aboutsummaryrefslogtreecommitdiffstats
path: root/buch
diff options
context:
space:
mode:
Diffstat (limited to 'buch')
-rw-r--r--buch/papers/kugel/Makefile3
-rw-r--r--buch/papers/kugel/figures/flux.pdfbin0 -> 345665 bytes
-rw-r--r--buch/papers/kugel/figures/povray/Makefile (renamed from buch/papers/kugel/images/Makefile)0
-rw-r--r--buch/papers/kugel/figures/povray/curvature.jpgbin0 -> 265649 bytes
-rw-r--r--buch/papers/kugel/figures/povray/curvature.maxima (renamed from buch/papers/kugel/images/curvature.maxima)0
-rw-r--r--buch/papers/kugel/figures/povray/curvature.pngbin0 -> 590402 bytes
-rw-r--r--buch/papers/kugel/figures/povray/curvature.pov (renamed from buch/papers/kugel/images/curvature.pov)0
-rw-r--r--buch/papers/kugel/figures/povray/curvgraph.m (renamed from buch/papers/kugel/images/curvgraph.m)0
-rw-r--r--buch/papers/kugel/figures/povray/spherecurve.cpp (renamed from buch/papers/kugel/images/spherecurve.cpp)0
-rw-r--r--buch/papers/kugel/figures/povray/spherecurve.jpgbin0 -> 171287 bytes
-rw-r--r--buch/papers/kugel/figures/povray/spherecurve.m (renamed from buch/papers/kugel/images/spherecurve.m)0
-rw-r--r--buch/papers/kugel/figures/povray/spherecurve.maxima (renamed from buch/papers/kugel/images/spherecurve.maxima)0
-rw-r--r--buch/papers/kugel/figures/povray/spherecurve.pngbin0 -> 423490 bytes
-rw-r--r--buch/papers/kugel/figures/povray/spherecurve.pov (renamed from buch/papers/kugel/images/spherecurve.pov)0
-rw-r--r--buch/papers/kugel/figures/tikz/Makefile12
-rw-r--r--buch/papers/kugel/figures/tikz/curvature-1d.dat500
-rw-r--r--buch/papers/kugel/figures/tikz/curvature-1d.pdfbin0 -> 15387 bytes
-rw-r--r--buch/papers/kugel/figures/tikz/curvature-1d.py32
-rw-r--r--buch/papers/kugel/figures/tikz/curvature-1d.tex21
-rw-r--r--buch/papers/kugel/figures/tikz/spherical-coordinates.pdfbin0 -> 40319 bytes
-rw-r--r--buch/papers/kugel/figures/tikz/spherical-coordinates.tex99
-rw-r--r--buch/papers/kugel/main.tex1
-rw-r--r--buch/papers/kugel/packages.tex10
-rw-r--r--buch/papers/kugel/preliminaries.tex8
-rw-r--r--buch/papers/kugel/proofs.tex245
-rw-r--r--buch/papers/kugel/references.bib11
-rw-r--r--buch/papers/kugel/spherical-harmonics.tex407
27 files changed, 1339 insertions, 10 deletions
diff --git a/buch/papers/kugel/Makefile b/buch/papers/kugel/Makefile
index f798a55..995206b 100644
--- a/buch/papers/kugel/Makefile
+++ b/buch/papers/kugel/Makefile
@@ -5,5 +5,6 @@
#
images:
- @echo "no images to be created in kugel"
+ $(MAKE) -C ./figures/povray/
+ $(MAKE) -C ./figures/tikz/
diff --git a/buch/papers/kugel/figures/flux.pdf b/buch/papers/kugel/figures/flux.pdf
new file mode 100644
index 0000000..6a87288
--- /dev/null
+++ b/buch/papers/kugel/figures/flux.pdf
Binary files differ
diff --git a/buch/papers/kugel/images/Makefile b/buch/papers/kugel/figures/povray/Makefile
index 4226dab..4226dab 100644
--- a/buch/papers/kugel/images/Makefile
+++ b/buch/papers/kugel/figures/povray/Makefile
diff --git a/buch/papers/kugel/figures/povray/curvature.jpg b/buch/papers/kugel/figures/povray/curvature.jpg
new file mode 100644
index 0000000..6448966
--- /dev/null
+++ b/buch/papers/kugel/figures/povray/curvature.jpg
Binary files differ
diff --git a/buch/papers/kugel/images/curvature.maxima b/buch/papers/kugel/figures/povray/curvature.maxima
index 6313642..6313642 100644
--- a/buch/papers/kugel/images/curvature.maxima
+++ b/buch/papers/kugel/figures/povray/curvature.maxima
diff --git a/buch/papers/kugel/figures/povray/curvature.png b/buch/papers/kugel/figures/povray/curvature.png
new file mode 100644
index 0000000..20268f2
--- /dev/null
+++ b/buch/papers/kugel/figures/povray/curvature.png
Binary files differ
diff --git a/buch/papers/kugel/images/curvature.pov b/buch/papers/kugel/figures/povray/curvature.pov
index 3b15d77..3b15d77 100644
--- a/buch/papers/kugel/images/curvature.pov
+++ b/buch/papers/kugel/figures/povray/curvature.pov
diff --git a/buch/papers/kugel/images/curvgraph.m b/buch/papers/kugel/figures/povray/curvgraph.m
index 75effd6..75effd6 100644
--- a/buch/papers/kugel/images/curvgraph.m
+++ b/buch/papers/kugel/figures/povray/curvgraph.m
diff --git a/buch/papers/kugel/images/spherecurve.cpp b/buch/papers/kugel/figures/povray/spherecurve.cpp
index 8ddf5e5..8ddf5e5 100644
--- a/buch/papers/kugel/images/spherecurve.cpp
+++ b/buch/papers/kugel/figures/povray/spherecurve.cpp
diff --git a/buch/papers/kugel/figures/povray/spherecurve.jpg b/buch/papers/kugel/figures/povray/spherecurve.jpg
new file mode 100644
index 0000000..cd2e7c8
--- /dev/null
+++ b/buch/papers/kugel/figures/povray/spherecurve.jpg
Binary files differ
diff --git a/buch/papers/kugel/images/spherecurve.m b/buch/papers/kugel/figures/povray/spherecurve.m
index 99d5c9a..99d5c9a 100644
--- a/buch/papers/kugel/images/spherecurve.m
+++ b/buch/papers/kugel/figures/povray/spherecurve.m
diff --git a/buch/papers/kugel/images/spherecurve.maxima b/buch/papers/kugel/figures/povray/spherecurve.maxima
index 1e9077c..1e9077c 100644
--- a/buch/papers/kugel/images/spherecurve.maxima
+++ b/buch/papers/kugel/figures/povray/spherecurve.maxima
diff --git a/buch/papers/kugel/figures/povray/spherecurve.png b/buch/papers/kugel/figures/povray/spherecurve.png
new file mode 100644
index 0000000..ff24371
--- /dev/null
+++ b/buch/papers/kugel/figures/povray/spherecurve.png
Binary files differ
diff --git a/buch/papers/kugel/images/spherecurve.pov b/buch/papers/kugel/figures/povray/spherecurve.pov
index b1bf4b8..b1bf4b8 100644
--- a/buch/papers/kugel/images/spherecurve.pov
+++ b/buch/papers/kugel/figures/povray/spherecurve.pov
diff --git a/buch/papers/kugel/figures/tikz/Makefile b/buch/papers/kugel/figures/tikz/Makefile
new file mode 100644
index 0000000..4ec4e5a
--- /dev/null
+++ b/buch/papers/kugel/figures/tikz/Makefile
@@ -0,0 +1,12 @@
+FIGURES := spherical-coordinates.pdf curvature-1d.pdf
+
+all: $(FIGURES)
+
+%.pdf: %.tex
+ pdflatex $<
+
+curvature-1d.pdf: curvature-1d.tex curvature-1d.dat
+ pdflatex curvature-1d.tex
+
+curvature-1d.dat: curvature-1d.py
+ python3 $<
diff --git a/buch/papers/kugel/figures/tikz/curvature-1d.dat b/buch/papers/kugel/figures/tikz/curvature-1d.dat
new file mode 100644
index 0000000..6622398
--- /dev/null
+++ b/buch/papers/kugel/figures/tikz/curvature-1d.dat
@@ -0,0 +1,500 @@
+0.000000000000000000e+00 1.000000000000000000e+00 5.000007286987066095e+02
+2.004008016032064049e-02 1.025056790958151831e+00 4.899813296957295279e+02
+4.008016032064128098e-02 1.050121598724190752e+00 4.799659543969494848e+02
+6.012024048096192147e-02 1.075186379145250948e+00 4.699586248906784931e+02
+8.016032064128256196e-02 1.100243094530689136e+00 4.599633600341078932e+02
+1.002004008016031955e-01 1.125283716879951434e+00 4.499841738393695891e+02
+1.202404809619238429e-01 1.150300231106550664e+00 4.400250738615438877e+02
+1.402805611222444904e-01 1.175284638256853809e+00 4.300900595892592833e+02
+1.603206412825651239e-01 1.200228958722394657e+00 4.201831208385332275e+02
+1.803607214428857575e-01 1.225125235444413541e+00 4.103082361504954747e+02
+2.004008016032063910e-01 1.249965537109345881e+00 4.004693711936409954e+02
+2.204408817635270523e-01 1.274741961333968554e+00 3.906704771712513775e+02
+2.404809619238476859e-01 1.299446637838927776e+00 3.809154892346260795e+02
+2.605210420841683194e-01 1.324071731609375302e+00 3.712083249027585907e+02
+2.805611222444889807e-01 1.348609446041445725e+00 3.615528824890962483e+02
+3.006012024048095865e-01 1.373052026073301457e+00 3.519530395360096122e+02
+3.206412825651302478e-01 1.397391761299501045e+00 3.424126512576057166e+02
+3.406813627254509091e-01 1.421620989067430063e+00 3.329355489915074031e+02
+3.607214428857715149e-01 1.445732097554558448e+00 3.235255386602207750e+02
+3.807615230460921762e-01 1.469717528825280173e+00 3.141863992427096832e+02
+4.008016032064127820e-01 1.493569781866116220e+00 3.049218812567906411e+02
+4.208416833667334433e-01 1.517281415598057848e+00 2.957357052529569614e+02
+4.408817635270541047e-01 1.540845051864837556e+00 2.866315603202378384e+02
+4.609218436873747105e-01 1.564253378395934257e+00 2.776131026046919601e+02
+4.809619238476953718e-01 1.587499151743118286e+00 2.686839538411309150e+02
+5.010020040080159776e-01 1.610575200189357625e+00 2.598476998986618582e+02
+5.210420841683366389e-01 1.633474426628916509e+00 2.511078893406329655e+02
+5.410821643286573002e-01 1.656189811417493107e+00 2.424680319995614752e+02
+5.611222444889779615e-01 1.678714415191247422e+00 2.339315975676150003e+02
+5.811623246492986228e-01 1.701041381653590534e+00 2.255020142032130082e+02
+6.012024048096191731e-01 1.723163940328612753e+00 2.171826671543084046e+02
+6.212424849699398344e-01 1.745075409280051337e+00 2.089768973989005474e+02
+6.412825651302604957e-01 1.766769197794693991e+00 2.008880003033277433e+02
+6.613226452905811570e-01 1.788238809029157217e+00 1.929192242988764008e+02
+6.813627254509018183e-01 1.809477842618958832e+00 1.850737695772391760e+02
+7.014028056112223686e-01 1.830479997248850577e+00 1.773547868053454408e+02
+7.214428857715430299e-01 1.851239073183373218e+00 1.697653758600805816e+02
+7.414829659318636912e-01 1.871748974756613837e+00 1.623085845834024497e+02
+7.615230460921843525e-01 1.892003712820175432e+00 1.549874075583541639e+02
+7.815631262525050138e-01 1.911997407148365635e+00 1.478047849064652723e+02
+8.016032064128255641e-01 1.931724288799645972e+00 1.407636011070246695e+02
+8.216432865731462254e-01 1.951178702433387091e+00 1.338666838386980942e+02
+8.416833667334668867e-01 1.970355108581006931e+00 1.271168028439571600e+02
+8.617234468937875480e-01 1.989248085870571892e+00 1.205166688167746969e+02
+8.817635270541082093e-01 2.007852333203973494e+00 1.140689323140332476e+02
+9.018036072144288706e-01 2.026162671885804123e+00 1.077761826910842018e+02
+9.218436873747494209e-01 2.044174047703075203e+00 1.016409470618853419e+02
+9.418837675350700822e-01 2.061881532954947804e+00 9.566568928413349227e+01
+9.619238476953907435e-01 2.079280328431652780e+00 8.985280896980044929e+01
+9.819639278557114048e-01 2.096365765341811738e+00 8.420464052146976996e+01
+1.002004008016031955e+00 2.113133307187384347e+00 7.872345219486057033e+01
