNsM/COqTLYAX3QDx4FjjD7tz1gKF71/8GOu+jvNInp1fbCy+cneX2oN92s/O7jJX3yx/j42fzteTVkScfP+vbAI3EySKBdha6/z1hqAhLUEEZ0U3YwmrxVBfnG/hTWC8WQdgTHmaWPMImPMfGPMg86+zxljNjivP2OMucgYc4kx5hpjzN6Ecx82xixwfr7nhTxpceSP0LAH1ny03yU0kOkXwgXvVkUwUnKLN31Lm3gsumnoYy7/mKYjvvlEYGJ5SvMBkKzMm5WA4y6YGX2LwMv4ACSUmYioReA+tRd4rAgKSvqtjRGMXVnssuW7ak4v/fPzH1dxj/qb3/pNIGL5yvFdcGwTrF53/gBg6aVQvFx/R3GoQDmQpgP6pJjjUVZS1Ovzt9d5mzoKjqtpQnTdJF6vKnbJL4bONug86e24EcMqAtBA6N5fwSV3DO9XnX+NVrDc9qNARPOVN5/QhWMX337+40Q0ftCwF2q3ByGZtzQf8CY+4DJpdnQVQW+P4xry2CJwi7BF1TXUXqcLybyMi0B/5tAIdw9ZRQCqBHrOajB4OLKy4ZLbofI5OJnc4rRI0tsLO56C+dfBhCTq/C9Zq0pj50/9l81LjNFgsRfxAZdJc9RF0tPt3Zhe0dEIpsf7GAHo03ZUXUPttf7cc4Ez5gh3D1lFADq5TZoDpSuTO37p+7X8xL6n/ZXLT45u1ADbxbcld/z4IlUaO38Wj3r8LqeaoLPVe4vA9GhefdTwI3XUJb+kf41C1PDDCgK9Z7AWwYjndAsc/D1c9GfJr56dsVQDj3t+6aNgPvPWr7UH76Ibkz9n6fvVNVDzun9yeY1bF8hTi8BZSxDFzCFfFcFMXUfQ2+P92JniR6YUWItg1HDgd/p0d8G7kz9HBBa/VxXImVbfRPOVfb+B8ithTApVPhfeoNk3+5/1Ty6vaXYVwQLvxpwc4bUEfYrAh6fjgmL9X+mImEu0t1cXk/lxz3kTtMGPtQhGOPuf1SBTWUVq5y1+r5YaOPCCP3L5SdMBaNp//pTRwRhfBGWr4K3w1vylTNMBkGzvSjKDk6Io0Wxj2F4HCEwcvqZWyuRH9On4VJOuevbDIgBVgFG7Z48Z3Yqgtxf2PwcLrk+9fkpZBYwpUIsibrgT+cIbUj934bs0c6g9oqUGBtJ8QJ/gvSypnZOnE20UUynba1U2P0qIuxNt1OIEflpBMCrWEoxuRVCzTfucpjMhZudqHZ4Dv4tfbv1bv4Fpi6Foburnur+ryt96K5NfNFV6Gyh2KSiNZn3+Nh8Wk7n0KYKITYp9RfZ8sgjyS6xraERT+RwgahGkw/xr1T0Qh9aFLl1n4OgmzQBKh5kX6z9cHOIEfqSOukQ1ldKvoCmopSFZo9AiKNYgeRTThT1idCuCQy9pLZ3xRemdP9+ppB0n91DVq9q7d9470ztfBOa+Ew6/HH1L6ORx6OrwySIoU4sgar8Dv/LpQd2nE2eo1RElXMU0MYky8+mQX6zp4h31/owfAUavIug6A1VboPyq9McomquNSuKkCA69qMHT2ZenP8bcq9Sl1rB3+GPDpC911IfuUoWlWn8pSllj3Z36vfilCCCaRdjaa7Wvsl+tVd1yHVFTgB4yehVB9VZ9Mi6/MrNxyq/Szk1RzK0ejEMvQskKGFuQ/hju7+zwy97I5Bdu6qgvFoE7OUTIPeT2CvDLRQIRVQQ+pY66RDU24iGjVxEc/iMgmT0ZA8y5Qleu1ifTojlkOk9C9Wsa5M6EyeVQOFuVSpRpOgBZuf2lo70kivX5/Q6aQjRTKf10h0F/vaGo3beHjGJF8BLMXAbjJmU2jqtIot7PFTRI3Nutrp1MKb9SS3dHudxE8wFVWtk+dGR1q1xGqQib+6Re4KdraKY2Kuo67d81UsVvi2D8FH2gsIrg/IjITSKyT0QqReTTg3z+gIjsFpE3ReR5EZmT8FmPiGx3fjYMPNcXujud+ECGbiHQhUoFpVq7J+oc26TxgVmXZT7W3Kt0IU+U4wR+ZQyB9iSQrGhNDm0+lpdwiVrtnZ5uDeL6ec9ZWdF0iXlIxopARLKBbwI3A0uAO0RkYAfpbUCFMeZi4CngKwmfnTbGLHd+biEIql+D7jPeKAJx3EtHN0Yvg2QgxzarFZQ3IfOxZq9xxtyU+Vh+0NsLzQf9iQ+AWhn5xRFzDdXqk+u4NLPgksF98o5KCmlHg2b0+GkRQDRdYh7ihUWwGqg0xhw0xpwFHgfWJh5gjHnBGHPKebsJbVIfHkde0W2m8QGXOZfrP+GJw96M5wc93VD1mjfWAMDkuTB+Khzb4s14XtNeC92n/bMIwFlUFiXXkLOGYKgOe17QFySPyKToZ5G9RKxFMCylQGLRlSpn31DcA/w64f1YEdkqIptE5H1DnSQi65zjtjY0ZFj0qmorTFmY/vqBgcy+QrdRdg8d36k59bNWezOeiCqVY5u9Gc9rmn2oOjqQqC0qa6/x/8k4ahZBX4Dcb4ugRF1vUbf60yTQYLGIfBCoAL6asHuOMaYCuBP4dxEZ9D/XGLPeGFNhjKmYNm1a+kIYo6mjZavSH2Mg0xZr4TrX0ogix17VrVcWAcCsVTrhdjR5N6ZXuKu9/XINQX+ZiahMDn4HTUFbVuaMi87TcZAWQVdHtNaNeIgXiqAaSMzPK3P2vQ0RuR74LHCLMaav87sxptrZHgR+D6zwQKahaTmifsVUq42ej6wsVSzVr3k3ptcc26yBvkIPvXKuUql61bsxvaLpAOSM7U/984PCMo01nWr27xqp4Eev4oGIqL88MoqgToP2EzJ4OEwG9/fqrtUYYXihCLYAC0VkrojkAbcDb8v+EZEVwLdRJVCfsH+yiIxxXk8F3gH4m5BftVW3XloEoA3e6/dAZ7u343rFsc3qFkq2+U4ylKzQ9pXHIqgImg9qHCMQf3kE4gSdJ7XJut8WAejTcVRW2bbXammJVKsHp0qfSywi9+0xGf+XGGO6gfuBZ4A9wJPGmF0i8kURcbOAvgpMBH4yIE30QmCriLwBvAB8yRjjsyLYArnjYfrAxKYMKa0AjFY0jRqt1Vocz8308YrccZqFFEVF0HTA3/gARGtRWRCLyVyiFDgNwh0GCb0YInLfHuPJShtjzNPA0wP2fS7h9aDlPY0xrwDLvJAhaaq2QMlK7xcZuf2OvVi56zWuy8prKwjUPfT6o9DT5V+tl1Tp7YETh1Jrw5kOrkUQhdIDflfgTCR/pl7PGG8tzHRor4NJPqwcH4i1CEYQXWeg9k1v4wMu44u0AJ3reooSNdvUhTNjqfdjl62CrlPRKrHRWgU9Z/23CKJUlrnPIvA5RgCqALvP6ArjsGn3sf9CIn0tKyPwXfvA6FIEdW9qe0k/FAFonKA6go3da7bB9Ashd6z3Y5es6L9GVPCz2FwiUSrL7FolQVkEEP59d5/1v9pqIq4lNAIZXYrAfVov9UsRVOg/ZFQW24Ca7zXb+idsrymapymFUVKATQGsIXCJyuTQXge5E2BMvv/XikqZiSCqrSYSle/aB0aZItiilSj9KsrlWhpRcg+1HFET3i9FIKJj10RIETQf1ISAQAKnJdFwF7TX6t91ED77qPjLgwyQg7rEovBd+8DoUgTzr4HLPuLf+DOWaq2XKK0ncF02fikCd+z6PdGpSNl0QC2VoCbFSASLfWxROZCoZNAEGSB3r9NeF+2Ku2kyuhTByg/BFR/3b/zcsZpOGTVFkJ3nfbpsIqUrtbx13U7/rpEKzQGkjroUFMPpE5qIECZtAZSXcMkdqyvpT4b8dBy0RZBfrDHGUxFcSZ8ho0sRBEHppTr5RqVjWc02mHER5Izx7xpRChj3dGvxP78DxS7uJBTmpGhMcPn0LvnF4btJgqi2mkhfp7KRFyewisBrSldqL9vG/WFLoiZszRv+uoVAyzhMmB6NOEHLEbVOgrIIopBBc/qEtl0NInXUJQqBU1f5+bl6PJE+RTDy4gRWEXhNibOwLAqT4olD2kazeLm/1xFRBRgFi6D5oG4DswgikEETVAXORKJiEQR6zxEJkvuAVQReM3Uh5E2MRjplEIFil5IV0LAv/FpLQaaOQjTKMvetIQjIVw7RCJwGrQgmzui/7gjDKgKvycqG4kui8XRcsw2yx+hiMr8pWQkYXbkdJs0HIC/f/2qULuMm6+84zMwhVwn52at4IPnFYHp0QVdY+N20fiA5efp3ZRWBJSlKVkDdDl35GCY12zWLKYgaQH0B45AtoaYDMCWg1FFIKMscpkXgTEwTR5Gb5Owp7Q0QpEUA/ZbQCMMqAj8oXanBuzDr7/T2Qu32YNxCABOn6WK9sC2h5gPBxQdcwi7L3FarlokfJUSGIuzA6cmAU0ddolR51UOsIvCDvoBxiJNiU6VmLwWlCECvFWZspPsstBwNLj7gEnYGTZCLyVzCtgjCCJC71wt7IZ0PWEXgB5PL9QktTDdJkIFil5IVmql0+kRw10yk5QiY3hAsAqf0QFgtK4P2lUNC4DQkiyCoFpUDyS/RDoc9XcFe12esIvADt/5OdYgWQe127S07dVFw13SVTu0bwV0zkaAzhlzyZ2o/2862YK/rEoZFkJ3rBE7DUgQhWgQYOFk/7KFxwhNFICI3icg+EakUkU8P8vkYEXnC+XyziJQnfPYZZ/8+EfG5k0iAlKzUGMHZU+Fcv2YbFF/sfQOe81GyvP/aYeA2rJ+yINjrhukv7+3RKpxBT4gQbuC0vVZ7Uo+dFOx1R+jq4owVgYhkA98EbgaWAHeIyMDCNvcAJ4wxC4CvAV92zl2C9ji+CLgJ+P+c8eJPyQpNrzseQv2d3h59Kg/SLQTqDps8N1xFMK5ImwQFSUGIk0NHg/6dBZk66jIxxNiIu6o46A5pYX7XPuKFRbAaqDTGHDTGnAUeB9YOOGYt8Ijz+ingOhERZ//jxphOY8whoNIZL/70ta4MIU7Q+JZ2DQtaEYBaBWEqgqCtAQi3GmdYvnII2SIIwR0G4Vp/x16FJ+/ShAiP8UIRlALHEt5XOfsGPcZpdt8KTEnyXABEZJ2IbBWRrQ0NDR6I7TMFJfrEFEbAOIxAsUvJCv1D7QihQmNoiiDEDBpX+YTiGiqGjnot9Bc0Qa8qdhk/FSQ7nO+6fg/s/jngvRUUm2CxMWa9MabCGFMxbVpAq0YzJaz6OzXbtMxFGJNiX8A44PvuPKn/nFNDuOcw+9mGbRGYXnVPBU1YFkFWVngppO7fl5ux5SFeKIJqYFbC+zJn36DHiEgOUAg0JXlufClZoVVIzwScTVKzXctcZIUQbim+xJEhYEXg9ikOQ/lBeA1q2utAsrT6a9CEFTjtbNc1MmFYBBDeorKTdTB+ipa68BgvFMEWYKGIzBWRPDT4u2HAMRuAu5zXtwK/M8YYZ//tTlbRXGAh8KoHMkWDvvo724O7Zk831L3pf8XRoRhbqJNxzfZgrxtWxpBLWGUm2mtVCQSZHeYSVsG9oBvSDCSs2Eh7nW9lRDJWBI7P/37gGWAP8KQxZpeIfFFEbnEOewiYIiKVwAPAp51zdwFPAruB3wAfM8ZEpKOLB7hukiADxg17oftMOPEBl5IVwVsEjZWAaIvKMAirLHNYvnIIzyIIukXlQMKyCHxsPuTJY4Qx5mng6QH7Ppfw+gzwF0Oc+yDwoBdyRI4JU2DSnGAnxTADxS4lK2DHT6D9OOR7788clKZKrXWUOy6Y6w3ELTPR2xtcoxTQyWHS7OCul8iEaeqWGm0WQUExnGnRHt1B/r211/lWSTg2weLYUrIi2Myhmm0wpiC8J2NICBhvD+6aTZXBryhOJL9EO6MF3c82TIsgO0fdUqPRIkiUIwh6ezVDy6d7torAb0pXOumUAdVtr3ndCRSH+NXOvBiQ4CwhY5zy0yHFByCcFNLuTlU8YT0ZQzj+8vY6zYobkx/sdV3CiI2catIHjajGCCzD0FeJdLv/1+ruhLqd/YvZwmLMRJh2QXCKoKNBW3KGqghCWGgUVr2dRMKIjYRpBUE4FoHPVpBVBH5TfAn6dByAe+j4Lujt6lc+YeIGjIOoyOlmDIWxhsAlDIugTxEE2LR+IGGU4A5rDYFLGCvJTx53rm0VQTwZW6B9jIPIHHKVTZiBYpfi5frHG8QkEXbqKIRTljlsXznopHiqMdhufGFbBGMLtbJvGBaBD4vJwCqCYChZqZO030/H1dt0wUlYWSSJ9LWuDMA91FQJ2XmaNRQWOXlafiAUd0HIMQLof2L1G2N8TaNMCpHgYyPt1iKIP6Urg3k6rnldlU7QFRkHY+YyTS0MIjbS8JY2owljJXUiBQHnl7fXqgIMutpqIkHHRs606DqZMJUfaC2xoL/rcZMhZ4wvw1tFEASuz95P99DZDl1MFgW3EEDeeJh2YTAWQcNemL7Y/+sMR9ALjcIqxZxI0LERH+vtpETQsZGTx31VflYRBMHMpZCV42/AuPZNLQAWdsZQIkEEjLtOw4nDMC0KiiBgd0FbTfhPxkFbBO7kWxBigBz6s6WCak/aXuur8rOKIAhyx+mKQD8tgr5AcZQUwXINJLZW+XeNxrcAo+mqYZNfrC0MgyrLHLavHDQmlZUT3NNxmGW3E8mfqT0/gmpP2u5vFzqrCIKiZKW/T8fVr0NBaXAlHZKhbw2Fj+6hhn26nebP0vuUcPvZdgTUz7a9LtzUUdCFixMDtISiECBPvH4QKaS9vVp51LqGRgClKzXQdeKQP+PXvB6d+IDLjIscl5ifimCvXiPMkhouQS406myHs+3hPxlDsP7y9lrtUxxWTSmXIL/rU426qthHd5hVBEHhZyXS0yeg+WD0FEHuWJi+xF9FUL9XM4Z8qNGeMkGWHgi78Foi+TODSx9trws/PgDBftdtNW+/pg9YRRAU05dAzlh/JkV3zCgFil38DhhHJWMI+t00QTwl9gVNo6AIAsyWaquJiBUUoEUQwApyqwiCIjtXc+v9UATHXgUESi/1fuxMKVmhLrHmg96P3XVGXW1RyBgCmOD0sw3Cbxw1i+D0Cf0+/Cbs8hIueeN1hXEgisBaBCOLkhW6wKrX4947xzarxTG20NtxvWDWat0e86HxXNN+TZmNQsYQ6IK2iTNGjLsgadyJ+aTP993b43s+fUoEZQm57Uijmj4qIkUi8pyI7He2kwc5ZrmIbBSRXSLypoh8IOGz74vIIRHZ7vwsz0SeyFOyEro6nJRHj+jthaqt/RNu1Ji2WPsjHNvs/dhRyhhyCSpwGnYp5kSC8pd3NIDpiYbyg+DWjbTV+N6ONFOL4NPA88aYhcDzzvuBnAI+ZIy5CLgJ+HcRmZTw+SeNMcudn+0ZyhNtSn1Ip2zYq7nMsy7zbkwvycqGslX+KIL6PeqKCbMhzUCCKsscduG1RILyl0dlMZlLfklwbkCfv+tMFcFa4BHn9SPA+wYeYIx5yxiz33ldA9QD0zK8bjyZslCf4rzMHHIn2KhaBACz1+ikfbrF23GP71S3kE/1V9IiKIsgCquKXYKyCKKymMwlf6a6w3p7/b1Oe63vyi9TRTDDGOP+1dcB53ViichqIA84kLD7Qcdl9DURGfI/WkTWichWEdna0NCQodghkZWl5Zm9LDVx7FWtehmFPPqhmLUaMOrC8pK6HRqAjxIFxXC6WZsE+Ul7rS4gjALjJkP2mOAsgrAX0bnkFwfTnjSATKlhFYGI/FZEdg7yszbxOGOMAYbMERSRYuAHwIeNMa4K/QywGFgFFAGfGup8Y8x6Y0yFMaZi2rQYGxRll+oE1nXam/GqXlW3UBQqjg5FaYW6cI5t8m7MjiZoq46eIgii9k5vr6MIImIRBFWWub1Wg6YTIvL/H0TBve5OfbDwWfkNqwiMMdcbY5YO8vML4LgzwbsT/aBr60WkAPgV8FljzKaEsWuN0gl8D4iwf8Mj5lwJPWehakvmY3U0aS3+KLuFQFtXzlzqbZyg7k3dRk4RBOAmcVeaRuXJGILJoHELr/kYNE2JggDWjQTUfChT19AG4C7n9V3ALwYeICJ5wM+AR40xTw34zFUigsYXdmYoT/SZvUafag69lPlYR152xrw887H8ZtZlUPUa9HR5M17dDt3OiJoicC2CGv+u4aaORsUigGAsgrYIBcghGIvA/Z36/F1nqgi+BLxLRPYD1zvvEZEKEfmuc8xtwNXA3YOkif5IRHYAO4CpwD9lKE/0GVugcYLDL2c+1qGXIHdCNFcUD2TOOzR11quMqbod6iOfMMWb8bwiCNdQ1HzlEEy2VFQWk7lMnAGIv/fdt17E3/vOyMYyxjQB1w2yfytwr/P6h8APhzj/2kyuH1vKr4TN34Kzp3SFYrocfkktjOxc72Tzi/KrdHvoD964sqIYKAYncJrn71NiVC2CzjboPKmuQD9or9W/96iQnavxiiAsAp8VgV1ZHAblV2UeJzhZr2sI5l7lnVx+MmGKTtwH/5D5WF2ndVFeFBVBEIHTvqDpdP+ukSp9q4t9Kj7XdcYJmkZI+YF+136uJWiv0Rpl485Zq+spVhGEgRsnyMQ9dNiJMZRf7Y1MQTD3nZrummnGVO0busI0Sk14Esn3uZ9tW632AIhK0BT895efDMZXnjJ+B8kDakdqFUEY9MUJMggYH3oR8vKh+BLPxPKduVdDT2fm2UNu3aKyVZnL5Ad+WwRt1RGcEH3OloraYjIX37/r2kBiQVYRhMX8a3RCO30i9XONgf2/1Yk1Sk+FwzHnCl1PcPD3mY1TtQUml8PEiOSTD8TvwGl7bTRdJODf03EUA+SgKaQdDd5lww0koFIiVhGExcIb1b1x4Hepn1u/G9qqYNGN3svlJ2PyNdX1rWczG6dqa3StAXh74NQP2vwvOZAyYwogd7x/CjCgfPqUcduT+hEbMSaQ8hJgFUF4lFXAuKL0JsW3ntHtwhu8lSkILrgJ6ndBy9H0zm+t1gBapBWBjymkZzugszV6FkFfkNxHiyB7jO9B05Tx87vubIOuU9YiGNFkZcPCd8H+Z1PvT7D/WY0NRM1PnAyLbtbtvt+kd36VGx+o8EYeP/DTTeL6yqNmEYC/LrE2p6RG1EqpBPFdB6D0rSIIk4U3aEpcKsXYTjVrsHVhzNxCLlMXwJQFsO/p9M4/tkWfDKO2ojiRvtIDPkyK7orlSCoCPy2CiC0mc3FjFn6kkLZbRTA6WHA9ZOXC7nMqcwzN3v+rXbkuuNk/ufzmgps1dfZMa+rnHnpRF6RFoVn9UPQ9JfpQZqItokFT6LcI/OhP3R6RXsUDGT8FsnL8UYAB9qW2iiBMxk1S99Cu/0rePbTjKSiar20v48qSP4PertQUIEBHIxzfoesRosyYfA2etlZ7P3Z7BFcVu+TPVJ92Z7u34xqjq6mjUnY7kawsXdPhi/VnLYLRw7Jb9Qs/8sfhj22v0yfiZbdGz1eaCqUrVZm98URq5x16UbfzIq4IQCetNh8UQVstjCmEvAnej50pfnUqO9UE3WegsMzbcb2iwKdFZW01GhzPHef92AOwiiBsFt2sC8O2DVqO6e288RhgYNlf+C6Wr4jAJbdr9dQTR5I/79Af9HcV1RXFiRSWQmuV9+NGcTGZi/vE7vV9u+NF0SIA/2IjrVVQEIzys4ogbPLGw/I7YNfP4OR5Oq/1dMOWh3QR2dSFwcnnF5fcoYvLtnwnueN7ezXVdt4747GIzi+LIIqLyVwKfVIE7u+xMKqKwCeLoLU6MCvIKoIosOo+LUL32veGPmbf09B6DFavC04uP5k0C5bcAq89mtzCq5pt6h9f/F7/ZfOCwjJdcep1y8ooLiZzyS/WGlpeK0A31hLQ03HK5M/UxIezp7wdt/VYYMrPKoIoMG2RpoNu/A9NDx1Ibw+88M/al3hRjLOFBnL5/bo4ast3hz927y/VgojLamrXjeHlpNjTrStYo6oIsnM1cOq5RVCl2XVRaVE5EDeD66SHAeOzHXCmJTB3WEaKQESKROQ5EdnvbAdd9iciPQlNaTYk7J8rIptFpFJEnnC6mY1Orv+CZlv84Svnfrbth9CwB677fDzcIslSVqFrKV7+t8EVoIsxmmFUfiWMLwpOvkzoc5N4qAjaa7UsSeEs78b0Gj9iI63VqvyyIvrc6qa1ermWwP27Cei7zvQ3+2ngeWPMQuB55/1gnDbGLHd+bknY/2Xga8aYBcAJ4J4M5YkvM5bAyru0YU3l8/37G/fDM5+F2VfAkrXhyecX130ezrSpMhiKQy9C80FYfmdwcmWK68bw0iJwJ9ioZs+AyuZHjCDKys+PbKnWY7qNiWtoLfCI8/oRtO9wUjh9iq8F3D7GKZ0/IrnxQZi+BB7/S3jlG/D6o/D990DOGHj/+ninjA7FzKUaON68HlqODX7M1oc1jW7J+wIVLSNc942Xk2Lf5BDhSdENknu5qKy1OrqBYujP4vJyLYH7ABEH1xAwwxjjqsE6YMYQx40Vka0isklE3ufsmwK0GGO6nfdVQIS/7QDImwB3bdCVs8/+L9jwcV25ePevNLg6Urnmf+r2hX8+97Pmg7qaevlfQu7YYOXKhLzxWlTQF0UQ4X+Twlma83+qyZvxens0SSCqqaOQUHnVa9eQBBYPGtbhLCK/BQZb2/3ZxDfGGCMiQz0GzDHGVIvIPOB3TsP6lOoLiMg6YB3A7NmzUzk1XkyYCh/6BTQd0H+o6RdqgbqRzKRZcNk6eOU/YM1Hofji/s9++wUNFF7x8dDES5tCj1NIW6v0wSCKi8lcElNIJ0zNfLyT9dDbHW3lJ6LuIa+/6/yZgfUjH9YiMMZcb4xZOsjPL4DjIlIM4Gzrhxij2tkeBH4PrACagEki4iqjMmDI36QxZr0xpsIYUzFtWkSzB7xCRIuzzVw68pWAy5UPaFbIT+6Gdqe2+5aHNEh89d9Fs87McBSUeRssbq2KdnwAvF9U1hbx1FGXSbOGdm2mQ1tVoFZQpq6hDcBdzuu7gHOKx4jIZBEZ47yeCrwD2G2MMcALwK3nO98yShhfBLc9qub1f14OD90Iv3pAC/Nd+UDY0qVHYan+Q3tFa1W04wPQL59XT8d9AfIIWwSg993qoSIIWOlnqgi+BLxLRPYD1zvvEZEKEXGTwy8EtorIG+jE/yVjzG7ns08BD4hIJRozeChDeSxxZs7lcM+z2sWspxP+5DNw+4/jaxUVlOpCIy86lRmjT5xRtwgmTNUy4Z5bBBFXBJPm6BqPrjOZj2VMoKuKIYkYwfkwxjQB1w2yfytwr/P6FWDQ4vGOq2h1JjJYRhgzl8HtPwpbCm8oTEghnXZBZmOdaYWz7dFXBOIEOL1SBK3VGoiNWmeygbjJHK1V6tbNhNMnoPt0rFxDFotlKLz0l8dhDYFLYZl3riHXVx711GnXJdaaZgvWRPqyw+LjGrJYLEPh/iN74TvuUwQxyJjzclFZa1X04wMAk5zvJd1e3In0rSq2FoHFEn8KSrU+kieTQ/BPiWlTWKZB/57u4Y8djhNH1P8edfKLne/aQ6UfYKaUVQQWi19k5+hTnVeKIDsvuoXXEiks03aqmbqHOk/CqUaYHANF4OV33XIEcsbCxOmZj5UkVhFYLH4yaU5qzXeGotXxlUe18Foi7hN8S4b37VpBcbAIQN12XrgBWxwrKMC4SAz+qiyWGDN5TuYTIsRjMZnL5HLdZqoA3fPjoggmzfbGNXTicOBWkFUEFouf9OWXn85snJaj/QHJqFNYpg1qThzObBxXgcbBNQSaQtpeAz1dmY1z4mjgys8qAovFT/rcJBk8KXad1uCr+6QddbJzVRlkagmdOAI54+IRFwFV1JnGRk6f0GZN1iKwWEYQkz3wl7sukslzM5cnKLyIjbQc0ck16msIXNy1BJkEjENyh1lFYLH4iReBU9fFEheLALyJjbQciY9bCPpXF2di/YXkDrOKwGLxk4kztPZOJk/HJw7ptihGFsHkco2NZNLQPQRfeUYUlAFiLQKLxTKArCynRHGGFkHeRO1FEBcmles23UkxJF95RuTkaWzEVdzp0HIExk6CcZO8kioprCKwWPxm0pzMnhKbD2l8IC6+csg8NtL3ZByTTCmXonnaVCpdQkgdBasILBb/mVyuLTfT7eMb0uSQEZmuJXDjInFyDYEqguaD6Z8fUkkNqwgsFr+ZskDLSJ9qTv3c3l6dFOMUHwBN+cwdn/5agmbnqXpKhiWdg2bKfDjdrK6tVOntVcvRWgQWywjEncyaKlM/92SdNumJU8YQqBuraF569wzqXskvhjETvZXLb4rm6bYpDaug9Zh+1yEov4wUgYgUichzIrLf2Z7TPUJErhGR7Qk/Z0Tkfc5n3xeRQwmfLc9EHoslkkyZr9t0JsVmJ/AYpzUELlPmQ9P+9M5tqoyfNQBQ5HzX6biH3N/VlIXeyZMkmVoEnwaeN8YsBJ533r8NY8wLxpjlxpjlwLXAKeDZhEM+6X5ujNmeoTwWS/SYNAeyctJTBG4GStwsAtAJ7cQR6D6b+rlNlf0KNE5MLgek37WVCo3O38fU+CmCtcAjzutHgPcNc/ytwK+NMRkkF1ssMSM7R5/o01EEjfshKzd+QVPQCc30pJ5OeaoZTjXF0yLIHasppOlkDjXthzGFoZTUyFQRzDDG1Dqv64AZwxx/O/DYgH0PisibIvI1ERkz1Ikisk5EtorI1oaGhgxEtlhCYMqC9CaHxv36ZJydUXvxcHBdHI0puodct0ocFQE4mUPpKALHCgohTXhYRSAivxWRnYP8rE08zhhjgCHz40SkGG1i/0zC7s8Ai4FVQBHwqaHON8asN8ZUGGMqpk2LSREqi8VlynydHHp7Uzuv8a1QXAWe4DZxTzVO4FpOsVYEacQIGitD+66Hfcwwxlw/1GciclxEio0xtc5EX3+eoW4DfmaM6avRmmBNdIrI94C/T1JuiyVeTFkA3We0MqVbk2Y4errUrbLkFn9l84uxhTBher/vO1maKrXtYxzdYeCkkJ6AjiaYkORq8LMd0FYVSqAYMncNbQDucl7fBfziPMfewQC3kKM8EBFB4ws7M5THYokm6aSQNh+C3m6YusgfmYJg6sL0LILJc7RkQxyZtli3DXuTP8d1G04NxwrKVBF8CXiXiOwHrnfeIyIVIvJd9yARKQdmAX8YcP6PRGQHsAOYCvxThvJYLNHEVQSp+Msb39JtXF1DoPedaoygMaapoy59imBP8uf0pY6Gc98ZRaCMMU3AdYPs3wrcm/D+MFA6yHHXZnJ9iyU25M9UV0n97uTPcRVBSO4CT5i6UFfanmqG8UXDH9/TBY37YP41/svmF4VlkJcP9SlYBI37AelfhxAwdmWxxRIEIjD9otQUQf1ubVg/tsA/ufxm2oW6Pb4rueObDkDPWZix1D+Z/EYEpi9OzTV0fJeWEckb759c58EqAoslKGZcBPV7ki8+d3xXvCdEgJmO/MkqguNOmHDGEn/kCYppi/W7TpaQv2urCCyWoJixBDrbtKbMcHR3qmtoZswVwcQZMH4qHN+R3PH1uzVjKM4BcoDpF8KpRuhoHP7Ysx2abmoVgcUyCph+kW6PJ+EeatirGUNxtwhEVJnVJZkQeHyXKoGcIdeWxoPpjkVTl4QCrN8DmFCVvlUEFktQTHf95UlMiu7EOXOZf/IExYylqth6uoc/9vju+LuFAIov0W3t9uGP7