+1.022044088176352616e+00 2.129578551585488810e+00 7.341144518791566043e+01
+1.042084168336673278e+00 2.145697232036356539e+00 6.827075275681968947e+01
+1.062124248496993939e+00 2.161485219636723798e+00 6.330343935930140020e+01
+1.082164328657314600e+00 2.176938524737964453e+00 5.851149982556578522e+01
+1.102204408817635262e+00 2.192053298548298113e+00 5.389685855718687435e+01
+1.122244488977955923e+00 2.206825834678430187e+00 4.946136875428519630e+01
+1.142284569138276584e+00 2.221252570630007028e+00 4.520681167129833966e+01
+1.162324649298597246e+00 2.235330089226285288e+00 4.113489590164444110e+01
+1.182364729458917685e+00 2.249055119984439521e+00 3.724725669156617869e+01
+1.202404809619238346e+00 2.262424540428958686e+00 3.354545528342948302e+01
+1.222444889779559007e+00 2.275435377345608856e+00 3.003097828874255271e+01
+1.242484969939879669e+00 2.288084807975446999e+00 2.670523709114522859e+01
+1.262525050100200330e+00 2.300370161148418191e+00 2.356956727960955078e+01
+1.282565130260520991e+00 2.312288918356074419e+00 2.062522811207871243e+01
+1.302605210420841653e+00 2.323838714762985536e+00 1.787340200976009186e+01
+1.322645290581162314e+00 2.335017340156437360e+00 1.531519408227492640e+01
+1.342685370741482975e+00 2.345822739834032333e+00 1.295163168385587404e+01
+1.362725450901803637e+00 2.356253015428841913e+00 1.078366400077049292e+01
+1.382765531062124298e+00 2.366306425671775404e+00 8.812161670136093861e+00
+1.402805611222444737e+00 2.375981387090854824e+00 7.037916430279492097e+00
+1.422845691382765398e+00 2.385276474647127998e+00 5.461640802781636772e+00
+1.442885771543086060e+00 2.394190422306948562e+00 4.083967806335150996e+00
+1.462925851703406721e+00 2.402722123550405264e+00 2.905450702529595031e+00
+1.482965931863727382e+00 2.410870631815691834e+00 1.926562773666154138e+00
+1.503006012024048044e+00 2.418635160879236246e+00 1.147697132691613664e+00
+1.523046092184368705e+00 2.426015085171442820e+00 5.691665653277303560e-01
+1.543086172344689366e+00 2.433009940027915263e+00 1.912034044591185422e-01
+1.563126252505010028e+00 2.439619421876060734e+00 1.395943683027547552e-02
+1.583166332665330689e+00 2.445843388357002546e+00 3.750584208938356756e-02
+1.603206412825651128e+00 2.451681858382752210e+00 2.618331642032580286e-01
+1.623246492985971789e+00 2.457135012128611962e+00 6.868513152547650602e-01
+1.643286573146292451e+00 2.462203190960818411e+00 1.312389611621266550e+00
+1.663326653306613112e+00 2.466886897299453096e+00 2.138196842519770602e+00
+1.683366733466933773e+00 2.471186794416676769e+00 3.163941370891084848e+00
+1.703406813627254435e+00 2.475103706170361573e+00 4.389211266582178084e+00
+1.723446893787575096e+00 2.478638616673238371e+00 5.813514471774004377e+00
+1.743486973947895757e+00 2.481792669897687542e+00 7.436278998587575018e+00
+1.763527054108216419e+00 2.484567169216326032e+00 9.256853158789395408e+00
+1.783567134268537080e+00 2.486963576878586935e+00 1.127450582550371472e+01
+1.803607214428857741e+00 2.488983513423490557e+00 1.348842672682692978e+01
+1.823647294589178181e+00 2.490628757028852114e+00 1.589772677122579658e+01
+1.843687374749498842e+00 2.491901242797179172e+00 1.850143840458866151e+01
+1.863727454909819503e+00 2.492803061978552392e+00 2.129851599878729118e+01
+1.883767535070140164e+00 2.493336461130795989e+00 2.428783627159159408e+01
+1.903807615230460826e+00 2.493503841217282080e+00 2.746819873777046439e+01
+1.923847695390781487e+00 2.493307756642720641e+00 3.083832619119621654e+01
+1.943887775551102148e+00 2.492750914227336079e+00 3.439686521775931283e+01
+1.963927855711422810e+00 2.491836172119830994e+00 3.814238673888808506e+01
+1.983967935871743471e+00 2.490566538649576334e+00 4.207338658545420174e+01
+2.004008016032063910e+00 2.488945171118494670e+00 4.618828610183413019e+01
+2.024048096192384794e+00 2.486975374533113126e+00 5.048543277988349587e+01
+2.044088176352705233e+00 2.484660600277302400e+00 5.496310092257003532e+01
+2.064128256513026116e+00 2.482004444726231274e+00 5.961949233699898087e+01
+2.084168336673346555e+00 2.479010647802090794e+00 6.445273705655124274e+01
+2.104208416833667439e+00 2.475683091472176578e+00 6.946089409184656915e+01
+2.124248496993987878e+00 2.472025798189923851e+00 7.464195221022733051e+01
+2.144288577154308317e+00 2.468042929279522735e+00 7.999383074345310263e+01
+2.164328657314629201e+00 2.463738783264768806e+00 8.551438042327842481e+01
+2.184368737474949640e+00 2.459117794142811952e+00 9.120138424458035331e+01
+2.204408817635270523e+00 2.454184529603501197e+00 9.705255835568922862e+01
+2.224448897795590963e+00 2.448943689195040463e+00 1.030655529755629374e+02
+2.244488977955911846e+00 2.443400102436689814e+00 1.092379533374396345e+02
+2.264529058116232285e+00 2.437558726879272442e+00 1.155672806585862560e+02
+2.284569138276553169e+00 2.431424646114265897e+00 1.220509931357573947e+02
+2.304609218436873608e+00 2.425003067732275142e+00 1.286864869659601709e+02
+2.324649298597194491e+00 2.418299321231706767e+00 1.354710973921206971e+02
+2.344689378757514930e+00 2.411318855878493483e+00 1.424020997732258422e+02
+2.364729458917835370e+00 2.404067238517710425e+00 1.494767106785168664e+02
+2.384769539078156253e+00 2.396550151337982548e+00 1.566920890052907680e+02
+2.404809619238476692e+00 2.388773389589562868e+00 1.640453371198620403e+02
+2.424849699398797576e+00 2.380742859257013677e+00 1.715335020212285144e+02
+2.444889779559118015e+00 2.372464574687412675e+00 1.791535765269697436e+02
+2.464929859719438898e+00 2.363944656175040571e+00 1.869025004809070936e+02
+2.484969939879759337e+00 2.355189327503528496e+00 1.947771619820341300e+02
+2.505010020040080221e+00 2.346204913446435114e+00 2.027743986342312610e+02
+2.525050100200400660e+00 2.336997837227277053e+00 2.108909988162550349e+02
+2.545090180360721543e+00 2.327574617940013191e+00 2.191237029714987443e+02
+2.565130260521041983e+00 2.317941867931036182e+00 2.274692049170012638e+02
+2.585170340681362422e+00 2.308106290143709938e+00 2.359241531711823257e+02
+2.605210420841683305e+00 2.298074675426524660e+00 2.444851522997685436e+02
+2.625250501002003745e+00 2.287853899805951663e+00 2.531487642793698569e+02
+2.645290581162324628e+00 2.277450921725090449e+00 2.619115098781609845e+02
+2.665330661322645067e+00 2.266872779249217817e+00 2.707698700531099121e+02
+2.685370741482965951e+00 2.256126587239360770e+00 2.797202873631965190e+02
+2.705410821643286390e+00 2.245219534495030533e+00 2.887591673980486462e+02
+2.725450901803607273e+00 2.234158880867263886e+00 2.978828802214276834e+02
+2.745490981963927712e+00 2.222951954343126868e+00 3.070877618289785573e+02
+2.765531062124248596e+00 2.211606148102859937e+00 3.163701156196634088e+02
+2.785571142284569035e+00 2.200128917550841834e+00 3.257262138802831259e+02
+2.805611222444889474e+00 2.188527777321561008e+00 3.351522992824964149e+02
+2.825651302605210358e+00 2.176810298261803389e+00 3.446445863917298311e+02
+2.845691382765530797e+00 2.164984104390269337e+00 3.541992631873747541e+02
+2.865731462925851680e+00 2.153056869835828113e+00 3.638124925936636487e+02
+2.885771543086172120e+00 2.141036315755658670e+00 3.734804140206049965e+02
+2.905811623246493003e+00 2.128930207234495775e+00 3.831991449143642399e+02
+2.925851703406813442e+00 2.116746350166242685e+00 3.929647823164625606e+02
+2.945891783567134325e+00 2.104492588119187158e+00 4.027734044311732191e+02
+2.965931863727454765e+00 2.092176799186097114e+00 4.126210722004783520e+02
+2.985971943887775648e+00 2.079806892820440289e+00 4.225038308859634526e+02
+3.006012024048096087e+00 2.067390806660023728e+00 4.324177116570036219e+02
+3.026052104208416527e+00 2.054936503339299669e+00 4.423587331846135839e+02
+3.046092184368737410e+00 2.042451967291644355e+00 4.523229032403145879e+02
+3.066132264529057849e+00 2.029945201542878497e+00 4.623062202993779124e+02
+3.086172344689378733e+00 2.017424224497317731e+00 4.723046751478044598e+02
+3.106212424849699172e+00 2.004897066717655107e+00 4.823142524923883343e+02
+3.126252505010020055e+00 1.992371767699953278e+00 4.923309325732264483e+02
+3.146292585170340494e+00 1.979856372645053764e+00 5.023506927780170486e+02
+3.166332665330661378e+00 1.967358929227692510e+00 5.123695092575079570e+02
+3.186372745490981817e+00 1.954887484364624450e+00 5.223833585414381560e+02
+3.206412825651302256e+00 1.942450080983050720e+00 5.323882191543301587e+02
+3.226452905811623140e+00 1.930054754790647475e+00 5.423800732304792973e+02
+3.246492985971943579e+00 1.917709531048496396e+00 5.523549081274929904e+02
+3.266533066132264462e+00 1.905422421348207829e+00 5.623087180377352752e+02
+3.286573146292584902e+00 1.893201420394537093e+00 5.722375055970223912e+02
+3.306613226452905785e+00 1.881054502794775818e+00 5.821372834899317468e+02
+3.326653306613226224e+00 1.868989619856223694e+00 5.920040760510720474e+02
+3.346693386773547108e+00 1.857014696393007203e+00 6.018339208616766882e+02
+3.366733466933867547e+00 1.845137627543546266e+00 6.116228703408767160e+02
+3.386773547094188430e+00 1.833366275599931816e+00 6.213669933310161468e+02
+3.406813627254508869e+00 1.821708466850500807e+00 6.310623766763693538e+02
+3.426853707414829309e+00 1.810171988436861001e+00 6.407051267946321786e+02
+3.446893787575150192e+00 1.798764585226647394e+00 6.502913712405503475e+02
+3.466933867735470631e+00 1.787493956703248177e+00 6.598172602610595732e+02
+3.486973947895791515e+00 1.776367753873757227e+00 6.692789683413144530e+02
+3.507014028056111954e+00 1.765393576196397918e+00 6.786726957409805436e+02
+3.527054108216432837e+00 1.754578968528644589e+00 6.879946700201794556e+02
+3.547094188376753277e+00 1.743931418097274477e+00 6.972411475544654422e+02
+3.567134268537074160e+00 1.733458351491558469e+00 7.064084150382354892e+02
+3.587174348697394599e+00 1.723167131680813480e+00 7.154927909759586555e+02
+3.607214428857715482e+00 1.713065055057490182e+00 7.244906271606341761e+02
+3.627254509018035922e+00 1.703159348507010673e+00 7.333983101388791965e+02
+3.647294589178356361e+00 1.693457166505509370e+00 7.422122626620608798e+02
+3.667334669338677244e+00 1.683965588246658651e+00 7.509289451228887629e+02