XOHXeSbOMNhFYHFEhRjC7TmULKTQ864/rLGcWbGUl1MN1zZhY4maD06MpTf+CItQFezffhj63ZqllFheN3YrCKwWIKkrAKqXhv+uJrt6irIyvZdJN9xn46rXz//cdXO76W0wl95gqJkBdRsG/646q1Qslz7W4eEVQQWS5CUVkB7DbRWD31M91moeR3KVgcnl59MWwxjCqDq1fMfV70VJEsn0JFA8XLt2Xy+znRdpzWOULYqMLEGwyoCiyVIypyn3eqtQx9Tt0NdKbNGiCLIyoLSS+HYMIqgaosGWePWlWwoXIVWcx5LqGabJgWE/F1bRWCxBMnMZZCdB1XnUQTHNut21mXByBQEsy7T1NDO9sE/7+1V11DppcHK5SelKzUV9sjGoY9xlWPI7jCrCCyWIMkZoy6DI68MfUzVqxo4LCgOTCzfmbUKTO/QCrBxH5xpDd1F4ilj8lWxHXpx6GOqtmgCwcRwS+tbRWCxBM38a9RdMJjvuLcXDr8Ms0eQNQA6wUv20JPiwd/rdt47AxMpEOZerZbOYJZQTzccfgnmvCN4uQZgFYHFEjQLrtenY3fyS6TuTeho0GNGEmMLYc4V8NYzg39+8PeaKjspvBRKX5h7tbbrHMw9VPO6WkELwq+9aRWBxRI0JSt1Yqx8/tzPKp/T7fzwJwfPWXQT1O+ClqNv33+2Qy2F+ecUMo4/s1brepD9z5772f7nAIF54VdatYrAYgma7Byd6N/6jZZdTmTnzzRtdOL0cGTzk0U36Xbfb96+f/+z0HUKlqw995y4kzsOFr4L9myA3p7+/cbArv+C8iuTK8/tM1YRWCxhcPEHtCjZ/uf699Xt0Cfmi28LTy4/mbpA00O3//DtFVjfeEJbWs65IjzZ/OSiP4OTx+HgC/37al7XTmzLbg1PrgQyUgQi8hcisktEekVkyPwnEblJRPaJSKWIfDph/1wR2ezsf0JEYtqbzmJJkQXvgokzYeM3+yfFV74BueNh6Z+HK5ufVPx3qH2jP0W2sVIto4oPj4xV1IOx+D1ahXXjN/v3vfINLSux5H2hiZVIphbBTuD9wJD5USKSDXwTuBlYAtwhIm5VqS8DXzPGLABOAPdkKI/FEg+yc+Cqv4MjL8POn2qm0I6fwKp7IuEq8I1L7oD8Ynj6k5pJ8/TfqfJbde/w58aVnDGw5q/hwO9g9wYNjO/6Oay+F8ZNClk4JdNWlXsAtPf8kKwGKo0xB51jHwfWisge4FrgTue4R4AvAP+ZiUwWS2y49G5VAv91H2TlaJvCqz8ZtlT+MmYivPtf4IkPwlcXQvdpeO+/j8yYSCJr/hp2/xye+rCW0Zh2QaS+64wUQZKUAomdOKqAy4ApQIsxpjth/zl9jV1EZB2wDmD27BGWYmYZneTkwZ1PwEv/qiUl3vG3mk000rnwvfCXT6kFtOC6kRsTSSQnDz74X/pd93TBVQ9A3oSwpepjWEUgIr8FZg7y0WeNMb/wXqTBMcasB9YDVFRUJNnrz2KJOOMmwQ3/GLYUwbPwev0ZTYwvghsfDFuKQRlWERhjMv22qoFZCe/LnH1NwCQRyXGsAne/xWKxWAIkiPTRLcBCJ0MoD7gd2GCMMcALgJs/dRcQmIVhsVgsFiXT9NE/E5Eq4HLgVyLyjLO/RESeBnCe9u8HngH2AE8aY3Y5Q3wKeEBEKtGYwUOZyGOxWCyW1BFj4udur6ioMFu3nqeMr8VisVjOQUReM8acs+bLriy2WCyWUY5VBBaLxTLKsYrAYrFYRjlWEVgsFssoJ5bBYhFpAI6kcMpUoNEncaLKaLxnGJ33PRrvGUbnfWd6z3OMMef0xYylIkgVEdk6WKR8JDMa7xlG532PxnuG0Xnfft2zdQ1ZLBbLKMcqAovFYhnljBZFsD5sAUJgNN4zjM77Ho33DKPzvn2551ERI7BYLBbL0IwWi8BisVgsQ2AVgcVisYxyRpQiEJGbRGSfiFSKyKcH+XyMiDzhfL5ZRMpDENNTkrjnB0Rkt4i8KSLPi8icMOT0muHuO+G4PxcRIyKxTzNM5p5F5Dbn+94lIj8OWkY/SOJvfLaIvCAi25y/83eHIaeXiMjDIlIvIjuH+FxE5OvO7+RNEVmZ0QWNMSPiB8gGDgDzgDzgDWDJgGP+GviW8/p24Imw5Q7gnq8BxjuvPxr3e072vp3j8oEXgU1ARdhyB/BdLwS2AZOd99PDljug+14PfNR5vQQ4HLbcHtz31cBKYOcQn78b+DUgwBpgcybXG0kWwWqg0hhz0BhzFngcWDvgmLXAI87rp4DrREQClNFrhr1nY8wLxphTzttNaCe4uJPMdw3wj8CXgTNBCucTydzzfcA3jTEnAIwx9QHL6AfJ3LcBCpzXhUBNgPL5gjHmRaD5PIesBR41yia022NxutcbSYqgFDiW8L7K2TfoMUYb5rSiDXHiSjL3nMg96FNE3Bn2vh1TeZYx5ldBCuYjyXzXi4BFIvJHEdkkIjcFJp1/JHPfXwA+6DTJehr4eDCihUqq//vnZdiexZaRgYh8EKgA3hm2LH4jIlnAvwF3hyxK0OSg7qE/QS2/F0VkmTGmJUyhAuAO4PvGmH8VkcuBH4jIUmNMb9iCxYWRZBFUA7MS3pc5+wY9RkRyUDOyKRDp/CGZe0ZErgc+C9xijOkMSDY/Ge6+84GlwO9F5DDqQ90Q84BxMt91FdoPvMsYcwh4C1UMcSaZ+74HeBLAGLMRGIsWZxvJJPW/nywjSRFsARaKyFwRyUODwRsGHLMBuMt5fSvwO+NEXmLKsPcsIiuAb6NKYCT4jGGY+zbGtBpjphpjyo0x5Whs5BZjTJz7mybz9/1z1BpARKairqKDAcroB8nc91HgOgARuRBVBA2BShk8G4APOdlDa4BWY0xtuoONGNeQMaZbRO4HnkEzDR42xuwSkS8CW40xG4CHULOxEg3E3B6exJmT5D1/FZgI/MSJix81xtwSmtAekOR9jyiSvOdngBtEZDfQA3zSGBNnizfZ+/474Dsi8gk0cHx3zB/wEJHHUKU+1Yl9fB7IBTDGfAuNhbwbqAROAR/O6Hox/31ZLBaLJUNGkmvIYrFYLGlgFYHFYrGMcqwisFgsllGOVQQWi8UyyrGKwGKxWEY5VhFYLBbLKMcqAovFYhnl/P/qv5Rh8FUg1AAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
@@ -181,11 +176,24 @@
}
],
"source": [
+ "ratio = 2\n",
+ "first = 1\n",
+ "(length,) = x.shape\n",
+ "slop = int(length/6)\n",
+ "second = ratio-first\n",
+ "odd = ratio % 2\n",
"\n",
- "x = np.linspace(0,0.1,1000)\n",
- "y = np.sin(100 * 2.0*np.pi*x+1.5*np.sin(30 * 2.0*np.pi*x))\n",
- "plt.plot(x, y, '-')\n",
- "plt.show()"
+ "first = int(first * length/ratio) \n",
+ "second = int( second * length/ratio) + odd\n",
+ "slop = np.array(np.append(np.zeros(first-slop) , (np.arange(slop))/slop))\n",
+ "#steep = np.ones(int(first * length/ratio)+ odd) - np.exp(-np.arange(int(first * length/ratio) + odd)/200)\n",
+ "steep = (np.ones(first) + slop)*0.5\n",
+ "\n",
+ "step = np.append(steep, np.ones(second))\n",
+ "m = np.sin(5 * 2.0 * np.pi * x) * step \n",
+ "plt.plot(x, step, '-')\n",
+ "plt.plot(x, m, '-')\n",
+ "plt.savefig('m_t.pgf', format='pgf')"
]
}
],
diff --git a/buch/papers/fm/Python animation/Bessel-FM.py b/buch/papers/fm/Python animation/Bessel-FM.py
index cf30e16..cb35ebd 100644
--- a/buch/papers/fm/Python animation/Bessel-FM.py
+++ b/buch/papers/fm/Python animation/Bessel-FM.py
@@ -4,39 +4,45 @@ from scipy.fft import fft, ifft, fftfreq
import scipy.special as sc
import scipy.fftpack
import matplotlib.pyplot as plt
-from matplotlib.widgets import Slider
-
-# Number of samplepoints
-N = 600
-# sample spacing
-T = 1.0 / 800.0
-x = np.linspace(0.01, N*T, N)
-beta = 1.0
-y_old = np.sin(100.0 * 2.0*np.pi*x+beta*np.sin(50.0 * 2.0*np.pi*x))
-y = 0*x;
-xf = fftfreq(N, 1 / 400)
-for k in range (-5, 5):
- y = sc.jv(k,beta)*np.sin((100.0+k*50) * 2.0*np.pi*x)
- yf = fft(y)
- plt.plot(xf, np.abs(yf))
-
-axbeta =plt.axes([0.25, 0.1, 0.65, 0.03])
-beta_slider = Slider(
-ax=axbeta,
-label="Beta",
-valmin=0.1,
-valmax=3,
-valinit=beta,
-)
-
-def update(val):
- line.set_ydata(fm(beta_slider.val))
- fig.canvas.draw_idle()
+import matplotlib as mpl
+# Use the pgf backend (must be set before pyplot imported)
+mpl.use('pgf')
+from matplotlib.widgets import Slider
+def fm(beta):
+ # Number of samplepoints
+ N = 600
+ # sample spacing
+ T = 1.0 / 1000.0
+ fc = 100.0
+ fm = 30.0
+ x = np.linspace(0.01, N*T, N)
+ #beta = 1.0
+ y_old = np.sin(fc * 2.0*np.pi*x+beta*np.sin(fm * 2.0*np.pi*x))
+ y = 0*x;
+ xf = fftfreq(N, 1 / N)
+ for k in range (-4, 4):
+ y = sc.jv(k,beta)*np.sin((fc+k*fm) * 2.0*np.pi*x)
+ yf = fft(y)/(fc*np.pi)
+ plt.plot(xf, np.abs(yf))
+ plt.xlim(-150, 150)
+ #plt.savefig('bessel.pgf', format='pgf')
+ plt.show()
-beta_slider.on_changed(update)
-plt.show()
+fm(1)
-yf_old = fft(y_old)
-plt.plot(xf, np.abs(yf_old))
-plt.show() \ No newline at end of file
+# Bessel-Funktion
+for n in range (-2,4):
+ x = np.linspace(-11,11,1000)
+ y = sc.jv(n,x)
+ plt.plot(x, y, '-',label='n='+str(n))
+#plt.plot([1,1],[sc.jv(0,1),sc.jv(-1,1)],)
+plt.xlim(-10,10)
+plt.grid(True)
+plt.ylabel('Bessel $J_n(\\beta)$')
+plt.xlabel(' $ \\beta $ ')
+plt.plot(x, y)
+plt.legend()
+#plt.show()
+plt.savefig('bessel.pgf', format='pgf')
+print(sc.jv(0,1)) \ No newline at end of file
diff --git a/buch/papers/fm/Python animation/m_t.pgf b/buch/papers/fm/Python animation/m_t.pgf
new file mode 100644
index 0000000..edcfb33
--- /dev/null
+++ b/buch/papers/fm/Python animation/m_t.pgf
@@ -0,0 +1,746 @@
+%% Creator: Matplotlib, PGF backend
+%%
+%% To include the figure in your LaTeX document, write
+%% \input{<filename>.pgf}
+%%
+%% Make sure the required packages are loaded in your preamble
+%% \usepackage{pgf}
+%%
+%% Also ensure that all the required font packages are loaded; for instance,
+%% the lmodern package is sometimes necessary when using math font.