+3.687374749498997684e+00 1.674691614798728523e+00 7.595448569768896050e+02
+3.707414829659318567e+00 1.665642166293012316e+00 7.680565381481970917e+02
+3.727454909819639006e+00 1.656824079144766593e+00 7.764605704190873894e+02
+3.747494989979959890e+00 1.648244103307762831e+00 7.847535788027066701e+02
+3.767535070140280329e+00 1.639908899563566447e+00 7.929322328984358137e+02
+3.787575150300601212e+00 1.631825036846622945e+00 8.009932482293520479e+02
+3.807615230460921651e+00 1.623998989606231236e+00 8.089333875612445581e+02
+3.827655310621242535e+00 1.616437135206458375e+00 8.167494622026619027e+02
+3.847695390781562974e+00 1.609145751365050003e+00 8.244383332854611126e+02
+3.867735470941883413e+00 1.602131013632347223e+00 8.319969130253510912e+02
+3.887775551102204297e+00 1.595398992911243319e+00 8.394221659619206548e+02
+3.907815631262524736e+00 1.588955653019160641e+00 8.467111101776515625e+02
+3.927855711422845619e+00 1.582806848293030866e+00 8.538608184954326816e+02
+3.947895791583166059e+00 1.576958321238246530e+00 8.608684196540875746e+02
+3.967935871743486942e+00 1.571415700222517753e+00 8.677310994614492756e+02
+3.987975951903807381e+00 1.566184497215570515e+00 8.744461019245148918e+02
+4.008016032064127820e+00 1.561270105575586431e+00 8.810107303562293737e+02
+4.028056112224448704e+00 1.556677797883275982e+00 8.874223484584509833e+02
+4.048096192384769587e+00 1.552412723824457164e+00 8.936783813806663375e+02
+4.068136272545089582e+00 1.548479908121984883e+00 8.997763167540272207e+02
+4.088176352705410466e+00 1.544884248517864656e+00 9.057137057002989877e+02
+4.108216432865731349e+00 1.541630513806363734e+00 9.114881638153049153e+02
+4.128256513026052232e+00 1.538723341918903031e+00 9.170973721264856522e+02
+4.148296593186372228e+00 1.536167238061506124e+00 9.225390780241765469e+02
+4.168336673346693111e+00 1.533966572905543835e+00 9.278110961662381442e+02
+4.188376753507013994e+00 1.532125580832512046e+00 9.329113093556687772e+02
+4.208416833667334878e+00 1.530648358233542172e+00 9.378376693908538755e+02
+4.228456913827654873e+00 1.529538861864323529e+00 9.425881978881050145e+02
+4.248496993987975756e+00 1.528800907256105734e+00 9.471609870761637922e+02
+4.268537074148296639e+00 1.528438167183412855e+00 9.515542005623437944e+02
+4.288577154308616635e+00 1.528454170189090799e+00 9.557660740700115412e+02
+4.308617234468937518e+00 1.528852299167273276e+00 9.597949161471043453e+02
+4.328657314629258401e+00 1.529635790004841844e+00 9.636391088454030296e+02
+4.348697394789579285e+00 1.530807730281920964e+00 9.672971083702858550e+02
+4.368737474949899280e+00 1.532371058031932520e+00 9.707674457007029787e+02
+4.388777555110220163e+00 1.534328560561707189e+00 9.740487271791230341e+02
+4.408817635270541047e+00 1.536682873332125610e+00 9.771396350712136609e+02
+4.428857715430861930e+00 1.539436478899741445e+00 9.800389280950321336e+02
+4.448897795591181925e+00 1.542591705919805545e+00 9.827454419195138371e+02
+4.468937875751502808e+00 1.546150728211101333e+00 9.852580896320574766e+02
+4.488977955911823692e+00 1.550115563882954017e+00 9.875758621750194379e+02
+4.509018036072143687e+00 1.554488074524779329e+00 9.896978287509432448e+02
+4.529058116232464570e+00 1.559269964458483093e+00 9.916231371963593801e+02
+4.549098196392785454e+00 1.564462780054019841e+00 9.933510143240067691e+02
+4.569138276553106337e+00 1.570067909108384452e+00 9.948807662333381359e+02
+4.589178356713426332e+00 1.576086580288286632e+00 9.962117785891847461e+02
+4.609218436873747216e+00 1.582519862636726060e+00 9.973435168684678729e+02
+4.629258517034068099e+00 1.589368665143676473e+00 9.982755265748584179e+02
+4.649298597194388982e+00 1.596633736381040114e+00 9.990074334212996519e+02
+4.669338677354708977e+00 1.604315664202031311e+00 9.995389434803163340e+02
+4.689378757515029861e+00 1.612414875505097545e+00 9.998698433020541643e+02
+4.709418837675350744e+00 1.620931636062481251e+00 1.000000000000000000e+03
+4.729458917835670739e+00 1.629866050413486533e+00 9.999293613043465712e+02
+4.749498997995991623e+00 1.639218061822500072e+00 9.996579555829848687e+02
+4.769539078156312506e+00 1.648987452301774237e+00 9.991858918301107906e+02
+4.789579158316633389e+00 1.659173842698966617e+00 9.985133596224548000e+02
+4.809619238476953385e+00 1.669776692849408217e+00 9.976406290431494881e+02
+4.829659318637274268e+00 1.680795301793028163e+00 9.965680505732656229e+02
+4.849699398797595151e+00 1.692228808055850298e+00 9.952960549510630699e+02
+4.869739478957916035e+00 1.704076189995956891e+00 9.938251529990096742e+02
+4.889779559118236030e+00 1.716336266213768447e+00 9.921559354186391602e+02
+4.909819639278556913e+00 1.729007696026489072e+00 9.902890725533304703e+02
+4.929859719438877796e+00 1.742088980006505361e+00 9.882253141191039276e+02
+4.949899799599197792e+00 1.755578460583548051e+00 9.859654889035417682e+02
+4.969939879759518675e+00 1.769474322710359537e+00 9.835105044329535531e+02
+4.989979959919839558e+00 1.783774594591596818e+00 9.808613466079225418e+02
+5.010020040080160442e+00 1.798477148475690290e+00 9.780190793073752502e+02
+5.030060120240480437e+00 1.813579701509330233e+00 9.749848439613382425e+02
+5.050100200400801320e+00 1.829079816654240354e+00 9.717598590925483677e+02
+5.070140280561122204e+00 1.844974903665872024e+00 9.683454198271051609e+02
+5.090180360721443087e+00 1.861262220133622414e+00 9.647428973743595861e+02
+5.110220440881763082e+00 1.877938872582164631e+00 9.609537384762481906e+02
+5.130260521042083965e+00 1.895001817633443997e+00 9.569794648262927694e+02
+5.150300601202404849e+00 1.912447863228867728e+00 9.528216724585031443e+02
+5.170340681362724844e+00 1.930273669911211520e+00 9.484820311064232783e+02
+5.190380761523045727e+00 1.948475752165717889e+00 9.439622835325791357e+02
+5.210420841683366611e+00 1.967050479819845377e+00 9.392642448286025001e+02
+5.230460921843687494e+00 1.985994079501115728e+00 9.343898016863045086e+02
+5.250501002004007489e+00 2.005302636152468398e+00 9.293409116399966479e+02
+5.270541082164328373e+00 2.024972094604515771e+00 9.241196022803618462e+02
+5.290581162324649256e+00 2.044998261204058920e+00 9.187279704401921663e+02
+5.310621242484970139e+00 2.065376805498225998e+00 9.131681813523182427e+02
+5.330661322645290134e+00 2.086103261973545120e+00 9.074424677800708423e+02
+5.350701402805611018e+00 2.107173031849256084e+00 9.015531291206212927e+02
+5.370741482965931901e+00 2.128581384924137954e+00 8.955025304815651452e+02
+5.390781563126251896e+00 2.150323461476119746e+00 8.892931017311141204e+02
+5.410821643286572780e+00 2.172394274213905074e+00 8.829273365222821894e+02
+5.430861723446893663e+00 2.194788710279818922e+00 8.764077912914567605e+02
+5.450901803607214546e+00 2.217501533303093186e+00 8.697370842317545794e+02
+5.470941883767534542e+00 2.240527385502743662e+00 8.629178942415799156e+02
+5.490981963927855425e+00 2.263860789839213794e+00 8.559529598487991962e+02
+5.511022044088176308e+00 2.287496152213901457e+00 8.488450781109748959e+02
+5.531062124248497192e+00 2.311427763715702355e+00 8.415971034920893317e+02
+5.551102204408817187e+00 2.335649802913659201e+00 8.342119467162179944e+02
+5.571142284569138070e+00 2.360156338194801862e+00 8.266925735986054633e+02
+5.591182364729458953e+00 2.384941330146225447e+00 8.190420038546226351e+02
+5.611222444889778949e+00 2.409998633980471094e+00 8.112633098870738877e+02
+5.631262525050099832e+00 2.435322002003218689e+00 8.033596155523445077e+02
+5.651302605210420715e+00 2.460905086122306518e+00 7.953340949058906517e+02
+5.671342685370741599e+00 2.486741440397069347e+00 7.871899709275636496e+02
+5.691382765531061594e+00 2.512824523626973505e+00 7.789305142272897911e+02
+5.711422845691382477e+00 2.539147701978509364e+00 7.705590417316205958e+02
+5.731462925851703361e+00 2.565704251649277179e+00 7.620789153516853958e+02
+5.751503006012024244e+00 2.592487361568209359e+00 7.534935406330763499e+02
+5.771543086172344239e+00 2.619490136130837588e+00 7.448063653882098833e+02
+5.791583166332665122e+00 2.646705597968513235e+00 7.360208783117147959e+02
+5.811623246492986006e+00 2.674126690750449509e+00 7.271406075794046728e+02
+5.831663326653306001e+00 2.701746282017488454e+00 7.181691194313910955e+02
+5.851703406813626884e+00 2.729557166046437722e+00 7.091100167399115435e+02
+5.871743486973947768e+00 2.757552066743818919e+00 6.999669375624501981e+02
+5.891783567134268651e+00 2.785723640567889792e+00 6.907435536807222434e+02
+5.911823647294588646e+00 2.814064479477745628e+00 6.814435691261201100e+02
+5.931863727454909530e+00 2.842567113908326615e+00 6.720707186922043093e+02
+5.951903807615230413e+00 2.871224015770126758e+00 6.626287664348450335e+02
+5.971943887775551296e+00 2.900027601472412453e+00 6.531215041606080831e+02
+5.991983967935871291e+00 2.928970234968723663e+00 6.435527499039991426e+02
+6.012024048096192175e+00 2.958044230823453802e+00 6.339263463941722421e+02
+6.032064128256513058e+00 2.987241857298241765e+00 6.242461595117250681e+02
+6.052104208416833053e+00 3.016555339456976181e+00 6.145160767361943499e+02
+6.072144288577153937e+00 3.045976862288150677e+00 6.047400055848752345e+02
+6.092184368737474820e+00 3.075498573843291616e+00 5.949218720435990235e+02
+6.112224448897795703e+00 3.105112588390241068e+00 5.850656189900898880e+02
+6.132264529058115698e+00 3.134810989579997376e+00 5.751752046105395948e+02
+6.152304609218436582e+00 3.164585833625852995e+00 5.652546008100322297e+02
+6.172344689378757465e+00 3.194429152493549307e+00 5.553077916174643178e+02
+6.192384769539078349e+00 3.224332957101171182e+00 5.453387715855913029e+02
+6.212424849699398344e+00 3.254289240527490801e+00 5.353515441868502194e+02
+6.232464929859719227e+00 3.284289981227487498e+00 5.253501202055987278e+02
+6.252505010020040110e+00 3.314327146253717160e+00 5.153385161274204620e+02
+6.272545090180360106e+00 3.344392694482282824e+00 5.053207525261383921e+02
+6.292585170340680989e+00 3.374478579842083992e+00 4.953008524491854700e+02
+6.312625250501001872e+00 3.404576754546040807e+00 4.852828398019860288e+02
+6.332665330661322756e+00 3.434679172323020335e+00 4.752707377319885609e+02