+%% \usepackage{lmodern}
+%%
+%% Figures using additional raster images can only be included by \input if
+%% they are in the same directory as the main LaTeX file. For loading figures
+%% from other directories you can use the `import` package
+%% \usepackage{import}
+%%
+%% and then include the figures with
+%% \import{<path to file>}{<filename>.pgf}
+%%
+%% Matplotlib used the following preamble
+%% \usepackage{fontspec}
+%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/joshua/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/joshua/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/joshua/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}]
+%%
+\begingroup%
+\makeatletter%
+\begin{pgfpicture}%
+\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{4.000000in}}%
+\pgfusepath{use as bounding box, clip}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.000000pt}%
+\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetstrokeopacity{0.000000}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{6.000000in}{4.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathclose%
+\pgfusepath{}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetmiterjoin%
+\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.000000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetstrokeopacity{0.000000}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}%
+\pgfpathlineto{\pgfqpoint{5.400000in}{0.500000in}}%
+\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}%
+\pgfpathlineto{\pgfqpoint{0.750000in}{3.520000in}}%
+\pgfpathlineto{\pgfqpoint{0.750000in}{0.500000in}}%
+\pgfpathclose%
+\pgfusepath{fill}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.918664in}{0.500000in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.918664in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.0}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{1.772658in}{0.500000in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=1.772658in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.2}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{2.626653in}{0.500000in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=2.626653in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.4}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{3.480647in}{0.500000in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=3.480647in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.6}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{4.334642in}{0.500000in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=4.334642in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.8}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{5.188636in}{0.500000in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=5.188636in,y=0.402778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 1.0}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{0.637238in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.235508in, y=0.584477in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}1.00}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{0.980424in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.235508in, y=0.927663in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.75}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{1.323611in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.235508in, y=1.270849in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.50}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{1.666797in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.235508in, y=1.614035in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.25}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{2.009983in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.343533in, y=1.957221in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.00}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{2.353169in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.343533in, y=2.300407in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.25}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{2.696355in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.343533in, y=2.643594in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.50}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{3.039541in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.343533in, y=2.986780in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.75}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetbuttcap%
+\pgfsetroundjoin%
+\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetfillcolor{currentfill}%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{%
+\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}%
+\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}%
+\pgfusepath{stroke,fill}%
+}%
+\begin{pgfscope}%
+\pgfsys@transformshift{0.750000in}{3.382727in}%
+\pgfsys@useobject{currentmarker}{}%
+\end{pgfscope}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{textcolor}%
+\pgfsetfillcolor{textcolor}%
+\pgftext[x=0.343533in, y=3.329966in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 1.00}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.961364in}{2.696355in}}%
+\pgfpathlineto{\pgfqpoint{2.373982in}{2.696355in}}%
+\pgfpathlineto{\pgfqpoint{3.077645in}{3.382727in}}%
+\pgfpathlineto{\pgfqpoint{5.188636in}{3.382727in}}%
+\pgfpathlineto{\pgfqpoint{5.188636in}{3.382727in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfpathrectangle{\pgfqpoint{0.750000in}{0.500000in}}{\pgfqpoint{4.650000in}{3.020000in}}%
+\pgfusepath{clip}%
+\pgfsetrectcap%
+\pgfsetroundjoin%
+\pgfsetlinewidth{1.505625pt}%
+\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.961364in}{2.222083in}}%
+\pgfpathlineto{\pgfqpoint{0.993108in}{2.367402in}}%
+\pgfpathlineto{\pgfqpoint{1.019561in}{2.473982in}}%
+\pgfpathlineto{\pgfqpoint{1.040724in}{2.546802in}}%
+\pgfpathlineto{\pgfqpoint{1.056596in}{2.592979in}}%
+\pgfpathlineto{\pgfqpoint{1.072468in}{2.631215in}}%
+\pgfpathlineto{\pgfqpoint{1.088341in}{2.660988in}}%
+\pgfpathlineto{\pgfqpoint{1.098922in}{2.675931in}}%
+\pgfpathlineto{\pgfqpoint{1.109503in}{2.686839in}}%
+\pgfpathlineto{\pgfqpoint{1.120085in}{2.693647in}}%
+\pgfpathlineto{\pgfqpoint{1.130666in}{2.696313in}}%
+\pgfpathlineto{\pgfqpoint{1.141248in}{2.694822in}}%
+\pgfpathlineto{\pgfqpoint{1.151829in}{2.689182in}}%
+\pgfpathlineto{\pgfqpoint{1.162410in}{2.679428in}}%
+\pgfpathlineto{\pgfqpoint{1.172992in}{2.665619in}}%
+\pgfpathlineto{\pgfqpoint{1.183573in}{2.647837in}}%
+\pgfpathlineto{\pgfqpoint{1.199445in}{2.613960in}}%
+\pgfpathlineto{\pgfqpoint{1.215317in}{2.571856in}}%
+\pgfpathlineto{\pgfqpoint{1.231190in}{2.522098in}}%
+\pgfpathlineto{\pgfqpoint{1.252352in}{2.445035in}}%
+\pgfpathlineto{\pgfqpoint{1.278806in}{2.334146in}}%
+\pgfpathlineto{\pgfqpoint{1.310550in}{2.185325in}}%
+\pgfpathlineto{\pgfqpoint{1.421655in}{1.645905in}}%
+\pgfpathlineto{\pgfqpoint{1.448108in}{1.540247in}}%
+\pgfpathlineto{\pgfqpoint{1.469271in}{1.468321in}}%
+\pgfpathlineto{\pgfqpoint{1.485143in}{1.422894in}}%
+\pgfpathlineto{\pgfqpoint{1.501015in}{1.385464in}}%
+\pgfpathlineto{\pgfqpoint{1.516888in}{1.356540in}}%
+\pgfpathlineto{\pgfqpoint{1.527469in}{1.342183in}}%
+\pgfpathlineto{\pgfqpoint{1.538050in}{1.331872in}}%
+\pgfpathlineto{\pgfqpoint{1.548632in}{1.325669in}}%
+\pgfpathlineto{\pgfqpoint{1.559213in}{1.323611in}}%
+\pgfpathlineto{\pgfqpoint{1.569795in}{1.325711in}}%
+\pgfpathlineto{\pgfqpoint{1.580376in}{1.331956in}}%
+\pgfpathlineto{\pgfqpoint{1.590957in}{1.342308in}}%
+\pgfpathlineto{\pgfqpoint{1.601539in}{1.356705in}}%
+\pgfpathlineto{\pgfqpoint{1.617411in}{1.385688in}}%
+\pgfpathlineto{\pgfqpoint{1.633283in}{1.423174in}}%
+\pgfpathlineto{\pgfqpoint{1.649155in}{1.468653in}}%
+\pgfpathlineto{\pgfqpoint{1.670318in}{1.540640in}}%
+\pgfpathlineto{\pgfqpoint{1.691481in}{1.623984in}}%
+\pgfpathlineto{\pgfqpoint{1.717934in}{1.741037in}}%
+\pgfpathlineto{\pgfqpoint{1.754969in}{1.920906in}}%
+\pgfpathlineto{\pgfqpoint{1.829039in}{2.286606in}}%
+\pgfpathlineto{\pgfqpoint{1.855493in}{2.402871in}}%
+\pgfpathlineto{\pgfqpoint{1.876655in}{2.485395in}}%
+\pgfpathlineto{\pgfqpoint{1.897818in}{2.556416in}}%
+\pgfpathlineto{\pgfqpoint{1.913690in}{2.601088in}}%
+\pgfpathlineto{\pgfqpoint{1.929563in}{2.637708in}}%
+\pgfpathlineto{\pgfqpoint{1.945435in}{2.665778in}}%
+\pgfpathlineto{\pgfqpoint{1.956016in}{2.679547in}}%
+\pgfpathlineto{\pgfqpoint{1.966597in}{2.689260in}}%
+\pgfpathlineto{\pgfqpoint{1.977179in}{2.694858in}}%
+\pgfpathlineto{\pgfqpoint{1.987760in}{2.696307in}}%
+\pgfpathlineto{\pgfqpoint{1.998342in}{2.693599in}}%
+\pgfpathlineto{\pgfqpoint{2.008923in}{2.686749in}}%
+\pgfpathlineto{\pgfqpoint{2.019504in}{2.675800in}}%
+\pgfpathlineto{\pgfqpoint{2.030086in}{2.660817in}}%
+\pgfpathlineto{\pgfqpoint{2.045958in}{2.630985in}}%
+\pgfpathlineto{\pgfqpoint{2.061830in}{2.592694in}}%
+\pgfpathlineto{\pgfqpoint{2.077702in}{2.546466in}}%
+\pgfpathlineto{\pgfqpoint{2.098865in}{2.473584in}}%
+\pgfpathlineto{\pgfqpoint{2.120028in}{2.389486in}}%
+\pgfpathlineto{\pgfqpoint{2.146481in}{2.271711in}}%
+\pgfpathlineto{\pgfqpoint{2.183516in}{2.091294in}}%
+\pgfpathlineto{\pgfqpoint{2.257586in}{1.726215in}}%
+\pgfpathlineto{\pgfqpoint{2.284040in}{1.610703in}}%
+\pgfpathlineto{\pgfqpoint{2.305203in}{1.528957in}}%
+\pgfpathlineto{\pgfqpoint{2.326365in}{1.458849in}}%
+\pgfpathlineto{\pgfqpoint{2.342237in}{1.414938in}}%
+\pgfpathlineto{\pgfqpoint{2.358110in}{1.379133in}}%
+\pgfpathlineto{\pgfqpoint{2.400435in}{1.300923in}}%
+\pgfpathlineto{\pgfqpoint{2.411017in}{1.287575in}}%
+\pgfpathlineto{\pgfqpoint{2.421598in}{1.278578in}}%
+\pgfpathlineto{\pgfqpoint{2.432179in}{1.274111in}}%
+\pgfpathlineto{\pgfqpoint{2.442761in}{1.274326in}}%
+\pgfpathlineto{\pgfqpoint{2.453342in}{1.279345in}}%
+\pgfpathlineto{\pgfqpoint{2.463924in}{1.289257in}}%
+\pgfpathlineto{\pgfqpoint{2.474505in}{1.304122in}}%
+\pgfpathlineto{\pgfqpoint{2.485086in}{1.323962in}}%
+\pgfpathlineto{\pgfqpoint{2.500959in}{1.363022in}}%
+\pgfpathlineto{\pgfqpoint{2.516831in}{1.413067in}}%
+\pgfpathlineto{\pgfqpoint{2.532703in}{1.473735in}}%
+\pgfpathlineto{\pgfqpoint{2.553866in}{1.570194in}}%
+\pgfpathlineto{\pgfqpoint{2.575028in}{1.682799in}}%
+\pgfpathlineto{\pgfqpoint{2.601482in}{1.842735in}}%
+\pgfpathlineto{\pgfqpoint{2.633226in}{2.055389in}}%
+\pgfpathlineto{\pgfqpoint{2.728459in}{2.712794in}}%
+\pgfpathlineto{\pgfqpoint{2.754912in}{2.866609in}}%