+6.352705410821642751e+00 3.464777791649148231e+00 4.652685670130051676e+02
+6.372745490981963634e+00 3.494864578977221026e+00 4.552803444305018843e+02
+6.392785571142284518e+00 3.524931511962900554e+00 4.453100811684944347e+02
+6.412825651302604513e+00 3.554970582686421299e+00 4.353617811986907782e+02
+6.432865731462925396e+00 3.584973800868508143e+00 4.254394396725285787e+02
+6.452905811623246279e+00 3.614933197079194027e+00 4.155470413167602146e+02
+6.472945891783567163e+00 3.644840825938279849e+00 4.056885588332180532e+02
+6.492985971943887158e+00 3.674688769306128311e+00 3.958679513034139177e+02
+6.513026052104208041e+00 3.704469139463525185e+00 3.860891625986033660e+02
+6.533066132264528925e+00 3.734174082279312135e+00 3.763561197959638776e+02
+6.553106212424849808e+00 3.763795780364542765e+00 3.666727316015129077e+02
+6.573146292585169803e+00 3.793326456211875808e+00 3.570428867804062634e+02
+6.593186372745490686e+00 3.822758375318961566e+00 3.474704525952413405e+02
+6.613226452905811570e+00 3.852083849294539952e+00 3.379592732530011290e+02
+6.633266533066131565e+00 3.881295238946041781e+00 3.285131683612518714e+02
+6.653306613226452448e+00 3.910384957347420976e+00 3.191359313942206768e+02
+6.673346693386773332e+00 3.939345472885993349e+00 3.098313281693717158e+02
+6.693386773547094215e+00 3.968169312287071815e+00 3.006030953350844470e+02
+6.713426853707414210e+00 3.996849063615168340e+00 2.914549388700485792e+02
+6.733466933867735094e+00 4.025377379250564047e+00 2.823905325949738199e+02
+6.753507014028055977e+00 4.053746978840048421e+00 2.734135166972172897e+02
+6.773547094188376860e+00 4.081950652220645459e+00 2.645274962689139784e+02
+6.793587174348696855e+00 4.109981262315153927e+00 2.557360398592040838e+02
+6.813627254509017739e+00 4.137831747998339971e+00 2.470426780411323762e+02
+6.833667334669338622e+00 4.165495126932617254e+00 2.384509019938032282e+02
+6.853707414829658617e+00 4.192964498372094617e+00 2.299641621003518992e+02
+6.873747494989979501e+00 4.220233045933865057e+00 2.215858665622992305e+02
+6.893787575150300384e+00 4.247294040335392928e+00 2.133193800308498282e+02
+6.913827655310621267e+00 4.274140842096944226e+00 2.051680222556753677e+02
+6.933867735470941263e+00 4.300766904207941721e+00 1.971350667517327224e+02
+6.953907815631262146e+00 4.327165774756191574e+00 1.892237394846470409e+02
+6.973947895791583029e+00 4.353331099518909397e+00 1.814372175751938983e+02
+6.993987975951903913e+00 4.379256624514525242e+00 1.737786280233937930e+02
+7.014028056112223908e+00 4.404936198514227463e+00 1.662510464527364036e+02
+7.034068136272544791e+00 4.430363775512244473e+00 1.588574958750354824e+02
+7.054108216432865675e+00 4.455533417153866971e+00 1.516009454764152053e+02
+7.074148296593185670e+00 4.480439295120240750e+00 1.444843094249101227e+02
+7.094188376753506553e+00 4.505075693468969966e+00 1.375104457001587832e+02
+7.114228456913827436e+00 4.529437010929587615e+00 1.306821549456662126e+02
+7.134268537074148320e+00 4.553517763152981068e+00 1.240021793440882476e+02
+7.154308617234468315e+00 4.577312584913854288e+00 1.174732015159950436e+02
+7.174348697394789198e+00 4.600816232265364292e+00 1.110978434425529429e+02
+7.194388777555110082e+00 4.624023584645035712e+00 1.048786654125609346e+02
+7.214428857715430965e+00 4.646929646931139857e+00 9.881816499425976019e+01
+7.234468937875750960e+00 4.669529551448691862e+00 9.291877603233054117e+01
+7.254509018036071843e+00 4.691818559924266552e+00 8.718286767048279273e+01
+7.274549098196392727e+00 4.713792065388847874e+00 8.161274340002822214e+01
+7.294589178356712722e+00 4.735445594027945404e+00 7.621064013481766608e+01
+7.314629258517033605e+00 4.756774806978249615e+00 7.097872731291521120e+01
+7.334669338677354489e+00 4.777775502070065627e+00 6.591910602537187458e+01
+7.354709418837675372e+00 4.798443615514884186e+00 6.103380817244479317e+01
+7.374749498997995367e+00 4.818775223537352659e+00 5.632479564760383539e+01
+7.394789579158316251e+00 4.838766543951037669e+00 5.179395954965144000e+01
+7.414829659318637134e+00 4.858413937677311445e+00 4.744311942327492204e+01
+7.434869739478958017e+00 4.877713910206781023e+00 4.327402252833200436e+01
+7.454909819639278012e+00 4.896663113002647449e+00 3.928834313816695811e+01
+7.474949899799598896e+00 4.915258344845452321e+00 3.548768186723586382e+01
+7.494989979959919779e+00 4.933496553118660088e+00 3.187356502831510241e+01
+7.515030060120239774e+00 4.951374835034558330e+00 2.844744401954644530e+01
+7.535070140280560658e+00 4.968890438800001697e+00 2.521069474156775314e+01
+7.555110220440881541e+00 4.986040764721496821e+00 2.216461704496407137e+01
+7.575150300601202424e+00 5.002823366249223191e+00 1.931043420825829671e+01
+7.595190380761522420e+00 5.019235950959545889e+00 1.664929244665321662e+01
+7.615230460921843303e+00 5.035276381475634722e+00 1.418226045172094807e+01
+7.635270541082164186e+00 5.050942676325811398e+00 1.191032896222642634e+01
+7.655310621242485070e+00 5.066233010739295217e+00 9.834410366254722646e+00
+7.675350701402805065e+00 5.081145717379013327e+00 7.955338334803988332e+00
+7.695390781563125948e+00 5.095679287011193104e+00 6.273867486990178044e+00
+7.715430861723446831e+00 5.109832369111450667e+00 4.790673086998884500e+00
+7.735470941883766827e+00 5.123603772407154366e+00 3.506350772904916813e+00
+7.755511022044087710e+00 5.136992465355831428e+00 2.421416317469038848e+00
+7.775551102204408593e+00 5.149997576559419699e+00 1.536305421008269612e+00
+7.795591182364729477e+00 5.162618395114220604e+00 8.513735364222744240e-01
+7.815631262525049472e+00 5.174854370896386335e+00 3.668957264467385126e-01
+7.835671342685370355e+00 5.186705114782850679e+00 8.306655319023606432e-02
+7.855711422845691239e+00 5.198170398807591575e+00 0.000000000000000000e+00
+7.875751503006012122e+00 5.209250156253183661e+00 1.177294256871248418e-01
+7.895791583166332117e+00 5.219944481677590176e+00 4.362075511299656205e-01
+7.915831663326653000e+00 5.230253630876193327e+00 9.553064782610614092e-01
+7.935871743486973884e+00 5.240178020779059587e+00 1.674817741429812656e+00
+7.955911823647293879e+00 5.249718229283516280e+00 2.594452391120483092e+00
+7.975951903807614762e+00 5.258874995022061682e+00 3.713841109991943057e+00
+7.995991983967935646e+00 5.267649217065747180e+00 5.032534361192301020e+00
+8.016032064128255641e+00 5.276041954563106096e+00 6.550002568888864118e+00
+8.036072144288576524e+00 5.284054426314822805e+00 8.265636330941418919e+00
+8.056112224448897408e+00 5.291688010284259391e+00 1.017874666363291603e+01
+8.076152304609218291e+00 5.298944243044088509e+00 1.228856527835901602e+01
+8.096192384769539174e+00 5.305824819159209227e+00 1.459424489016658200e+01
+8.116232464929860058e+00 5.312331590506231827e+00 1.709485955801583756e+01
+8.136272545090179165e+00 5.318466565529778478e+00 1.978940505663001659e+01
+8.156312625250500048e+00 5.324231908435906213e+00 2.267679927978462828e+01
+8.176352705410820931e+00 5.329629938322985261e+00 2.575588267487045968e+01
+8.196392785571141815e+00 5.334663128250363151e+00 2.902541870856099848e+01
+8.216432865731462698e+00 5.339334104245210710e+00 3.248409436339298395e+01
+8.236472945891783581e+00 5.343645644247928317e+00 3.613052066506330817e+01
+8.256513026052104465e+00 5.347600676996553837e+00 3.996323324022881707e+01
+8.276553106212425348e+00 5.351202280850603010e+00 4.398069290458620628e+01
+8.296593186372744455e+00 5.354453682554823679e+00 4.818128628099457700e+01
+8.316633266533065338e+00 5.357358255943372782e+00 5.256332644739540427e+01
+8.336673346693386222e+00 5.359919520584902841e+00 5.712505361426364914e+01
+8.356713426853707105e+00 5.362141140369139691e+00 6.186463583132555044e+01
+8.376753507014027988e+00 5.364026922035497691e+00 6.678016972325357870e+01
+8.396793587174348872e+00 5.365580813644318603e+00 7.186968125404561647e+01
+8.416833667334669755e+00 5.366806902991370976e+00 7.713112651978079271e+01
+8.436873747494988862e+00 5.367709415966225528e+00 8.256239256943308646e+01
+8.456913827655309746e+00 5.368292714855172676e+00 8.816129825341631943e+01
+8.476953907815630629e+00 5.368561296589365206e+00 9.392559509951207986e+01
+8.496993987975951512e+00 5.368519790938893976e+00 9.985296821583851568e+01
+8.517034068136272396e+00 5.368172958653508076e+00 1.059410372204906849e+02
+8.537074148296593279e+00 5.367525689550741497e+00 1.121873571974812194e+02
+8.557114228456914162e+00 5.366583000552199501e+00 1.185894196785977641e+02
+8.577154308617233269e+00 5.365350033668812024e+00 1.251446536507811516e+02
+8.597194388777554153e+00 5.363832053935846389e+00 1.318504265886247424e+02
+8.617234468937875036e+00 5.362034447298508866e+00 1.387040455115703708e+02
+8.637274549098195919e+00 5.359962718449001073e+00 1.457027580653883660e+02
+8.657314629258516803e+00 5.357622488615882084e+00 1.528437536274986712e+02
+8.677354709418837686e+00 5.355019493306628853e+00 1.601241644356925917e+02
+8.697394789579158569e+00 5.352159580004308026e+00 1.675410667398015221e+02
+8.717434869739479453e+00 5.349048705819276606e+00 1.750914819758495753e+02
+8.737474949899798560e+00 5.345692935096859166e+00 1.827723779622187124e+02
+8.757515030060119443e+00 5.342098436981957299e+00 1.905806701173493138e+02
+8.777555110220440326e+00 5.338271482941573609e+00 1.985132226984773354e+02
+8.797595190380761210e+00 5.334218444246249469e+00 2.065668500609244802e+02
+8.817635270541082093e+00 5.329945789411409507e+00 2.147383179374249096e+02
+8.837675350701402976e+00 5.325460081599669770e+00 2.230243447369789749e+02
+8.857715430861723860e+00 5.320767975985125631e+00 2.314216028627118078e+02
+8.877755511022042967e+00 5.315876217080687027e+00 2.399267200482068745e+02
+8.897795591182363850e+00 5.310791636029545515e+00 2.485362807117820694e+02
+8.917835671342684734e+00 5.305521147861844256e+00 2.572468273281535289e+02
+8.937875751503005617e+00 5.300071748717661180e+00 2.660548618169502788e+02
+8.957915831663326500e+00 5.294450513037422645e+00 2.749568469475133838e+02
+8.977955911823647384e+00 5.288664590720861369e+00 2.839492077594163675e+02
+8.997995991983968267e+00 5.282721204255688363e+00 2.930283329981389784e+02
+9.018036072144287374e+00 5.276627645817097978e+00 3.021905765653149274e+02
+9.038076152304608257e+00 5.270391274339290000e+00 3.114322589829767480e+02
+9.058116232464929141e+00 5.264019512560196290e+00 3.207496688711975139e+02
+9.078156312625250024e+00 5.257519844040566603e+00 3.301390644385522819e+02
+9.098196392785570907e+00 5.250899810158627723e+00 3.395966749847884216e+02
+9.118236472945891791e+00 5.244167007081546927e+00 3.491187024151063270e+02
+9.138276553106212674e+00 5.237329082714865081e+00 3.587013227654414891e+02
+9.158316633266533557e+00 5.230393733631166775e+00 3.683406877381355002e+02
+9.178356713426852664e+00 5.223368701979203443e+00 3.780329262473783842e+02
+9.198396793587173548e+00 5.216261772374713779e+00 3.877741459738065259e+02
+9.218436873747494431e+00 5.209080768774191128e+00 3.975604349276194398e+02
+9.238476953907815314e+00 5.201833551332843975e+00 4.073878630196048221e+02
+9.258517034068136198e+00 5.194528013248028486e+00 4.172524836394272256e+02
+9.278557114228457081e+00 5.187172077589415231e+00 4.271503352405529768e+02
+9.298597194388777964e+00 5.179773694117139726e+00 4.370774429311730955e+02
+9.318637274549097071e+00 5.172340836089261096e+00 4.470298200704844476e+02
+9.338677354709417955e+00 5.164881497059755411e+00 4.570034698696940154e+02
+9.358717434869738838e+00 5.157403687668390191e+00 4.669943869970894639e+02
+9.378757515030059722e+00 5.149915432423705752e+00 4.769985591865493006e+02
+9.398797595190380605e+00 5.142424766480450771e+00 4.870119688488334759e+02
+9.418837675350701488e+00 5.134939732412731495e+00 4.970305946850124315e+02
+9.438877755511022372e+00 5.127468376984182008e+00 5.070504133013864703e+02
+9.458917835671341479e+00 5.120018747916452284e+00 5.170674008252445901e+02
+9.478957915831662362e+00 5.112598890657316097e+00 5.270775345208204499e+02
+9.498997995991983245e+00 5.105216845149687543e+00 5.370767944047840956e+02
+9.519038076152304129e+00 5.097880642602845569e+00 5.470611648606347899e+02
+9.539078156312625012e+00 5.090598302267177466e+00 5.570266362513380045e+02
+9.559118236472945895e+00 5.083377828213707872e+00 5.669692065295602106e+02
+9.579158316633266779e+00 5.076227206119739321e+00 5.768848828448577706e+02
+9.599198396793587662e+00 5.069154400061871790e+00 5.867696831471699852e+02
+9.619238476953906769e+00 5.062167349317696186e+00 5.966196377859761242e+02
+9.639278557114227652e+00 5.055273965177453199e+00 6.064307911044755883e+02
+9.659318637274548536e+00 5.048482127766917849e+00 6.161992030281406869e+02
+9.679358717434869419e+00 5.041799682882824207e+00 6.259209506470201632e+02
+9.699398797595190302e+00 5.035234438842048021e+00 6.355921297911449983e+02
+9.719438877755511186e+00 5.028794163345857271e+00 6.452088565984089428e+02
+9.739478957915832069e+00 5.022486580360477681e+00 6.547672690742948589e+02
+9.759519038076151176e+00 5.016319367015202424e+00 6.642635286428171639e+02
+9.779559118236472059e+00 5.010300150519331197e+00 6.736938216880639629e+02
+9.799599198396792943e+00 5.004436505099149279e+00 6.830543610857074555e+02
+9.819639278557113826e+00 4.998735948956176678e+00 6.923413877238837131e+02
+9.839679358717434710e+00 4.993205941247933488e+00 7.015511720128191655e+02
+9.859719438877755593e+00 4.987853879092396525e+00 7.106800153826006863e+02
+9.879759519038076476e+00 4.982687094597387123e+00 7.197242517684906034e+02
+9.899799599198395583e+00 4.977712851916056280e+00 7.286802490831846626e+02
+9.919839679358716467e+00 4.972938344329665306e+00 7.375444106754310951e+02
+9.939879759519037350e+00 4.968370691358828140e+00 7.463131767744092713e+02
+9.959919839679358233e+00 4.964016935904367323e+00 7.549830259193067832e+02
+9.979959919839679117e+00 4.959884041418952449e+00 7.635504763735062852e+02
+1.000000000000000000e+01 4.955978889110630448e+00 7.720120875228209343e+02
diff --git a/buch/papers/kugel/figures/tikz/curvature-1d.pdf b/buch/papers/kugel/figures/tikz/curvature-1d.pdf
new file mode 100644
index 0000000..6425af6
--- /dev/null
+++ b/buch/papers/kugel/figures/tikz/curvature-1d.pdf
Binary files differ
diff --git a/buch/papers/kugel/figures/tikz/curvature-1d.py b/buch/papers/kugel/figures/tikz/curvature-1d.py
new file mode 100644
index 0000000..4710fc8
--- /dev/null
+++ b/buch/papers/kugel/figures/tikz/curvature-1d.py
@@ -0,0 +1,32 @@
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+@np.vectorize
+def fn(x):
+ return (x ** 2) * 2 / 100 + (1 + x / 4) + np.sin(x)
+
+@np.vectorize
+def ddfn(x):
+ return 2 * 5 / 100 - np.sin(x)
+
+x = np.linspace(0, 10, 500)
+y = fn(x)
+ddy = ddfn(x)
+
+cmap = ddy - np.min(ddy)
+cmap = cmap * 1000 / np.max(cmap)
+
+plt.plot(x, y)
+plt.plot(x, ddy)
+# plt.plot(x, cmap)
+
+plt.show()
+
+fname = "curvature-1d.dat"
+np.savetxt(fname, np.array([x, y, cmap]).T, delimiter=" ")
+
+# with open(fname, "w") as f:
+# # f.write("x y cmap\n")
+# for xv, yv, cv in zip(x, y, cmap):
+# f.write(f"{xv} {yv} {cv}\n")
diff --git a/buch/papers/kugel/figures/tikz/curvature-1d.tex b/buch/papers/kugel/figures/tikz/curvature-1d.tex
new file mode 100644
index 0000000..6983fb0
--- /dev/null
+++ b/buch/papers/kugel/figures/tikz/curvature-1d.tex
@@ -0,0 +1,21 @@
+% vim:ts=2 sw=2 et:
+\documentclass[tikz, border=5mm]{standalone}
+\usepackage{pgfplots}
+
+\begin{document}
+\begin{tikzpicture}
+ \begin{axis}[
+ clip = false,
+ width = 8cm, height = 6cm,
+ xtick = \empty, ytick = \empty,
+ colormap name = viridis,
+ axis lines = middle,
+ axis line style = {ultra thick, -latex}
+ ]
+ \addplot+[
+ smooth, mark=none, line width = 3pt, mesh,
+ point meta=explicit,
+ ] file {curvature-1d.dat};
+ \end{axis}
+\end{tikzpicture}
+\end{document}
diff --git a/buch/papers/kugel/figures/tikz/spherical-coordinates.pdf b/buch/papers/kugel/figures/tikz/spherical-coordinates.pdf
new file mode 100644
index 0000000..1bff016
--- /dev/null
+++ b/buch/papers/kugel/figures/tikz/spherical-coordinates.pdf
Binary files differ
diff --git a/buch/papers/kugel/figures/tikz/spherical-coordinates.tex b/buch/papers/kugel/figures/tikz/spherical-coordinates.tex
new file mode 100644
index 0000000..3a45385
--- /dev/null
+++ b/buch/papers/kugel/figures/tikz/spherical-coordinates.tex
@@ -0,0 +1,99 @@
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{bm}
+\usepackage{lmodern}
+\usepackage{tikz-3dplot}
+
+\usetikzlibrary{arrows}
+\usetikzlibrary{intersections}
+\usetikzlibrary{math}
+\usetikzlibrary{positioning}
+\usetikzlibrary{arrows.meta}
+\usetikzlibrary{shapes.misc}
+\usetikzlibrary{calc}
+
+\begin{document}
+
+\tdplotsetmaincoords{60}{130}
+\pgfmathsetmacro{\l}{2}
+
+\begin{tikzpicture}[
+ >=latex,
+ tdplot_main_coords,
+ dot/.style = {
+ black, fill = black, circle,
+ outer sep = 0, inner sep = 0,
+ minimum size = .8mm
+ },
+ round/.style = {
+ draw = orange, thick, circle,
+ minimum size = 1mm,
+ inner sep = 0pt, outer sep = 0pt,
+ },
+ cross/.style = {
+ cross out, draw = magenta, thick,
+ minimum size = 1mm,
+ inner sep = 0pt, outer sep = 0pt
+ },
+ ]
+
+ % origin
+ \coordinate (O) at (0,0,0);
+
+ % poles
+ \coordinate (NP) at (0,0,\l);
+ \coordinate (SP) at (0,0,-\l);
+
+ % \draw (SP) node[dot, gray] {};
+ % \draw (NP) node[dot, gray] {};
+
+ % gray unit circle
+ \tdplotdrawarc[gray]{(O)}{\l}{0}{360}{}{};
+ \draw[gray, dashed] (-\l, 0, 0) to (\l, 0, 0);
+ \draw[gray, dashed] (0, -\l, 0) to (0, \l, 0);
+
+ % axis
+ \draw[->] (O) -- ++(1.25*\l,0,0) node[left] {\(\mathbf{\hat{x}}\)};
+ \draw[->] (O) -- ++(0,1.25*\l,0) node[right] {\(\mathbf{\hat{y}}\)};
+ \draw[->] (O) -- ++(0,0,1.25*\l) node[above] {\(\mathbf{\hat{z}}\)};
+
+ % meridians
+ \foreach \phi in {0, 30, 60, ..., 150}{
+ \tdplotsetrotatedcoords{\phi}{90}{0};
+ \tdplotdrawarc[lightgray, densely dotted, tdplot_rotated_coords]{(O)}{\l}{0}{360}{}{};
+ }
+
+ % dot above and its projection
+ \pgfmathsetmacro{\phi}{120}
+ \pgfmathsetmacro{\theta}{40}
+
+ \pgfmathsetmacro{\px}{cos(\phi)*sin(\theta)*\l}
+ \pgfmathsetmacro{\py}{sin(\phi)*sin(\theta)*\l}
+ \pgfmathsetmacro{\pz}{cos(\theta)*\l})
+
+ % point A
+ \coordinate (A) at (\px,\py,\pz);
+ \coordinate (Ap) at (\px,\py, 0);
+
+ % lines
+ \draw[red!80!black, ->] (O) -- (A);
+ \draw[red!80!black, densely dashed] (O) -- (Ap) -- (A)
+ node[above right] {\(\mathbf{\hat{r}}\)};
+
+ % arcs
+ \tdplotdrawarc[blue!80!black, ->]{(O)}{.8\l}{0}{\phi}{}{};
+ \node[below right, blue!80!black] at (.8\l,0,0) {\(\bm{\hat{\varphi}}\)};
+
+ \tdplotsetrotatedcoords{\phi-90}{-90}{0};
+ \tdplotdrawarc[blue!80!black, ->, tdplot_rotated_coords]{(O)}{.95\l}{0}{\theta}{}{};
+ \node[above right = 1mm, blue!80!black] at (0,0,.8\l) {\(\bm{\hat{\vartheta}}\)};
+
+
+ % dots
+ \draw (O) node[dot] {};
+ \draw (A) node[dot, fill = red!80!black] {};
+
+\end{tikzpicture}
+\end{document}
+% vim:ts=2 sw=2 et:
diff --git a/buch/papers/kugel/main.tex b/buch/papers/kugel/main.tex
index 98d9cb2..d063f87 100644
--- a/buch/papers/kugel/main.tex
+++ b/buch/papers/kugel/main.tex
@@ -14,6 +14,7 @@
\input{papers/kugel/preliminaries}
\input{papers/kugel/spherical-harmonics}
\input{papers/kugel/applications}
+\input{papers/kugel/proofs}
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/kugel/packages.tex b/buch/papers/kugel/packages.tex
index 61f91ad..ead7653 100644
--- a/buch/papers/kugel/packages.tex
+++ b/buch/papers/kugel/packages.tex
@@ -1,3 +1,4 @@
+% vim:ts=2 sw=2 et:
%
% packages.tex -- packages required by the paper kugel
%
@@ -7,4 +8,13 @@
% if your paper needs special packages, add package commands as in the
% following example
%\usepackage{packagename}
+\usepackage{cases}
+\newcommand{\kugeltodo}[1]{\textcolor{red!70!black}{\texttt{[TODO: #1]}}}
+\newcommand{\kugelplaceholderfig}[2]{ \begin{tikzpicture}%
+ \fill[lightgray!20] (0, 0) rectangle (#1, #2);%
+ \node[gray, anchor = center] at ({#1 / 2}, {#2 / 2}) {\Huge \ttfamily \bfseries TODO};
+ \end{tikzpicture}}
+
+\DeclareMathOperator{\sphlaplacian}{\nabla^2_{\mathit{S}}}
+\DeclareMathOperator{\surflaplacian}{\nabla^2_{\partial \mathit{S}}}
diff --git a/buch/papers/kugel/preliminaries.tex b/buch/papers/kugel/preliminaries.tex
index 03cd421..e48abe4 100644
--- a/buch/papers/kugel/preliminaries.tex
+++ b/buch/papers/kugel/preliminaries.tex
@@ -44,23 +44,23 @@ numbers \(\mathbb{R}\).