+\pgfpathlineto{\pgfqpoint{2.776075in}{2.970913in}}%
+\pgfpathlineto{\pgfqpoint{2.791947in}{3.035961in}}%
+\pgfpathlineto{\pgfqpoint{2.807819in}{3.088287in}}%
+\pgfpathlineto{\pgfqpoint{2.818401in}{3.115544in}}%
+\pgfpathlineto{\pgfqpoint{2.828982in}{3.136361in}}%
+\pgfpathlineto{\pgfqpoint{2.839564in}{3.150485in}}%
+\pgfpathlineto{\pgfqpoint{2.850145in}{3.157708in}}%
+\pgfpathlineto{\pgfqpoint{2.855436in}{3.158677in}}%
+\pgfpathlineto{\pgfqpoint{2.860726in}{3.157860in}}%
+\pgfpathlineto{\pgfqpoint{2.866017in}{3.155244in}}%
+\pgfpathlineto{\pgfqpoint{2.876599in}{3.144569in}}%
+\pgfpathlineto{\pgfqpoint{2.887180in}{3.126596in}}%
+\pgfpathlineto{\pgfqpoint{2.897761in}{3.101314in}}%
+\pgfpathlineto{\pgfqpoint{2.908343in}{3.068761in}}%
+\pgfpathlineto{\pgfqpoint{2.924215in}{3.006498in}}%
+\pgfpathlineto{\pgfqpoint{2.940087in}{2.928568in}}%
+\pgfpathlineto{\pgfqpoint{2.955959in}{2.835706in}}%
+\pgfpathlineto{\pgfqpoint{2.977122in}{2.690371in}}%
+\pgfpathlineto{\pgfqpoint{2.998285in}{2.523160in}}%
+\pgfpathlineto{\pgfqpoint{3.024738in}{2.288895in}}%
+\pgfpathlineto{\pgfqpoint{3.061773in}{1.928914in}}%
+\pgfpathlineto{\pgfqpoint{3.109390in}{1.462671in}}%
+\pgfpathlineto{\pgfqpoint{3.135843in}{1.229526in}}%
+\pgfpathlineto{\pgfqpoint{3.157006in}{1.063841in}}%
+\pgfpathlineto{\pgfqpoint{3.178169in}{0.921048in}}%
+\pgfpathlineto{\pgfqpoint{3.194041in}{0.831078in}}%
+\pgfpathlineto{\pgfqpoint{3.209913in}{0.757165in}}%
+\pgfpathlineto{\pgfqpoint{3.225785in}{0.700319in}}%
+\pgfpathlineto{\pgfqpoint{3.236366in}{0.672294in}}%
+\pgfpathlineto{\pgfqpoint{3.246948in}{0.652372in}}%
+\pgfpathlineto{\pgfqpoint{3.257529in}{0.640675in}}%
+\pgfpathlineto{\pgfqpoint{3.262820in}{0.637934in}}%
+\pgfpathlineto{\pgfqpoint{3.268111in}{0.637273in}}%
+\pgfpathlineto{\pgfqpoint{3.273401in}{0.638691in}}%
+\pgfpathlineto{\pgfqpoint{3.278692in}{0.642186in}}%
+\pgfpathlineto{\pgfqpoint{3.289274in}{0.655385in}}%
+\pgfpathlineto{\pgfqpoint{3.299855in}{0.676791in}}%
+\pgfpathlineto{\pgfqpoint{3.310436in}{0.706272in}}%
+\pgfpathlineto{\pgfqpoint{3.321018in}{0.743651in}}%
+\pgfpathlineto{\pgfqpoint{3.336890in}{0.814020in}}%
+\pgfpathlineto{\pgfqpoint{3.352762in}{0.900680in}}%
+\pgfpathlineto{\pgfqpoint{3.368634in}{1.002450in}}%
+\pgfpathlineto{\pgfqpoint{3.389797in}{1.159225in}}%
+\pgfpathlineto{\pgfqpoint{3.416250in}{1.383646in}}%
+\pgfpathlineto{\pgfqpoint{3.447995in}{1.683359in}}%
+\pgfpathlineto{\pgfqpoint{3.553809in}{2.713731in}}%
+\pgfpathlineto{\pgfqpoint{3.580262in}{2.928394in}}%
+\pgfpathlineto{\pgfqpoint{3.601425in}{3.075502in}}%
+\pgfpathlineto{\pgfqpoint{3.617297in}{3.169087in}}%
+\pgfpathlineto{\pgfqpoint{3.633169in}{3.246883in}}%
+\pgfpathlineto{\pgfqpoint{3.649041in}{3.307831in}}%
+\pgfpathlineto{\pgfqpoint{3.659623in}{3.338682in}}%
+\pgfpathlineto{\pgfqpoint{3.670204in}{3.361485in}}%
+\pgfpathlineto{\pgfqpoint{3.680786in}{3.376101in}}%
+\pgfpathlineto{\pgfqpoint{3.686076in}{3.380309in}}%
+\pgfpathlineto{\pgfqpoint{3.691367in}{3.382440in}}%
+\pgfpathlineto{\pgfqpoint{3.696658in}{3.382493in}}%
+\pgfpathlineto{\pgfqpoint{3.701948in}{3.380466in}}%
+\pgfpathlineto{\pgfqpoint{3.707239in}{3.376363in}}%
+\pgfpathlineto{\pgfqpoint{3.717821in}{3.361955in}}%
+\pgfpathlineto{\pgfqpoint{3.728402in}{3.339358in}}%
+\pgfpathlineto{\pgfqpoint{3.738983in}{3.308708in}}%
+\pgfpathlineto{\pgfqpoint{3.749565in}{3.270190in}}%
+\pgfpathlineto{\pgfqpoint{3.765437in}{3.198184in}}%
+\pgfpathlineto{\pgfqpoint{3.781309in}{3.109994in}}%
+\pgfpathlineto{\pgfqpoint{3.802472in}{2.969336in}}%
+\pgfpathlineto{\pgfqpoint{3.823635in}{2.805466in}}%
+\pgfpathlineto{\pgfqpoint{3.850088in}{2.574075in}}%
+\pgfpathlineto{\pgfqpoint{3.887123in}{2.216460in}}%
+\pgfpathlineto{\pgfqpoint{3.966484in}{1.434106in}}%
+\pgfpathlineto{\pgfqpoint{3.992937in}{1.203977in}}%
+\pgfpathlineto{\pgfqpoint{4.014100in}{1.041407in}}%
+\pgfpathlineto{\pgfqpoint{4.035263in}{0.902271in}}%
+\pgfpathlineto{\pgfqpoint{4.051135in}{0.815347in}}%
+\pgfpathlineto{\pgfqpoint{4.067007in}{0.744696in}}%
+\pgfpathlineto{\pgfqpoint{4.082879in}{0.691279in}}%
+\pgfpathlineto{\pgfqpoint{4.093461in}{0.665613in}}%
+\pgfpathlineto{\pgfqpoint{4.104042in}{0.648090in}}%
+\pgfpathlineto{\pgfqpoint{4.114623in}{0.638817in}}%
+\pgfpathlineto{\pgfqpoint{4.119914in}{0.637294in}}%
+\pgfpathlineto{\pgfqpoint{4.125205in}{0.637851in}}%
+\pgfpathlineto{\pgfqpoint{4.130496in}{0.640487in}}%
+\pgfpathlineto{\pgfqpoint{4.135786in}{0.645197in}}%
+\pgfpathlineto{\pgfqpoint{4.146368in}{0.660811in}}%
+\pgfpathlineto{\pgfqpoint{4.156949in}{0.684597in}}%
+\pgfpathlineto{\pgfqpoint{4.167530in}{0.716413in}}%
+\pgfpathlineto{\pgfqpoint{4.178112in}{0.756065in}}%
+\pgfpathlineto{\pgfqpoint{4.193984in}{0.829697in}}%
+\pgfpathlineto{\pgfqpoint{4.209856in}{0.919407in}}%
+\pgfpathlineto{\pgfqpoint{4.231019in}{1.061888in}}%
+\pgfpathlineto{\pgfqpoint{4.252182in}{1.227307in}}%
+\pgfpathlineto{\pgfqpoint{4.278635in}{1.460197in}}%
+\pgfpathlineto{\pgfqpoint{4.315670in}{1.818993in}}%
+\pgfpathlineto{\pgfqpoint{4.395031in}{2.600031in}}%
+\pgfpathlineto{\pgfqpoint{4.421484in}{2.828606in}}%
+\pgfpathlineto{\pgfqpoint{4.442647in}{2.989587in}}%
+\pgfpathlineto{\pgfqpoint{4.463810in}{3.126867in}}%
+\pgfpathlineto{\pgfqpoint{4.479682in}{3.212251in}}%
+\pgfpathlineto{\pgfqpoint{4.495554in}{3.281259in}}%
+\pgfpathlineto{\pgfqpoint{4.506136in}{3.317692in}}%
+\pgfpathlineto{\pgfqpoint{4.516717in}{3.346203in}}%
+\pgfpathlineto{\pgfqpoint{4.527298in}{3.366619in}}%
+\pgfpathlineto{\pgfqpoint{4.537880in}{3.378817in}}%
+\pgfpathlineto{\pgfqpoint{4.543170in}{3.381810in}}%
+\pgfpathlineto{\pgfqpoint{4.548461in}{3.382723in}}%
+\pgfpathlineto{\pgfqpoint{4.553752in}{3.381558in}}%
+\pgfpathlineto{\pgfqpoint{4.559043in}{3.378314in}}%
+\pgfpathlineto{\pgfqpoint{4.569624in}{3.365615in}}%
+\pgfpathlineto{\pgfqpoint{4.580205in}{3.344704in}}%
+\pgfpathlineto{\pgfqpoint{4.590787in}{3.315707in}}%
+\pgfpathlineto{\pgfqpoint{4.601368in}{3.278801in}}%
+\pgfpathlineto{\pgfqpoint{4.617240in}{3.209112in}}%
+\pgfpathlineto{\pgfqpoint{4.633112in}{3.123089in}}%
+\pgfpathlineto{\pgfqpoint{4.648985in}{3.021904in}}%
+\pgfpathlineto{\pgfqpoint{4.670147in}{2.865815in}}%
+\pgfpathlineto{\pgfqpoint{4.696601in}{2.642076in}}%
+\pgfpathlineto{\pgfqpoint{4.728345in}{2.342894in}}%
+\pgfpathlineto{\pgfqpoint{4.834159in}{1.311803in}}%
+\pgfpathlineto{\pgfqpoint{4.860613in}{1.096395in}}%
+\pgfpathlineto{\pgfqpoint{4.881776in}{0.948559in}}%
+\pgfpathlineto{\pgfqpoint{4.897648in}{0.854361in}}%
+\pgfpathlineto{\pgfqpoint{4.913520in}{0.775905in}}%
+\pgfpathlineto{\pgfqpoint{4.929392in}{0.714259in}}%
+\pgfpathlineto{\pgfqpoint{4.939973in}{0.682925in}}%
+\pgfpathlineto{\pgfqpoint{4.950555in}{0.659631in}}%
+\pgfpathlineto{\pgfqpoint{4.961136in}{0.644516in}}%
+\pgfpathlineto{\pgfqpoint{4.966427in}{0.640057in}}%
+\pgfpathlineto{\pgfqpoint{4.971717in}{0.637673in}}%
+\pgfpathlineto{\pgfqpoint{4.977008in}{0.637368in}}%
+\pgfpathlineto{\pgfqpoint{4.982299in}{0.639143in}}%
+\pgfpathlineto{\pgfqpoint{4.987590in}{0.642995in}}%
+\pgfpathlineto{\pgfqpoint{4.998171in}{0.656903in}}%
+\pgfpathlineto{\pgfqpoint{5.008752in}{0.679007in}}%
+\pgfpathlineto{\pgfqpoint{5.019334in}{0.709174in}}%
+\pgfpathlineto{\pgfqpoint{5.029915in}{0.747222in}}%
+\pgfpathlineto{\pgfqpoint{5.045787in}{0.818551in}}%
+\pgfpathlineto{\pgfqpoint{5.061659in}{0.906109in}}%
+\pgfpathlineto{\pgfqpoint{5.082822in}{1.046008in}}%
+\pgfpathlineto{\pgfqpoint{5.103985in}{1.209229in}}%
+\pgfpathlineto{\pgfqpoint{5.130439in}{1.439992in}}%
+\pgfpathlineto{\pgfqpoint{5.167474in}{1.797104in}}%
+\pgfpathlineto{\pgfqpoint{5.188636in}{2.009983in}}%
+\pgfpathlineto{\pgfqpoint{5.188636in}{2.009983in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}%
+\pgfpathlineto{\pgfqpoint{0.750000in}{3.520000in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{5.400000in}{0.500000in}}%
+\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.750000in}{0.500000in}}%
+\pgfpathlineto{\pgfqpoint{5.400000in}{0.500000in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\begin{pgfscope}%
+\pgfsetrectcap%
+\pgfsetmiterjoin%
+\pgfsetlinewidth{0.803000pt}%
+\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}%
+\pgfsetstrokecolor{currentstroke}%
+\pgfsetdash{}{0pt}%
+\pgfpathmoveto{\pgfqpoint{0.750000in}{3.520000in}}%
+\pgfpathlineto{\pgfqpoint{5.400000in}{3.520000in}}%
+\pgfusepath{stroke}%
+\end{pgfscope}%
+\end{pgfpicture}%
+\makeatother%
+\endgroup%
diff --git a/buch/papers/fm/Quellen/NaT_Skript_20210920.pdf b/buch/papers/fm/Quellen/NaT_Skript_20210920.pdf
new file mode 100644
index 0000000..b9acc1f
--- /dev/null
+++ b/buch/papers/fm/Quellen/NaT_Skript_20210920.pdf
Binary files differ
diff --git a/buch/papers/fm/main.tex b/buch/papers/fm/main.tex
index 731f56f..0c98427 100644
--- a/buch/papers/fm/main.tex
+++ b/buch/papers/fm/main.tex
@@ -14,20 +14,9 @@
Die Frequenzmodulation ist eine Modulation die man auch schon im alten Radio findet.
Falls du dich an die Zeit erinnerst, konnte man zwischen \textit{FM-AM} Umschalten,
dies bedeutete so viel wie: \textit{F}requenz-\textit{M}odulation und \textit{A}mplituden-\textit{M}odulation.
-Durch die Modulation wird ein Nachrichtensignal \(m(t)\) auf ein Trägersignal (z.B. ein Sinus- oder Rechtecksignal) abgebildet (kombiniert).
-Durch dieses Auftragen vom Nachrichtensignal \(m(t)\) kann das modulierte Signal in einem gewünschten Frequenzbereich übertragen werden.
-Der ursprünglich Frequenzbereich des Nachrichtensignal \(m(t)\) erstreckt sich typischerweise von 0 Hz bis zur Bandbreite \(B_m\).
-\newline
-Beim Empfänger wird dann durch Demodulation das ursprüngliche Nachrichtensignal \(m(t)\) so originalgetreu wie möglich zurückgewonnen.
-\newline
-Beim Trägersignal \(x_c(t)\) handelt es sich um ein informationsloses Hilfssignal.
-Durch die Modulation mit dem Nachrichtensignal \(m(t)\) wird es zum modulierten zu übertragenden Signal.
-Für alle Erklärungen wird ein sinusförmiges Trägersignal benutzt, jedoch kann auch ein Rechtecksignal,
-welches Digital einfach umzusetzten ist,
-genauso als Trägersignal genutzt werden kann.
-Zuerst wird erklärt was \textit{FM-AM} ist, danach wie sich diese im Frequenzspektrum verhalten.
-Erst dann erklär ich dir wie die Besselfunktion mit der Frequenzmodulation( acro?) zusammenhängt.
-Nun zur Modulation im nächsten Abschnitt.\cite{fm:NAT}
+Um das Thema einwenig einzuschränken werde ich leider nichts über die Vertiefte, (Physikalische) zusammenhänge oder die Demodulation aufzeigen.