\)
\end{definition}
-\texttt{TODO: Text here.}
+\kugeltodo{Text here.}
\begin{definition}[Span]
\end{definition}
-\texttt{TODO: Text here.}
+\kugeltodo{Text here.}
\begin{definition}[Linear independence]
\end{definition}
-\texttt{TODO: Text here.}
+\kugeltodo{Text here.}
\begin{definition}[Basis]
\end{definition}
-\texttt{TODO: Text here.}
+\kugeltodo{Text here.}
\begin{definition}[Inner product]
\label{kugel:def:inner-product} \nocite{axler_linear_2014}
diff --git a/buch/papers/kugel/proofs.tex b/buch/papers/kugel/proofs.tex
new file mode 100644
index 0000000..143caa8
--- /dev/null
+++ b/buch/papers/kugel/proofs.tex
@@ -0,0 +1,245 @@
+% vim:ts=2 sw=2 et spell tw=80:
+\section{Proofs}
+
+\subsection{Legendre Functions} \label{kugel:sec:proofs:legendre}
+
+\kugeltodo{Fix theorem numbers to match, review text.}
+
+\begin{lemma}
+ The polynomial function
+ \begin{align*}
+ y_n(x)&=\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k}\\
+ &= \frac{1}{n!2^n}\frac{d^n}{dx^n}(1-x^2)^n =: P_n(x),
+ \end{align*}
+ is a solution to the second order differential equation
+ \begin{equation}\label{kugel:eq:sol_leg}
+ (1-x^2)\frac{d^2y}{dx^2}-2x\frac{dy}{dx} + n(n+1)y=0, \quad \forall n>0.
+ \end{equation}
+\end{lemma}
+\begin{proof}
+ In order to find a solution to Eq.\eqref{eq:legendre}, the following Ansatz can be performed:
+ \begin{equation}\label{eq:ansatz}
+ y(x) = \sum_{k=0}^\infty a_k x^k.
+ \end{equation}
+ Given Eq.\eqref{eq:ansatz}, then
+ \begin{align*}
+ \frac{dy}{dx} &= \sum_{k=0}^\infty k a_k x^{k-1}, \\
+ \frac{d^2y}{dx^2} &= \sum_{k=0}^\infty k (k-1) a_k x^{k-2}.
+ \end{align*}
+ Eq.\eqref{eq:legendre} can be therefore written as
+ \begin{align}
+ &(1-x^2)\sum_{k=0}^\infty k (k-1) a_k x^{k-2} - 2x\sum_{k=0}^\infty k a_k x^{k-1} + n(n+1)\sum_{k=0}^\infty a_k x^k=0 \label{eq:ansatz_in_legendre} \\
+ &=\sum_{k=0}^\infty k (k-1) a_k x^{k-2} - \sum_{k=0}^\infty k (k-1) a_k x^{k} - 2x\sum_{k=0}^\infty k a_k x^{k-1} + n(n+1)\sum_{k=0}^\infty a_k x^k=0. \nonumber
+ \end{align}
+ If one consider the term
+ \begin{equation}\label{eq:term}
+ \sum_{k=0}^\infty k (k-1) a_k x^{k-2},
+ \end{equation}
+ the substitution $\tilde{k}=k-2$ yields Eq.\eqref{eq:term} to
+ \begin{equation*}
+ \sum_{\tilde{k}=-2}^\infty (\tilde{k}+2) (\tilde{k}+1) a_{\tilde{k}+2} x^{\tilde{k}}=\sum_{\tilde{k}=0}^\infty (\tilde{k}+2) (\tilde{k}+1) a_{\tilde{k}} x^{\tilde{k}}.
+ \end{equation*}
+ This means that Eq.\eqref{eq:ansatz_in_legendre} becomes
+ \begin{align}
+ &\sum_{k=0}^\infty (k+1)(k+2) a_{k+2} x^{k} - \sum_{k=0}^\infty k (k-1) a_k x^{k} - 2\sum_{k=0}^\infty k a_k x^k + n(n+1)\sum_{k=0}^\infty a_k x^k \nonumber \\
+ = &\sum_{k=0}^\infty \big[ (k+1)(k+2) a_{k+2} - k (k-1) a_k - 2 k a_k + n(n+1) a_k \big] x^k \stackrel{!}{=} 0. \label{eq:condition}
+ \end{align}
+ The condition in Eq.\eqref{eq:condition} is equivalent to
+ \begin{equation}\label{eq:condition_2}
+ (k+1)(k+2) a_{k+2} - k (k-1) a_k - 2 k a_k + n(n+1) a_k = 0.
+ \end{equation}
+ We can derive a recursion formula for $a_{k+2}$ from Eq.\eqref{eq:condition_2}, which can be expressed as
+ \begin{equation}\label{eq:recursion}
+ a_{k+2}= \frac{k (k-1) - 2 k + n(n+1)}{(k+1)(k+2)}a_k = \frac{(k-n)(k+n+1)}{(k+2)(k+1)}a_k.
+ \end{equation}
+ All coefficients can be calculated using the latter.
+
+ Following Eq.\eqref{eq:recursion}, if we want to compute $a_6$ we would have
+ \begin{align*}
+ a_{6}= -\frac{(n-4)(n+5)}{6\cdot 5}a_4 &= -\frac{(n-4)(5+n)}{6 \cdot 5} -\frac{(n-2)(n+3)}{4 \cdot 3} a_2 \\
+ &= -\frac{(n-4)(n+5)}{6 \cdot 5} -\frac{(n-2)(n+3)}{4 \cdot 3} -\frac{n(n+1)}{2 \cdot 1} a_0 \\
+ &= -\frac{(n+5)(n+3)(n+1)n(n-2)(n-4)}{6!} a_0.
+ \end{align*}
+ One can generalize this relation for the $i^\text{th}$ even coefficient as
+ \begin{equation*}
+ a_{2k} = (-1)^k \frac{(n+(2k-1))(n+(2k-1)-2)\hdots (n-(2k-2)+2)(n-(2k-2))}{(2k)!}a_0
+ \end{equation*}
+ where $i=2k$.
+
+ A similar expression can be written for the odd coefficients $a_{2k-1}$. In this case, the equation starts from $a_1$ and to find the pattern we can write the recursion for an odd coefficient, $a_7$ for example
+ \begin{align*}
+ a_{7}= -\frac{(n-5)(n+6)}{7\cdot 6}a_5 &= - \frac{(n-5)(n+6)}{7\cdot 6} -\frac{(n-3)(n+4)}{5 \cdot 4} a_3 \\
+ &= - \frac{(n-5)(n+6)}{7\cdot 6} -\frac{(n-3)(n+4)}{5 \cdot 4} -\frac{(n-1)(n+2)}{3 \cdot 2} a_1 \\
+ &= -\frac{(n+6)(n+4)(n+2)(n-1)(n-3)(n-5)}{7!} a_1.
+ \end{align*}
+ As before, we can generalize this equation for the $i^\text{th}$ odd coefficient
+ \begin{equation*}
+ a_{2k+1} = (-1)^k \frac{(n + 2k)(n+2k-2)\hdots(n-(2k-1)+2)(n-(2k-1))}{(2k+1)!}a_1
+ \end{equation*}
+ where $i=2k+1$.
+
+ Let be
+ \begin{align*}
+ y_\text{e}^K(x) &:= \sum_{k=0}^K(-1)^k \frac{(n+(2k-1))(n+(2k-1)-2)\hdots \color{red}(n-(2k-2)+2)(n-(2k-2))}{(2k)!} x^{2k}, \\
+ y_\text{o}^K(x) &:= \sum_{k=0}^K(-1)^k \frac{(n + 2k)(n+2k-2)\hdots \color{blue} (n-(2k-1)+2)(n-(2k-1))}{(2k+1)!} x^{2k+1}.
+ \end{align*}
+ The solution to the Eq.\eqref{eq:legendre} can be written as
+ \begin{equation}\label{eq:solution}
+ y(x) = \lim_{K \to \infty} \left[ a_0 y_\text{e}^K(x) + a_1 y_\text{o}^K(x) \right].
+ \end{equation}
+
+ The colored parts can be analyzed separately:
+ \begin{itemize}
+ \item[\textcolor{red}{\textbullet}] Suppose that $n=n_0$ is an even number. Then the red part, for a specific value of $k=k_0$, will follow the following relation:
+ \begin{equation*}
+ n_0-(2k_0-2)=0.
+ \end{equation*}
+ From that point on, given the recursive nature of Eq.\eqref{eq:recursion}, all the subsequent coefficients will also be 0, making the sum finite.
+ \begin{equation*}
+ a_{2k}=0 \iff y_{\text{o}}^{2k}(x)=y_{\text{o}}^{2k_0}(x), \quad \forall k>k_0
+ \end{equation*}
+ \item[\textcolor{blue}{\textbullet}] Suppose that $n=n_0$ is an odd number. Then the blue part, for a specific value of $k=k_0$, will follow the following relation
+ \begin{equation*}
+ n_0-(2k_0-1)=0.
+ \end{equation*}
+ From that point on, for the same reason as before, all the subsequent coefficients will also be 0, making the sum finite.
+ \begin{equation*}
+ a_{2k+1}=0 \iff y_{\text{o}}^{2k+1}(x)=y_{\text{o}}^{2k_0+1}(x), \quad \forall k>k_0
+ \end{equation*}
+ \end{itemize}
+
+ There is the possibility of expressing the solution in Eq.\eqref{eq:solution} in a more compact form, combining the two solutions $y_\text{o}^K(x)$ and $y_\text{e}^K(x)$. They are both a polynomial of maximum degree $n$, assuming $n \in \mathbb{N}$. In the case where $n$ is even, the polynomial solution
+ \begin{equation*}
+ \lim_{K\to \infty} y_\text{e}^K(x)
+ \end{equation*}
+ will be a finite sum. If instead $n$ is odd, will be
+ \begin{equation*}
+ \lim_{K\to \infty} y_\text{o}^K(x)
+ \end{equation*}
+ to be a finite sum.
+
+ Depending on the coefficient we start with, $a_1$ or $a_0$, we will obtain the odd or even polynomial respectively. Starting with the last coefficient $a_n$ and, recursively, calculating all the others in descending order, we can express the two parts $y_\text{o}^K(x)$ and $y_\text{e}^K(x)$ with a single sum. Hence, because we start with the last coefficient, the choice concerning $a_1$ and $a_0$ will be at the end of the sum, and not at the beginning. To compact Eq.\eqref{eq:solution}, Eq.\eqref{eq:recursion} can be reconsidered to calculate the coefficient $a_{k-2}$, using $a_k$
+ \begin{equation*}
+ a_{k-2} = -\frac{(k+2)(k+1)}{(k-n)(k+n+1)}a_k
+ \end{equation*}
+ Now the game is to find a pattern, as before. Remember that $n$ is a fixed parameter of Eq.\eqref{eq:legendre}.
+ \begin{align*}
+ a_{n-2} &= -\frac{n(n-1)}{2(2n-1)}a_n, \\
+ a_{n-4} &= -\frac{(n-2)(n-3)}{4(2n-3)}a_{n-2} \\
+ &= -\frac{(n-2)(n-3)}{4(2n-3)}-\frac{n(n-1)}{2(2n-1)}a_n.
+ \end{align*}
+ In general
+ \begin{equation}\label{eq:general_recursion}
+ a_{n-2k} = (-1)^k \frac{n(n-1)(n-2)(n-3) \hdots (n-2k+1)}{2\cdot4\hdots 2k(2n-1)(2n-3)\hdots(2n-2k+1)}a_n
+ \end{equation}
+ The whole solution can now be written as
+ \begin{align}
+ y(x) &= a_n x^n + a_{n-2} x^{n-2} + a_{n-4} x^{n-4} + a_{n-6} x^{n-6} + \hdots + \begin{cases}
+ a_1 x, \quad &\text{if } n \text{ odd} \\
+ a_0, \quad &\text{if } n \text{ even}
+ \end{cases} \nonumber \\
+ &= \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} a_{n-2k}x^{n-2k} \label{eq:solution_2}
+ \end{align}
+ By considering
+ \begin{align}
+ (2n-1)(2n-3)\hdots (2n-2k+1)&=\frac{2n(2n-1)(2n-2)(2n-3)\hdots(2n-2k+1)}
+ {2n(2n-2)(2n-4)(2n-6)\hdots(2n-2k+2)} \nonumber \\
+ &=\frac{\frac{(2n)!}{(2n-2k)!}}
+ {2^kn(n-1)(n-2)(n-3)\hdots(n-k+1)} \nonumber \\
+ &=\frac{\frac{(2n)!}{(2n-2k)!}}
+ {2^k\frac{n!}{(n-k)!}}=\frac{(n-k)!(2n)!}{n!(2n-2k)!2^k} \label{eq:1_sub_recursion}, \\
+ 2 \cdot 4 \hdots 2k &= 2^r 1\cdot2 \hdots r = 2^r r!\label{eq:2_sub_recursion}, \\
+ n(n-1)(n-2)(n-3) \hdots (n-2k+1) &= \frac{n!}{(n-2k)!}\label{eq:3_sub_recursion}.
+ \end{align}
+ Eq.\eqref{eq:solution_2} can be rewritten as
+ \begin{equation}\label{eq:solution_3}
+ y(x)=a_n \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{n!^2(2n-2k)!}{k!(n-2k)!(n-k)!(2n)!} x^{n-2k}.
+ \end{equation}
+ Eq.\eqref{eq:solution_3} is defined for any $a_n$. By letting $a_n$ be declared as
+ \begin{equation*}
+ a_{n} := \frac{(2n)!}{2^n n!^2},
+ \end{equation*}
+ the so called \emph{Legendre polynomial} emerges
+ \begin{equation}\label{eq:leg_poly}
+ P_n(x):=\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k}
+ \end{equation}
+\end{proof}
+
+
+\begin{lemma}
+ If $Z_n(z)$ is a solution of the Legendre equation \eqref{kugel:eqn:legendre},
+ then
+ \begin{equation*}
+ P^m_n(z) = (1 - z^2)^{m/2} \frac{d^m}{dz^m}Z_n(z)
+ \end{equation*}
+ solves the associated Legendre equation \eqref{kugel:eqn:associated-legendre}.
+\end{lemma}
+% \begin{proof} [TODO: modificare la $m$ (è già usata come costante di separazione) o forse è giusta (?)]
+\begin{proof}
+ To begin, we can start by differentiating $m$ times Eq.\eqref{kugel:eq:leg_eq} (which is staisfied by $y(x)$), obtaining
+ \begin{equation}\label{eq:lagrange_mderiv}
+ \frac{d^m}{dx^m}\left[ (1-x^2)\frac{d^2y}{dx^2} \right] -2 \frac{d^m}{dx^m}\left[ x\frac{dy}{dx} \right] + n(n+1)\frac{d^m}{dx^m}y=0.
+ \end{equation}
+ \emph{Leibniz's theorem} says, that if we want to differentiate $m$ times a multiplication of two functions, we can use the binomial coefficients to build up a sum. This allows us to be more compact, obtaining
+ \begin{equation}\label{eq:leibniz}
+ \frac{d^m}{dx^m}[u(x)v(x)] = \sum_{i=0}^m \binom{n}{i} \frac{d^{m-i}u}{dx^{m-1}} \frac{d^{i}v}{dx^i}.
+ \end{equation}
+ Using Eq.\eqref{eq:leibniz} in Eq.\eqref{eq:lagrange_mderiv}, we have
+ \begin{align}
+ (1-x^2)\frac{d^{m+2}y}{dx^{m+2}} &+ m \frac{d}{dx}(1-x^2)\frac{d^{m+1}y}{dx^{m+1}} + \frac{m(m-1)}{2}\frac{d^{2}}{dx^{2}}(1-x^2)\frac{d^{m}y}{dx^{m}} + n(n+1)\frac{d^m{}y}{dx^{m}} \nonumber \\
+ &-2\left(x\frac{d^{m+1}y}{dx^{m+1}} + m\frac{d}{dx}x\frac{d^{m}y}{dx^{m}} \right) \nonumber \\
+ &= (1-x^2)\frac{d^{m+2}y}{dx^{m+2}} -2x(m+1)\frac{d^{m+1}y}{dx^{m+1}}+(n(n+1)-m(m-1)-2m)\frac{d^{m}y}{dx^{m}}=0. \label{eq:aux_3}
+ \end{align}
+ To make the notation easier to follow, a new function can be defined
+ \begin{equation*}
+ \frac{d^{m}y}{dx^{m}} := y_m.
+ \end{equation*}
+ Eq.\eqref{eq:aux_3} now becomes
+ \begin{equation}\label{eq:1st_subs}
+ (1-x^2)\frac{d^{2}y_m}{dx^{2}} -2x(m+1)\frac{dy_m}{dx}+(n(n+1)-m(m+1))y_m=0
+ \end{equation}
+ A second function can be further defined as
+ \begin{equation*}
+ (1-x^2)^{\frac{m}{2}}\frac{d^{m}y}{dx^{m}} = (1-x^2)^{\frac{m}{2}}y_m := \hat{y}_m,
+ \end{equation*}
+ allowing to write Eq.\eqref{eq:1st_subs} as
+ \begin{equation}\label{eq:2st_subs}
+ (1-x^2)\frac{d^2}{dx^2}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] -2(m+1)x\frac{d}{dx}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] + (n(n+1)-m(m+1))\hat{y}_m(1-x^2)^{-\frac{m}{2}}=0.
+ \end{equation}
+ The goal now is to compute the two terms
+ \begin{align*}
+ \frac{d^2}{dx^2}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] &= \frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} + \frac{d\hat{y}_m}{dx}\frac{m}{2}(1-x^2)^{-\frac{m}{2}-1}2x \\
+ &+ m\left( \frac{d\hat{y}_m}{dx} x (1-x^2)^{-\frac{m}{2}-1} + \hat{y}_m (1-x^2)^{-\frac{m}{2}-1} - \hat{y}_m x (-\frac{m}{2}-1)(1-x^2)^{-\frac{m}{2}} 2x\right) \\
+ &= \frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} + \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-\frac{m}{2}-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-\frac{m}{2}-1}\\
+ &+ m\hat{y}_m (1-x^2)^{-\frac{m}{2}-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-\frac{m}{2}-2}
+ \end{align*}
+ and
+ \begin{align*}
+ \frac{d}{dx}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] &= \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_m\frac{m}{2}(1-x^2)^{-\frac{m}{2}-1}2x \\
+ &= \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_mm(1-x^2)^{-\frac{m}{2}-1}x,
+ \end{align*}
+ to use them in Eq.\eqref{eq:2st_subs}, obtaining
+ \begin{align*}
+ (1-x^2)\biggl[\frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} &+ \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-\frac{m}{2}-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-\frac{m}{2}-1} \\
+ &+ m\hat{y}_m (1-x^2)^{-\frac{m}{2}-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-\frac{m}{2}-2}\biggr] \\
+ &-2(m+1)x\left[ \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_mm(1-x^2)^{-\frac{m}{2}-1}x \right] \\
+ &+ (n(n+1)-m(m+1))\hat{y}_m(1-x^2)^{-\frac{m}{2}}=0.\\
+ \end{align*}
+ We can now divide by $(1-x^2)^{-\frac{m}{2}}$, obtaining
+ \begin{align*}
+ (1-x^2)\biggl[\frac{d^2\hat{y}_m}{dx^2} &+ \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-1} + m\hat{y}_m (1-x^2)^{-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-2}\biggr] \\
+ &-2(m+1)x\left[ \frac{d\hat{y}_m}{dx} + \hat{y}_mm(1-x^2)^{-1}x \right] + (n(n+1)-m(m+1))\hat{y}_m\\
+ &= \frac{d^2\hat{y}_m}{dx^2} + \frac{d\hat{y}_m}{dx}mx + m\frac{d\hat{y}_m}{dx}x + m\hat{y}_m + m\hat{y}_m x^2(m+2)(1-x^2)^{-1} \\
+ &-2(m+1)x\left[ \frac{d\hat{y}_m}{dx} + \hat{y}_mm(1-x^2)^{-1}x \right] + (n(n+1)-m(m+1))\hat{y}_m\\
+ \end{align*}
+ and collecting some terms
+ \begin{equation*}
+ (1-x^2)\frac{d^2\hat{y}_m}{dx^2} - 2x\frac{d\hat{y}_m}{dx} + \left( -x^2 \frac{m^2}{1-x^2} + m+n(n+1)-m(m+1)\right)\hat{y}_m=0.
+ \end{equation*}
+ Showing that
+ \begin{align*}
+ -x^2 \frac{m^2}{1-x^2} + m+n(n+1)-m(m+1) &= n(n+1)- m^2 -x^2 \frac{m^2}{1-x^2} \\
+ &= n(n+1)- \frac{m}{1-x^2}
+ \end{align*}
+ implies $\hat{y}_m(x)$ being a solution of Eq.\eqref{kugel:eq:associated_leg_eq}
+\end{proof}
diff --git a/buch/papers/kugel/references.bib b/buch/papers/kugel/references.bib
index b74c5cd..e5d6452 100644
--- a/buch/papers/kugel/references.bib
+++ b/buch/papers/kugel/references.bib
@@ -192,4 +192,15 @@ Created by Henry Reich},
urldate = {2022-08-01},
date = {2022},
file = {Metric Spaces\: Completeness:/Users/npross/Zotero/storage/5JYEE8NF/completeness.html:text/html},
+}
+
+@book{bell_special_2004,
+ location = {Mineola, {NY}},
+ title = {Special functions for scientists and engineers},
+ isbn = {978-0-486-43521-3},
+ series = {Dover books on mathematics},
+ pagetotal = {247},
+ publisher = {Dover Publ},
+ author = {Bell, William Wallace},
+ date = {2004},
} \ No newline at end of file
diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex
index 6b23ce5..2ded50b 100644
--- a/buch/papers/kugel/spherical-harmonics.tex
+++ b/buch/papers/kugel/spherical-harmonics.tex
@@ -1,13 +1,410 @@
-% vim:ts=2 sw=2 et spell:
+% vim:ts=2 sw=2 et spell tw=80:
-\section{Spherical Harmonics}
+\section{Construction of the Spherical Harmonics}
-\subsection{Eigenvalue Problem in Spherical Coordinates}
+\kugeltodo{Review text, or rewrite if preliminaries becomes an addendum}
+
+We finally arrived at the main section, which gives our chapter its name. The
+idea is to discuss spherical harmonics, their mathematical derivation and some
+of their properties and applications.