+Dieses Kapitel soll nurdie Frequenzmodulation und ihren zusammenhang mit der Besselfunktion erklären.
+Aber zuerst einmal zur Modulation selbst, wie funktioniert diese Mathematisch.
\input{papers/fm/00_modulation.tex}
diff --git a/buch/papers/sturmliouville/.gitignore b/buch/papers/sturmliouville/.gitignore
new file mode 100644
index 0000000..f08278d
--- /dev/null
+++ b/buch/papers/sturmliouville/.gitignore
@@ -0,0 +1 @@
+*.pdf \ No newline at end of file
diff --git a/buch/papers/sturmliouville/Makefile b/buch/papers/sturmliouville/Makefile
index da902e7..8d3e0af 100644
--- a/buch/papers/sturmliouville/Makefile
+++ b/buch/papers/sturmliouville/Makefile
@@ -1,9 +1,37 @@
#
-# Makefile -- make file for the paper sturmliouville
+# Makefile -- make file for the paper fm
#
# (c) 2020 Prof Dr Andreas Mueller
#
-images:
- @echo "no images to be created in sturmliouville"
+SOURCES := \
+ einleitung.tex\
+ eigenschaften.tex \
+ beispiele.tex \
+ main.tex
+#TIKZFIGURES := \
+ tikz/atoms-grid-still.tex \
+
+#FIGURES := $(patsubst tikz/%.tex, figures/%.pdf, $(TIKZFIGURES))
+
+#.PHONY: images
+#images: $(FIGURES)
+
+#figures/%.pdf: tikz/%.tex
+# mkdir -p figures
+# pdflatex --output-directory=figures $<
+
+.PHONY: standalone
+standalone: standalone.tex $(SOURCES) #$(FIGURES)
+ mkdir -p standalone
+ cd ../..; \
+ pdflatex \
+ --halt-on-error \
+ --shell-escape \
+ --output-directory=papers/sturmliouville/standalone \
+ --extra-mem-top=10000000 \
+ papers/sturmliouville/standalone.tex;
+ cd standalone; \
+ bibtex standalone; \
+ makeindex standalone; \ No newline at end of file
diff --git a/buch/papers/sturmliouville/Makefile.inc b/buch/papers/sturmliouville/Makefile.inc
index e2039ce..7ffdad2 100644
--- a/buch/papers/sturmliouville/Makefile.inc
+++ b/buch/papers/sturmliouville/Makefile.inc
@@ -3,12 +3,12 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-dependencies-sturmliouville = \
+dependencies-sturmliouville = \
papers/sturmliouville/packages.tex \
- papers/sturmliouville/main.tex \
+ papers/sturmliouville/main.tex \
papers/sturmliouville/references.bib \
- papers/sturmliouville/teil0.tex \
- papers/sturmliouville/teil1.tex \
- papers/sturmliouville/teil2.tex \
- papers/sturmliouville/teil3.tex
-
+ papers/sturmliouville/einleitung.tex \
+ papers/sturmliouville/eigenschaften.tex \
+ papers/sturmliouville/beispiele.tex \
+ papers/sturmliouville/waermeleitung_beispiel.tex \
+ papers/sturmliouville/tschebyscheff_beispiel.tex
diff --git a/buch/papers/sturmliouville/beispiele.tex b/buch/papers/sturmliouville/beispiele.tex
new file mode 100644
index 0000000..94082cf
--- /dev/null
+++ b/buch/papers/sturmliouville/beispiele.tex
@@ -0,0 +1,14 @@
+%
+% teil2.tex -- Beispiel-File für teil2
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Beispiele
+\label{sturmliouville:section:examples}}
+\rhead{Beispiele}
+
+% Fourier: Erik work
+\input{papers/sturmliouville/waermeleitung_beispiel.tex}
+
+% Tschebyscheff
+\input{papers/sturmliouville/tschebyscheff_beispiel.tex} \ No newline at end of file
diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex
new file mode 100644
index 0000000..85f0bf3
--- /dev/null
+++ b/buch/papers/sturmliouville/eigenschaften.tex
@@ -0,0 +1,79 @@
+%
+% eigenschaften.tex -- Eigenschaften der Lösungen
+% Author: Erik Löffler
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Eigenschaften von Lösungen
+\label{sturmliouville:section:solution-properties}}
+\rhead{Eigenschaften von Lösungen}
+
+Im weiteren werden nun die Eigenschaften der Lösungen eines
+Sturm-Liouville-Problems diskutiert und aufgezeigt, wie diese Eigenschaften
+zustande kommen.
+
+Dazu wird der Operator $L_0$ welcher bereits in
+Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} betrachtet
+wurde, noch etwas genauer angeschaut.
+Es wird also im Folgenden
+\[
+ L_0
+ =
+ -\frac{d}{dx}p(x)\frac{d}{dx}
+\]
+zusammen mit den Randbedingungen
+\[
+ \begin{aligned}
+ k_a y(a) + h_a p(a) y'(a) &= 0 \\
+ k_b y(b) + h_b p(b) y'(b) &= 0
+ \end{aligned}
+\]
+verwendet.
+Wie im Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} bereits
+gezeigt, resultieren die Randbedingungen aus der Anforderung den Operator $L_0$
+selbsadjungiert zu machen.
+Es wurde allerdings noch nicht darauf eingegangen, welche Eigenschaften dies
+für die Lösungen des Sturm-Liouville-Problems zur Folge hat.
+
+\subsubsection{Exkurs zum Spektralsatz}
+
+Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $L_0$ in
+den Lösungen hervorbringt, wird der Spektralsatz benötigt.
+
+Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix
+diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert.
+Dazu wird zunächst gezeigt, dass eine gegebene $n\times n$-Matrix $A$ aus einem
+endlichdimensionalem $\mathbb{K}$-Vektorraum selbstadjungiert ist, also dass
+\[
+ \langle Av, w \rangle
+ =
+ \langle v, Aw \rangle
+\]
+für $ v, w \in \mathbb{K}^n$ gilt.
+Ist dies der Fall, folgt direkt, dass $A$ auch normal ist.
+Dann wird die Aussage des Spektralsatzes
+\cite{sturmliouville:spektralsatz-wiki} verwended, welche besagt, dass für
+Endomorphismen genau dann eine Orthonormalbasis aus Eigenvektoren existiert,
+wenn sie normal sind und nur Eigenwerte aus $\mathbb{K}$ besitzten.
+
+Dies ist allerdings nicht die Einzige Version des Spektralsatzes.
+Unter anderen gibt es den Spektralsatz für kompakte Operatoren
+\cite{sturmliouville:spektralsatz-wiki}.
+Dieser besagt, dass wenn ein linearer kompakter Operator in
+$\mathbb{R}$ selbstadjungiert ist, ein (eventuell endliches)
+Orthonormalsystem existiert.
+
+\subsubsection{Anwendung des Spektralsatzes auf $L_0$}
+
+Der Spektralsatz besagt also, dass, weil $L_0$ selbstadjungiert ist, eine
+Orthonormalbasis aus Eigenvektoren existiert.
+Genauer bedeutet dies, dass alle Eigenvektoren, beziehungsweise alle Lösungen
+des Sturm-Liouville-Problems orthogonal zueinander sind bezüglich des
+Skalarprodukts, in dem $L_0$ selbstadjungiert ist.
+
+Erfüllt also eine Differenzialgleichung die in
+Abschnitt~\ref{sturmliouville:section:teil0} präsentierten Eigenschaften und
+erfüllen die Randbedingungen der Differentialgleichung die Randbedingungen
+des Sturm-Liouville-Problems, kann bereits geschlossen werden, dass die
+Lösungsfunktion des Problems eine Linearkombination aus orthogonalen
+Basisfunktionen ist. \ No newline at end of file
diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex
new file mode 100644
index 0000000..babc06d
--- /dev/null
+++ b/buch/papers/sturmliouville/einleitung.tex
@@ -0,0 +1,127 @@
+%
+% einleitung.tex -- Beispiel-File für die Einleitung
+% Author: Réda Haddouche
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}}
+\rhead{Einleitung}
+Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischer Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischer Mathematiker Joseph Liouville.
+Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt, welche für die Lösung von gewohnlichen Differentialgleichungen gilt, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen.
+Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mit Hilfe einiger Methoden in mehrere gewöhnliche Differentialgleichungen umwandeln, wie zum Beispiel mit dem Separationsansatz.
+
+\begin{definition}
+ \index{Sturm-Liouville-Gleichung}%
+Angenommen man hat die lineare homogene Differentialgleichung
+\[
+ \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0
+\]
+und schreibt die Gleichung um in:
+\begin{equation}
+ \label{eq:sturm-liouville-equation}
+ \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + \lambda w(x) \rbrack y = 0
+\end{equation}
+, diese Gleichung wird dann Sturm-Liouville-Gleichung bezeichnet.
+\end{definition}
+
+Alle homogenen, linearen, gewöhnlichen, Differentialgleichungen 2.Ordnung können in die Form der Gleichung~\eqref{eq:sturm-liouville-equation} gebracht werden.
+Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen des dritten Typs\footnote{Die Randbedingung des dritten Typs, oder Robin-Randbedingungen (benannt nach dem französischen mathematischen Analytiker und angewandten Mathematiker Victor Gustave Robin), wird genannt, wenn sie einer gewöhnlichen oder partiellen Differentialgleichung auferlegt wird, so sind die Spezifikationen einer Linearkombination der Werte einer Funktion sowie die Werte ihrer Ableitung am Rande des Bereichs}
+\begin{equation}
+\begin{aligned}
+ \label{eq:randbedingungen}
+ k_a y(a) + h_a p(a) y'(a) &= 0 \\
+ k_b y(b) + h_b p(b) y'(b) &= 0
+\end{aligned}
+\end{equation}
+kombiniert, wie schon im Kapitel \ref{sub:differentailgleichung} erwähnt, auf dem Intervall (a,b), dann bekommt man das klassische Sturm-Liouville-Problem.
+Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also
+\[
+ y(a) = y(b) = 0
+\]
+, so spricht man von einer Dirichlet-Randbedingung, und von einer Neumann-Randbedingung spricht man, wenn
+\[
+ y'(a) = y'(b) = 0
+\]
+ist. Die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden.
+Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{eq:randbedingungen}) kombiniert, nennt man Eigenfunktionen.
+Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst;
+der Parameter $\lambda$ wird als Eigenwert bezeichnet.
+Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren.
+Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren.
+Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar
+\[
+ \lambda \overset{Korrespondenz}\leftrightarrow y.
+\]
+
+Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y -
+dies gilt für das Intervall (a,b).
+Somit ergibt die Gleichung
+\[
+ \int_{a}^{b} w(x)y_m y_n = 0.
+\]
+
+Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet.
+Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet.
+Es gibt zwei verschiedene Sturm-Liouville-Probleme: das reguläre Sturm-Liouville-Problem und das singuläre Sturm-Liouville-Problem.
+Die Funktionen für das reguläre und das singuläre Sturm-Liouville-Problem sind nicht dieselben.
+
+%
+%Kapitel mit "Das reguläre Sturm-Liouville-Problem"
+%
+
+\subsection{Das reguläre Sturm-Liouville-Problem\label{sub:reguläre_sturm_liouville_problem}}
+Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden.
+\begin{definition}
+ \label{def:reguläres_sturm-liouville-problem}
+ \index{regläres Sturm-Liouville-Problem}
+ Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind:
+ \begin{itemize}
+ \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein.
+ \item sowie müssen in einem Endlichen Intervall $[ \ a,b] \ $ integrierbar sein.
+ \item $p(x)^{-1}$ und $w(x)$ sind $>0$.
+ \item Es gelten die Randbedingungen \ref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$.
+ \end{itemize}
+\end{definition}
+Bei einem regulären Sturm-Liouville-Problem geht es darum, ohne genaue Kenntnis der Eigenfunktionen diese dennoch beschreiben zu können.
+
+
+%
+%Kapitel mit "Das singuläre Sturm-Liouville-Problem"
+%
+
+
+\subsection{Das singuläre Sturm-Liouville-Problem\label{sub:singuläre_sturm_liouville_problem}}
+Von einem singulären Sturm-Liouville-Problem spricht man, wenn die Bedingungen des regulären Problems nicht erfüllt sind.
+\begin{definition}
+ \label{def:singulär_sturm-liouville-problem}
+ \index{singuläres Sturm-Liouville-Problem}
+Es handelt sich um ein singuläres Sturm-Liouville-Problem,
+ \begin{itemize}
+ \item wenn sein Definitionsbereich auf dem Intervall $[ \ a,b] \ $ unbeschränkt ist oder
+ \item wenn die Koeffizienten an den Randpunkten Singularitäten haben.
+ \end{itemize}
+\end{definition}
+Allerdings kann auch nur eine der Bedingungen nicht erfüllt sein, so dass es sich bereits um ein singuläres Sturm-Liouville-Problem handelt.
+
+\begin{beispiel}
+ Das Randwertproblem
+ \[
+ \begin{aligned}
+ x^2y'' + xy' + (\lambda^2x^2 - m^2)y &= 0, 0<x<a,\\
+ y(a) &= 0
+ \end{aligned}
+ \]
+ ist kein reguläres Sturm-Liouville-Problem.
+ Weil wenn man die Gleichung in die Sturm-Liouville Form bringt, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$.
+ Schaut man jetzt die Bedingungen im Kapitel~\ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese mit unseren Koeffizientenfunktionen, so erkennt man einige Probleme:
+ \begin{itemize}
+ \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist.
+ \item $q(x)$ ist nicht kontinuierlich, wenn $x = 0$ ist.
+ \item Die Randbedingung bei $x = 0$ fehlt.
+ \end{itemize}
+\end{beispiel}
+
+Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung fundierte Ergebnisse hat.
+Es ist schwierig, bestehende Kriterien anzuwenden, da die Formulierungen z.B. in der Lösungsfunktion liegen.
+Das Spektrum besteht im singulärem Problem nicht mehr nur aus Eigenwerten, sondern kann auch einen stetigen Anteil enthalten.
+Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin eine verallgemeinerte Eigenfunktionen.
diff --git a/buch/papers/sturmliouville/main.tex b/buch/papers/sturmliouville/main.tex
index a7d2857..4b5b8af 100644
--- a/buch/papers/sturmliouville/main.tex
+++ b/buch/papers/sturmliouville/main.tex
@@ -1,36 +1,20 @@
+% !TeX root = ../../buch.tex
%
% main.tex -- Paper zum Thema <sturmliouville>
%
% (c) 2020 Hochschule Rapperswil
%
-\chapter{Thema\label{chapter:sturmliouville}}
-\lhead{Thema}
+\chapter{Sturm-Liouville-Problem\label{chapter:sturmliouville}}
+\lhead{Sturm-Liouville-Problem}
\begin{refsection}
-\chapterauthor{Hans Muster}
+\chapterauthor{Réda Haddouche und Erik Löffler}
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
-
-\input{papers/sturmliouville/teil0.tex}
-\input{papers/sturmliouville/teil1.tex}
-\input{papers/sturmliouville/teil2.tex}
-\input{papers/sturmliouville/teil3.tex}
+\input{papers/sturmliouville/einleitung.tex}
+%einleitung "was ist das sturm-liouville-problem"
+\input{papers/sturmliouville/eigenschaften.tex}
+%Eigenschaften von Lösungen eines solchen Problems
+\input{papers/sturmliouville/beispiele.tex}
+%Beispiele sind: Wärmeleitung in einem Stab, Tschebyscheff-Polynome
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/sturmliouville/references.bib b/buch/papers/sturmliouville/references.bib
index f66a74d..0c4724b 100644
--- a/buch/papers/sturmliouville/references.bib
+++ b/buch/papers/sturmliouville/references.bib
@@ -4,6 +4,19 @@
% (c) 2020 Autor, Hochschule Rapperswil
%
+@online{sturmliouville:spektralsatz-wiki,
+ title = {Spektralsatz},
+ url = {https://de.wikipedia.org/wiki/Spektralsatz},
+ date = {2020-08-15},
+ year = {2020},
+ month = {8},
+ day = {15}
+}
+
+%
+% examples (not referenced in book)
+%
+
@online{sturmliouville:bibtex,
title = {BibTeX},
url = {https://de.wikipedia.org/wiki/BibTeX},
diff --git a/buch/papers/sturmliouville/teil0.tex b/buch/papers/sturmliouville/teil0.tex
deleted file mode 100644
index ffcb8f3..0000000
--- a/buch/papers/sturmliouville/teil0.tex
+++ /dev/null
@@ -1,22 +0,0 @@
-%
-% einleitung.tex -- Beispiel-File für die Einleitung
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 0\label{sturmliouville:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{sturmliouville:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
-
-
diff --git a/buch/papers/sturmliouville/teil1.tex b/buch/papers/sturmliouville/teil1.tex
deleted file mode 100644
index c23c1d6..0000000
--- a/buch/papers/sturmliouville/teil1.tex
+++ /dev/null
@@ -1,55 +0,0 @@
-%
-% teil1.tex -- Beispiel-File für das Paper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 1
-\label{sturmliouville:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{sturmliouville:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{sturmliouville:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{sturmliouville:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{sturmliouville:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
-
-
diff --git a/buch/papers/sturmliouville/teil2.tex b/buch/papers/sturmliouville/teil2.tex
deleted file mode 100644
index 7fc3d2c..0000000
--- a/buch/papers/sturmliouville/teil2.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{sturmliouville:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{sturmliouville:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/sturmliouville/teil3.tex b/buch/papers/sturmliouville/teil3.tex
deleted file mode 100644
index 3aa1b40..0000000
--- a/buch/papers/sturmliouville/teil3.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{sturmliouville:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{sturmliouville:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
new file mode 100644
index 0000000..e86e742
--- /dev/null
+++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex
@@ -0,0 +1,60 @@
+%
+% tschebyscheff_beispiel.tex
+% Author: Réda Haddouche
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+\subsection{Tschebyscheff-Polynome\label{sub:tschebyscheff-polynome}}
+Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen die man braucht schon aufgelistet, und zwar mit
+\begin{align*}
+ w(x) &= \frac{1}{\sqrt{1-x^2}} \\
+ p(x) &= \sqrt{1-x^2} \\
+ q(x) &= 0.
+\end{align*}
+Da die Sturm-Liouville-Gleichung
+\begin{equation}
+ \label{eq:sturm-liouville-equation-tscheby}
+ \frac{d}{dx}\lbrack \sqrt{1-x^2} \frac{dy}{dx} \rbrack + \lbrack 0 + \lambda \frac{1}{\sqrt{1-x^2}} \rbrack y = 0
+\end{equation}
+nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt.
+Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein - und sie sind es auch.
+Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen
+\[
+ T_n(x) = \cos n (\arccos x).
+\]
+Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus:
+\[
+ T_n(x) = \left\{\begin{array}{ll} \cosh (n \arccos x), & x > 1\\
+ (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right.,
+\]
+jedoch ist die Orthogonalität nur auf dem Intervall $[ -1, 1]$ sichergestellt.
+Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^{-1}$ und $w(x)>0$ sein müssen.
+Die Funktion
+\begin{equation*}
+ p(x)^{-1} = \frac{1}{\sqrt{1-x^2}}
+\end{equation*}
+ist die gleiche wie $w(x)$.
+
+Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$.
+Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt.
+Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man
+\[
+\begin{aligned}
+ k_a y(-1) + h_a y'(-1) &= 0 \\
+ k_b y(-1) + h_b y'(-1) &= 0.
+\end{aligned}
+\]
+Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \ref{sub:definiton_der_tschebyscheff-Polynome}).
+Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$.
+Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}).
+Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$.
+Somit erhält man
+\[
+ \begin{aligned}
+ k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\
+ k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0.
+\end{aligned}
+\]
+Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab können, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden.
+Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auch die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind.
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
new file mode 100644
index 0000000..7a37b2b
--- /dev/null
+++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex
@@ -0,0 +1,675 @@
+%
+% waermeleitung_beispiel.tex -- Beispiel Wärmeleitung in homogenem Stab.
+% Author: Erik Löffler
+%
+% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+\subsection{Wärmeleitung in einem Homogenen Stab}
+
+In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab
+betrachtet und wie das Sturm-Liouville-Problem bei der Beschreibung dieses
+physikalischen Phänomenes auftritt.
+
+Zunächst wird ein eindimensionaler homogener Stab der Länge $l$ und
+Wärmeleitkoeffizient $\kappa$ betrachtet.
+Es ergibt sich für das Wärmeleitungsproblem
+die partielle Differentialgleichung
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-heat-equation}
+ \frac{\partial u}{\partial t} =
+ \kappa \frac{\partial^{2}u}{{\partial x}^{2}},
+\end{equation}
+wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt.
+
+Da diese Differentialgleichung das Problem allgemein für einen homogenen
+Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise
+die Lösung für einen Stab zu finden, bei dem die Enden auf konstanter
+Tempreatur gehalten werden.
+
+%
+% Randbedingungen für Stab mit konstanten Endtemperaturen
+%
+\subsubsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur}
+
+Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die
+Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene
+Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen.
+Es folgen nun
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
+ u(t,0)
+ =
+ u(t,l)
+ =
+ 0
+\end{equation}
+als Randbedingungen.
+
+%
+% Randbedingungen für Stab mit isolierten Enden
+%
+
+\subsubsection{Randbedingungen für Stab mit isolierten Enden}
+
+Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und
+$x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab
+an die Umgebung oder von der Umgebung an den Stab abgegeben wird.
+
+Aus der Physik ist bekannt, dass Wärme immer von der höheren zur tieferen
+Temperatur fliesst. Um Wärmefluss zu unterdrücken, muss also dafür gesorgt
+werden, dass am Rand des Stabes keine Temperaturdifferenz existiert oder
+dass die partiellen Ableitungen von $u(t,x)$ nach $x$ bei $x = 0$ und $x = l$
+verschwinden.
+Somit folgen
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
+ \frac{\partial}{\partial x} u(t, 0)
+ =
+ \frac{\partial}{\partial x} u(t, l)
+ =
+ 0
+\end{equation}
+als Randbedingungen.
+
+%
+% Lösung der Differenzialgleichung mittels Separation
+%
+
+\subsubsection{Lösung der Differenzialgleichung}
+
+Da die Lösungsfunktion von zwei Variablen abhängig ist, wird als Lösungsansatz
+die Separationsmethode verwendet.
+Dazu wird
+\[
+ u(t,x)
+ =
+ T(t)X(x)
+\]
+in die partielle
+Differenzialgleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation}
+eingesetzt.
+Daraus ergibt sich
+\[
+ T^{\prime}(t)X(x)
+ =
+ \kappa T(t)X^{\prime \prime}(x)
+\]
+als neue Form.
+
+Nun können alle von $t$ abhängigen Ausdrücke auf die linke Seite, sowie alle
+von $x$ abhängigen Ausdrücke auf die rechte Seite gebracht werden und mittels
+der neuen Variablen $\mu$ gekoppelt werden:
+\[
+ \frac{T^{\prime}(t)}{\kappa T(t)}
+ =
+ \frac{X^{\prime \prime}(x)}{X(x)}
+ =
+ \mu
+\]
+Durch die Einführung von $\mu$ kann das Problem nun in zwei separate
+Differenzialgleichungen aufgeteilt werden:
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-separated-x}
+ X^{\prime \prime}(x) - \mu X(x)
+ =
+ 0
+\end{equation}
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-separated-t}
+ T^{\prime}(t) - \kappa \mu T(t)
+ =
+ 0
+\end{equation}
+
+%
+% Überprüfung Orthogonalität der Lösungen
+%
+
+Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in
+Sturm-Liouville-Form ist.
+Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des
+Sturm-Liouville-Problems, kann bereits die Aussage getroffen werden, dass alle
+Lösungen für die Gleichung in $x$ orthogonal sein werden.
+
+Da die Bedingungen des Stab-Problem nur Anforderungen an $x$ stellen, können
+diese direkt für $X(x)$ übernomen werden. Es gilt also $X(0) = X(l) = 0$.
+Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen
+\begin{equation}
+\begin{aligned}
+ \label{sturmliouville:eq:example-fourier-randbedingungen}
+ k_a X(a) + h_a p(a) X'(a) &= 0 \\
+ k_b X(b) + h_b p(b) X'(b) &= 0
+\end{aligned}
+\end{equation}
+erfüllt sein und es muss ausserdem
+\begin{equation}
+\begin{aligned}
+ \label{sturmliouville:eq:example-fourier-coefficient-constraints}
+ |k_a|^2 + |h_a|^2 &\neq 0\\
+ |k_b|^2 + |h_b|^2 &\neq 0\\
+\end{aligned}
+\end{equation}
+gelten.
+
+Um zu verifizieren, ob die Randbedingungen erfüllt sind, wird zunächst
+$p(x)$
+benötigt.
+Dazu wird die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x}
+mit der
+Sturm-Liouville-Form~\eqref{eq:sturm-liouville-equation} verglichen, was zu
+$p(x) = 1$ führt.
+
+Werden nun $p(x)$ und die
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
+in \eqref{sturmliouville:eq:example-fourier-randbedingungen} eigesetzt, erhält
+man
+\[
+\begin{aligned}
+ k_a y(0) + h_a y'(0) &= h_a y'(0) = 0 \\
+ k_b y(l) + h_b y'(l) &= h_b y'(l) = 0.
+\end{aligned}
+\]
+Damit die Gleichungen erfüllt sind, müssen $h_a = 0$ und $h_b = 0$ sein.
+Zusätzlich müssen aber die
+Bedingungen~\eqref{sturmliouville:eq:example-fourier-coefficient-constraints}
+erfüllt sein und da $y(0) = 0$ und $y(l) = 0$ sind, können belibige $k_a \neq 0$
+und $k_b \neq 0$ gewählt werden.
+
+Somit ist gezeigt, dass die Randbedingungen des Stab-Problems für Enden auf
+konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen und
+alle daraus reultierenden Lösungen orthogonal sind.
+Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit
+isolierten Enden ebenfalls die Sturm-Liouville-Randbedingungen erfüllen und
+somit auch zu orthogonalen Lösungen führen.
+
+%
+% Lösung von X(x), Teil mu
+%
+
+\subsubsection{Lösund der Differentialgleichung in x}
+Als erstes wird auf die
+Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen.
+Aufgrund der Struktur der Gleichung
+\[
+ X^{\prime \prime}(x) - \mu X(x)
+ =
+ 0
+\]
+wird ein trigonometrischer Ansatz gewählt.
+Die Lösungen für $X(x)$ sind also von der Form
+\[
+ X(x)
+ =
+ A \cos \left( \alpha x\right) + B \sin \left( \beta x\right).
+\]
+
+Dieser Ansatz wird nun solange differenziert, bis alle in
+Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} enthaltenen
+Ableitungen vorhanden sind.
+Man erhält also
+\[
+ X^{\prime}(x)
+ =
+ - \alpha A \sin \left( \alpha x \right) +
+ \beta B \cos \left( \beta x \right)
+\]
+und
+\[
+ X^{\prime \prime}(x)
+ =
+ -\alpha^{2} A \cos \left( \alpha x \right) -
+ \beta^{2} B \sin \left( \beta x \right).
+\]
+
+Eingesetzt in Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x}
+ergibt dies
+\[
+ -\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x) -
+ \mu\left(A\cos(\alpha x) + B\sin(\beta x)\right)
+ =
+ 0
+\]
+und durch umformen somit
+\[
+ -\alpha^{2}A\cos(\alpha x) - \beta^{2}B\sin(\beta x)
+ =
+ \mu A\cos(\alpha x) + \mu B\sin(\beta x).
+\]
+
+Mittels Koeffizientenvergleich von
+\[
+\begin{aligned}
+ -\alpha^{2}A\cos(\alpha x)
+ &=
+ \mu A\cos(\alpha x)
+ \\
+ -\beta^{2}B\sin(\beta x)
+ &=
+ \mu B\sin(\beta x)
+\end{aligned}
+\]
+ist schnell ersichtlich, dass $ \mu = -\alpha^{2} = -\beta^{2} $ gelten muss für
+$ A \neq 0 $ oder $ B \neq 0 $.
+Zur Berechnung von $ \mu $ bleiben also noch $ \alpha $ und $ \beta $ zu
+bestimmen.
+Dazu werden nochmals die
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
+und \eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
+benötigt.
+
+Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ uns $\beta$ im
+allgemeninen ungleich $0$ sind, müssen die Randbedingungen durch die
+trigonometrischen Funktionen erfüllt werden.
+
+Es werden nun die
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}
+für einen Stab mit Enden auf konstanter Temperatur in die
+Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingesetzt.
+Betrachten wir zunächst die Bedingung für $x = 0$.
+Dies fürht zu
+\[
+ X(0)
+ =
+ A \cos(0 \alpha) + B \sin(0 \beta)
+ =
+ 0.
+\]
+Da $\cos(0) \neq 0$ ist, muss in diesem Fall $A = 0$ gelten.
+Für den zweiten Summanden ist wegen $\sin(0) = 0$ die Randbedingung erfüllt.
+
+Wird nun die zweite Randbedingung für $x = l$ mit $A = 0$ eingesetzt, ergibt
+sich
+\[
+ X(l)
+ =
+ 0 \cos(\alpha l) + B \sin(\beta l)
+ =
+ B \sin(\beta l)
+ = 0.
+\]
+
+$\beta$ muss also so gewählt werden, dass $\sin(\beta l) = 0$ gilt.
+Es bleibt noch nach $\beta$ aufzulösen:
+\[
+\begin{aligned}
+ \sin(\beta l) &= 0 \\
+ \beta l &= n \pi \qquad n \in \mathbb{N} \\
+ \beta &= \frac{n \pi}{l} \qquad n \in \mathbb{N}
+\end{aligned}
+\]
+
+Es folgt nun wegen $\mu = -\beta^{2}$, dass
+\[
+ \mu_1 = -\beta^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}
+\]
+sein muss.
+Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist.
+Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine
+Verletzung der Randbedingungen.
+
+Durch alanoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst
+werden.
+Setzt man nun die
+Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}
+in $X^{\prime}$ ein, beginnend für $x = 0$. Es ergibt sich
+\[
+ X^{\prime}(0)
+ =
+ -\alpha A \sin(0 \alpha) + \beta B \cos(0 \beta)
+ = 0.
+\]
+In diesem Fall muss $B = 0$ gelten.
+Zusammen mit der Bedignung für $x = l$
+folgt nun
+\[
+ X^{\prime}(l)
+ =
+ - \alpha A \sin(\alpha l) + 0 \beta \cos(\beta l)
+ =
+ - \alpha A \sin(\alpha l)
+ = 0.
+\]
+
+Wiedrum muss über die $\sin$-Funktion sicher gestellt werden, dass der
+Ausdruck den Randbedingungen entspricht.
+Es folgt nun
+\[
+\begin{aligned}
+ \sin(\alpha l) &= 0 \\
+ \alpha l &= n \pi \qquad n \in \mathbb{N} \\
+ \alpha &= \frac{n \pi}{l} \qquad n \in \mathbb{N}
+\end{aligned}
+\]
+und somit
+\[
+ \mu_2 = -\alpha^{2} = -\frac{n^{2}\pi^{2}}{l^{2}}.
+\]
+
+Es ergibt sich also sowohl für einen Stab mit Enden auf konstanter Temperatur
+wie auch mit isolierten Enden
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-mu-solution}
+ \mu
+ =
+ -\frac{n^{2}\pi^{2}}{l^{2}}.
+\end{equation}
+
+%
+% Lösung von X(x), Teil: Koeffizienten a_n und b_n mittels skalarprodukt.
+%
+
+Bisher wurde über die Koeffizienten $A$ und $B$ noch nicht viel ausgesagt.
+Zunächst ist wegen vorhergehender Rechnung ersichtlich, dass es sich bei
+$A$ und $B$ nicht um einzelne Koeffizienten handelt.
+Stattdessen können die Koeffizienten für jedes $n \in \mathbb{N}$
+unterschiedlich sein.
+Die Lösung $X(x)$ wird nun umgeschrieben zu
+\[
+ X(x)
+ =
+ a_0
+ +
+ \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right).
+\]
+
+Um eine eindeutige Lösung für $X(x)$ zu erhalten werden noch weitere
+Bedingungen benötigt.
+Diese sind die Startbedingungen oder $u(0, x) = X(x)$ für $t = 0$.
+Es gilt also nun die Gleichung
+\begin{equation}
+ \label{sturmliouville:eq:example-fourier-initial-conditions}
+ u(0, x)
+ =
+ a_0
+ +
+ \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)
+\end{equation}
+nach allen $a_n$ und $b_n$ aufzulösen.
+Da aber $a_n$ und $b_n$ jeweils als Faktor zu einer trigonometrischen Funktion
+gehört, von der wir wissen, dass sie orthogonal zu allen anderen
+trigonometrischen Funktionen der Lösung ist, kann direkt das Skalarprodukt
+verwendet werden um die Koeffizienten $a_n$ und $b_n$ zu bestimmen.
+Es wird also die Tatsache ausgenutzt, dass die Gleichheit in
+\eqref{sturmliouville:eq:example-fourier-initial-conditions} nach Anwendung des
+Skalarproduktes immernoch gelten muss und dass das Skalaprodukt mit einer
+Basisfunktion sämtliche Summanden auf der rechten Seite auslöscht.
+
+Zur Berechnung von $a_m$ mit $ m \in \mathbb{N} $ wird beidseitig das
+Skalarprodukt mit der Basisfunktion $ \cos\left(\frac{m \pi}{l}x\right)$
+gebildet:
+\begin{equation}
+ \label{sturmliouville:eq:dot-product-cosine}
+ \langle u(0, x), \cos\left(\frac{m \pi}{l}x\right) \rangle
+ =
+ \langle a_0
+ +
+ \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right),
+ \cos\left(\frac{m \pi}{l}x\right)\rangle
+\end{equation}
+
+Bevor diese Form in die Integralform umgeschrieben werden kann, muss überlegt
+sein, welche Integralgrenzen zu verwenden sind.
+In diesem Fall haben die $\sin$ und $\cos$ Terme beispielsweise keine ganze
+Periode im Intervall $x \in [0, l]$ für ungerade $n$ und $m$.
+Um die Skalarprodukte aber korrekt zu berechnen, muss über ein ganzzahliges
+Vielfaches der Periode der trigonometrischen Funktionen integriert werden.
+Dazu werden die Integralgrenzen $-l$ und $l$ verwendet und es werden ausserdem
+neue Funktionen $\hat{u}_c(0, x)$ für die Berechnung mit Cosinus und
+$\hat{u}_s(0, x)$ für die Berechnung mit Sinus angenomen, welche $u(0, t)$
+gerade, respektive ungerade auf $[-l, l]$ fortsetzen:
+\[
+\begin{aligned}
+ \hat{u}_c(0, x)
+ &=
+ \begin{cases}
+ u(0, -x) & -l \leq x < 0
+ \\
+ u(0, x) & 0 \leq x \leq l
+ \end{cases}
+ \\
+ \hat{u}_s(0, x)
+ &=
+ \begin{cases}
+ -u(0, -x) & -l \leq x < 0
+ \\
+ u(0, x) & 0 \leq x \leq l
+ \end{cases}.
+\end{aligned}
+\]
+
+Die Konsequenz davon ist, dass nun das Resultat der Integrale um den Faktor zwei
+skalliert wurde, also gilt nun
+\[
+\begin{aligned}
+ \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ &=
+ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ \\
+ \int_{-l}^{l}\hat{u}_s(0, x)\sin\left(\frac{m \pi}{l}x\right)dx
+ &=
+ 2\int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx.
+\end{aligned}
+\]
+
+Zunächst wird nun das Skalaprodukt~\eqref{sturmliouville:eq:dot-product-cosine}
+berechnet:
+\[
+\begin{aligned}
+ \int_{-l}^{l}\hat{u}_c(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ =&
+ \int_{-l}^{l} \left[a_0
+ +
+ \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)\right]
+ \cos\left(\frac{m \pi}{l}x\right) dx
+ \\
+ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ =&
+ a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx
+ +
+ \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right)
+ \cos\left(\frac{m \pi}{l}x\right)dx\right]
+ \\
+ &+
+ \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right)
+ \cos\left(\frac{m \pi}{l}x\right)dx\right].
+\end{aligned}
+\]
+
+Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass
+nahezu alle Terme verschwinden, denn
+\[
+ \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx
+ =
+ 0,
+\]
+da hier über ein ganzzahliges Vielfaches der Periode integriert wird,
+\[
+ \int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right)
+ \cos\left(\frac{m \pi}{l}x\right)dx
+ =
+ 0
+\]
+für $m\neq n$, da Cosinus-Funktionen mit verschiedenen Kreisfrequenzen
+orthogonal zueinander stehen und
+\[
+ \int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right)
+ \cos\left(\frac{m \pi}{l}x\right)dx
+ =
+ 0
+\]
+da Sinus- und Cosinus-Funktionen ebenfalls orthogonal zueinander sind.
+
+Es bleibt also lediglich der Summand für $a_m$ stehen, was die Gleichung zu
+\[
+ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ =
+ a_m\int_{-l}^{l}\cos^2\left(\frac{m\pi}{l}x\right)dx
+\]
+vereinfacht. Im nächsten Schritt wird nun das Integral auf der rechten Seite
+berechnet und dann nach $a_m$ aufgelöst. Am einnfachsten geht dies, wenn zuerst
+mit $u = \frac{m \pi}{l}x$ substituiert wird:
+\[
+ \begin{aligned}
+ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ &=
+ a_m\frac{l}{m\pi}\int_{-m\pi}^{m\pi}\cos^2\left(u\right)du
+ \\
+ &=
+ a_m\frac{l}{m\pi}\left[\frac{u}{2} +
+ \frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi}
+ \\
+ &=
+ a_m\frac{l}{m\pi}\left(\frac{m\pi}{2} +
+ \underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} -
+ \frac{-m\pi}{2} -
+ \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\right)
+ \\
+ &=
+ a_m l
+ \\
+ a_m
+ &=
+ \frac{2}{l} \int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx
+ \end{aligned}
+\]
+
+Analog dazu kann durch das Bilden des Skalarproduktes mit
+$ \sin\left(\frac{m \pi}{l}x\right) $ gezeigt werden, dass
+\[
+ b_m
+ =
+ \frac{2}{l} \int_{0}^{l}u(0, x)\sin\left(\frac{m \pi}{l}x\right)dx
+\]
+gilt.
+
+Etwas anders ist es allerdings bei $a_0$.
+Wie der Name bereits suggeriert, handelt es sich hierbei um den Koeffizienten
+zur Basisfunktion $\cos\left(\frac{0 \pi}{l}x\right)$ beziehungsweise der
+konstanten Funktion $1$.
+Um einen Ausdruck für $a_0$ zu erhalten, wird wiederum auf beiden Seiten
+der Gleichung~\eqref{sturmliouville:eq:example-fourier-initial-conditions} das
+Skalarprodukt mit der konstanten Basisfunktion $1$ gebildet:
+\[
+\begin{aligned}
+ \int_{-l}^{l}\hat{u}_c(0, x)dx
+ &=
+ \int_{-l}^{l} a_0
+ +
+ \sum_{n = 1}^{\infty} a_n\cos\left(\frac{n\pi}{l}x\right)
+ +
+ \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right)dx
+ \\
+ 2\int_{0}^{l}u(0, x)dx
+ &=
+ a_0 \int_{-l}^{l}dx
+ +
+ \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right)
+ dx\right] +
+ \sum_{n = 1}^{\infty}\left[b_n\int_{-l}^{l}\sin\left(\frac{n\pi}{l}x\right)
+ dx\right].
+\end{aligned}
+\]
+
+Hier fallen nun alle Terme, die $\sin$ oder $\cos$ beinhalten weg, da jeweils
+über ein Vielfaches der Periode integriert wird.
+Es bleibt also noch
+\[
+ 2\int_{0}^{l}u(0, x)dx
+ =
+ a_0 \int_{-l}^{l}dx
+\]
+, was sich wie folgt nach $a_0$ auflösen lässt:
+\[
+\begin{aligned}
+ 2\int_{0}^{l}u(0, x)dx
+ &=
+ a_0 \int_{-l}^{l}dx
+ \\
+ &=
+ a_0 \left[x\right]_{x=-l}^{l}
+ \\
+ &=
+ a_0(l - (-l))
+ \\
+ &=
+ a_0 \cdot 2l
+ \\
+ a_0
+ &=
+ \frac{1}{l} \int_{0}^{l}u(0, x)dx
+\end{aligned}
+\]
+
+%
+% Lösung von T(t)
+%
+
+\subsubsection{Lösung der Differentialgleichung in $t$}
+Zuletzt wird die zweite Gleichung der
+Separation~\eqref{sturmliouville:eq:example-fourier-separated-t} betrachtet.
+Diese wird über das charakteristische Polynom
+\[
+ \lambda - \kappa \mu
+ =
+ 0
+\]
+gelöst.
+
+Es ist direkt ersichtlich, dass $\lambda = \kappa \mu$ gelten muss, was zur
+Lösung
+\[
+ T(t)
+ =
+ e^{\kappa \mu t}
+\]
+führt und mit dem Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution}
+\[
+ T(t)
+ =
+ e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t}
+\]
+ergibt.
+
+Dieses Resultat kann nun mit allen vorhergehenden Resultaten zusammengesetzt
+werden um die vollständige Lösung für das Stab-Problem zu erhalten.
+
+\subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur}
+\[
+\begin{aligned}
+ u(t,x)
+ &=
+ \sum_{n=1}^{\infty}b_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t}
+ \sin\left(\frac{n\pi}{l}x\right)
+ \\
+ b_{n}
+ &=
+ \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx
+\end{aligned}
+\]
+
+\subsubsection{Lösung für einen Stab mit isolierten Enden}
+\[
+\begin{aligned}
+ u(t,x)
+ &=
+ a_{0} + \sum_{n=1}^{\infty}a_{n}e^{-\frac{n^{2}\pi^{2}\kappa}{l^{2}}t}
+ \cos\left(\frac{n\pi}{l}x\right)
+ \\
+ a_{0}
+ &=
+ \frac{1}{l}\int_{0}^{l}u(0,x) dx
+ \\
+ a_{n}
+ &=
+ \frac{2}{l}\int_{0}^{l}u(0,x)sin\left(\frac{n\pi}{l}x\right) dx
+\end{aligned}
+\]