+
+The subsection \ref{} \kugeltodo{Fix references} will be devoted to the
+Eigenvalue problem of the Laplace operator. Through the latter we will derive
+the set of Eigenfunctions that obey the equation presented in \ref{}
+\kugeltodo{reference to eigenvalue equation}, which will be defined as
+\emph{Spherical Harmonics}. In fact, this subsection will present their
+mathematical derivation.
+
+In the subsection \ref{}, on the other hand, some interesting properties
+related to them will be discussed. Some of these will come back to help us
+understand in more detail why they are useful in various real-world
+applications, which will be presented in the section \ref{}.
+
+One specific property will be studied in more detail in the subsection \ref{},
+namely the recursive property. The last subsection is devoted to one of the
+most beautiful applications (In our humble opinion), namely the derivation of a
+Fourier-style series expansion but defined on the sphere instead of a plane.
+More importantly, this subsection will allow us to connect all the dots we have
+created with the previous sections, concluding that Fourier is just a specific
+case of the application of the concept of orthogonality. Our hope is that after
+reading this section you will appreciate the beauty and power of generalization
+that mathematics offers us.
+
+\subsection{Eigenvalue Problem}
+\label{kugel:sec:construction:eigenvalue}
+
+\begin{figure}
+ \centering
+ \includegraphics{papers/kugel/figures/tikz/spherical-coordinates}
+ \caption{
+ Spherical coordinate system. Space is described with the free variables $r
+ \in \mathbb{R}_0^+$, $\vartheta \in [0; \pi]$ and $\varphi \in [0; 2\pi)$.
+ \label{kugel:fig:spherical-coordinates}
+ }
+\end{figure}
+
+From Section \ref{buch:pde:section:kugel}, we know that the spherical Laplacian
+in the spherical coordinate system (shown in Figure
+\ref{kugel:fig:spherical-coordinates}) is is defined as
+\begin{equation*}
+ \sphlaplacian :=
+ \frac{1}{r^2} \frac{\partial}{\partial r} \left(
+ r^2 \frac{\partial}{\partial r}
+ \right)
+ + \frac{1}{r^2} \left[
+ \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left(
+ \sin\vartheta \frac{\partial}{\partial\vartheta}
+ \right)
+ + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2}
+ \right].
+\end{equation*}
+But we will not consider this algebraic monstrosity in its entirety. As the
+title suggests, we will only care about the \emph{surface} of the sphere. This
+is for many reasons, but mainly to simplify reduce the already broad scope of
+this text. Concretely, we will always work on the unit sphere, which just means
+that we set $r = 1$ and keep only $\vartheta$ and $\varphi$ as free variables.
+Now, since the variable $r$ became a constant, we can leave out all derivatives
+with respect to $r$ and substitute all $r$'s with 1's to obtain a new operator
+that deserves its own name.
+
+\begin{definition}[Surface spherical Laplacian]
+ \label{kugel:def:surface-laplacian}
+ The operator
+ \begin{equation*}
+ \surflaplacian :=
+ \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left(
+ \sin\vartheta \frac{\partial}{\partial\vartheta}
+ \right)
+ + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2},
+ \end{equation*}
+ is called the surface spherical Laplacian.
+\end{definition}
+
+In the definition, the subscript ``$\partial S$'' was used to emphasize the
+fact that we are on the spherical surface, which can be understood as being the
+boundary of the sphere. But what does it actually do? To get an intuition,
+first of all, notice the fact that $\surflaplacian$ have second derivatives,
+which means that this a measure of \emph{curvature}; But curvature of what? To
+get an even stronger intuition we will go into geometry, were curvature can be
+grasped very well visually. Consider figure \ref{kugel:fig:curvature} where the
+curvature is shown using colors. First we have the curvature of a curve in 1D,
+then the curvature of a surface (2D), and finally the curvature of a function on
+the surface of the unit sphere.
+
+\begin{figure}
+ \centering
+ \includegraphics[width=.3\linewidth]{papers/kugel/figures/tikz/curvature-1d}
+ \hskip 5mm
+ \includegraphics[width=.3\linewidth]{papers/kugel/figures/povray/curvature}
+ \hskip 5mm
+ \includegraphics[width=.3\linewidth]{papers/kugel/figures/povray/spherecurve}
+ \caption{
+ \kugeltodo{Fix alignment / size, add caption. Would be nice to match colors.}
+ \label{kugel:fig:curvature}
+ }
+\end{figure}
+
+Now that we have defined an operator, we can go and study its eigenfunctions,
+which means that we would like to find the functions $f(\vartheta, \varphi)$
+that satisfy the equation
+\begin{equation} \label{kuvel:eqn:eigen}
+ \surflaplacian f = -\lambda f.
+\end{equation}
+Perhaps it may not be obvious at first glance, but we are in fact dealing with a
+partial differential equation (PDE) \kugeltodo{Boundary conditions?}. If we
+unpack the notation of the operator $\nabla^2_{\partial S}$ according to
+definition
+\ref{kugel:def:surface-laplacian}, we get:
+\begin{equation} \label{kugel:eqn:eigen-pde}
+ \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left(
+ \sin\vartheta \frac{\partial f}{\partial\vartheta}
+ \right)
+ + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 f}{\partial\varphi^2}
+ + \lambda f = 0.
+\end{equation}
+Since all functions satisfying \eqref{kugel:eqn:eigen-pde} are the
+\emph{eigenfunctions} of $\surflaplacian$, our new goal is to solve this PDE.
+The task may seem very difficult but we can simplify it with a well-known
+technique: \emph{the separation Ansatz}. It consists in assuming that the
+function $f(\vartheta, \varphi)$ can be factorized in the following form:
+\begin{equation}
+ f(\vartheta, \varphi) = \Theta(\vartheta)\Phi(\varphi).
+\end{equation}
+In other words, we are saying that the effect of the two independent variables
+can be described using the multiplication of two functions that describe their
+effect separately. This separation process was already presented in section
+\ref{buch:pde:section:kugel}, but we will briefly rehearse it here for
+convenience. If we substitute this assumption in
+\eqref{kugel:eqn:eigen-pde}, we have:
+\begin{equation*}
+ \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left(
+ \sin\vartheta \frac{\partial \Theta(\vartheta)}{\partial\vartheta}
+ \right) \Phi(\varphi)
+ + \frac{1}{\sin^2 \vartheta}
+ \frac{\partial^2 \Phi(\varphi)}{\partial\varphi^2}
+ \Theta(\vartheta)
+ + \lambda \Theta(\vartheta)\Phi(\varphi) = 0.
+\end{equation*}
+Dividing by $\Theta(\vartheta)\Phi(\varphi)$ and introducing an auxiliary
+variable $m^2$, the separation constant, yields:
+\begin{equation*}
+ \frac{1}{\Theta(\vartheta)}\sin \vartheta \frac{d}{d \vartheta} \left(
+ \sin \vartheta \frac{d \Theta}{d \vartheta}
+ \right)
+ + \lambda \sin^2 \vartheta
+ = -\frac{1}{\Phi(\varphi)} \frac{d^2\Phi(\varphi)}{d\varphi^2}
+ = m^2,
+\end{equation*}
+which is equivalent to the following system of 2 first order differential
+equations (ODEs):
+\begin{subequations}
+ \begin{gather}
+ \frac{d^2\Phi(\varphi)}{d\varphi^2} = -m^2 \Phi(\varphi),
+ \label{kugel:eqn:ode-phi} \\
+ \sin \vartheta \frac{d}{d \vartheta} \left(
+ \sin \vartheta \frac{d \Theta}{d \vartheta}
+ \right)
+ + \left( \lambda - \frac{m^2}{\sin^2 \vartheta} \right)
+ \Theta(\vartheta) = 0
+ \label{kugel:eqn:ode-theta}.
+ \end{gather}
+\end{subequations}
+The solution of \eqref{kugel:eqn:ode-phi} is easy to find: The complex
+exponential is obviously the function we are looking for. So we can directly
+write the solutions
+\begin{equation} \label{kugel:eqn:ode-phi-sol}
+ \Phi(\varphi) = e^{i m \varphi}, \quad m \in \mathbb{Z}.
+\end{equation}
+The restriction that the separation constant $m$ needs to be an integer arises
+from the fact that we require a $2\pi$-periodicity in $\varphi$ since the
+coordinate systems requires that $\Phi(\varphi + 2\pi) = \Phi(\varphi)$.
+Unfortunately, solving \eqref{kugel:eqn:ode-theta} is as straightforward,
+actually, it is quite difficult, and the process is so involved that it will
+require a dedicated section of its own.
+
+\subsection{Legendre Functions}
+
+\begin{figure}
+ \centering
+ \kugelplaceholderfig{.8\textwidth}{5cm}
+ \caption{
+ \kugeltodo{Why $z = \cos \vartheta$.}
+ }
+\end{figure}
+
+To solve \eqref{kugel:eqn:ode-theta} we start with the substitution $z = \cos
+\vartheta$ \kugeltodo{Explain geometric origin with picture}. The operator
+$\frac{d}{d \vartheta}$ becomes
+\begin{equation*}
+ \frac{d}{d \vartheta}
+ = \frac{dz}{d \vartheta}\frac{d}{dz}
+ = -\sin \vartheta \frac{d}{dz}
+ = -\sqrt{1-z^2} \frac{d}{dz},
+\end{equation*}
+since $\sin \vartheta = \sqrt{1 - \cos^2 \vartheta} = \sqrt{1 - z^2}$, and
+then \eqref{kugel:eqn:ode-theta} becomes
+\begin{align*}
+ \frac{-\sqrt{1-z^2}}{\sqrt{1-z^2}} \frac{d}{dz} \left[
+ \left(\sqrt{1-z^2}\right) \left(-\sqrt{1-z^2}\right) \frac{d \Theta}{dz}
+ \right]
+ + \left( \lambda - \frac{m^2}{1 - z^2} \right)\Theta(\vartheta) &= 0,
+ \\
+ \frac{d}{dz} \left[ (1-z^2) \frac{d \Theta}{dz} \right]
+ + \left( \lambda - \frac{m^2}{1 - z^2} \right)\Theta(\vartheta) &= 0,
+ \\
+ (1-z^2)\frac{d^2 \Theta}{dz} - 2z\frac{d \Theta}{dz}
+ + \left( \lambda - \frac{m^2}{1 - z^2} \right)\Theta(\vartheta) &= 0.
+\end{align*}
+By making two final cosmetic substitutions, namely $Z(z) = \Theta(\cos^{-1}z)$
+and $\lambda = n(n+1)$, we obtain what is known in the literature as the
+\emph{associated Legendre equation of order $m$}:
+\nocite{olver_introduction_2013}
+\begin{equation} \label{kugel:eqn:associated-legendre}
+ (1 - z^2)\frac{d^2 Z}{dz}
+ - 2z\frac{d Z}{dz}
+ + \left( n(n + 1) - \frac{m^2}{1 - z^2} \right) Z(z) = 0,
+ \quad
+ z \in [-1; 1], m \in \mathbb{Z}.
+\end{equation}
+
+Our new goal has therefore become to solve
+\eqref{kugel:eqn:associated-legendre}, since if we find a solution for $Z(z)$ we
+can perform the substitution backwards and get back to our eigenvalue problem.
+However, the associated Legendre equation is not any easier, so to attack the
+problem we will look for the solutions in the easier special case when $m = 0$.
+This reduces the problem because it removes the double pole, which is always
+tricky to deal with. In fact, the reduced problem when $m = 0$ is known as the
+\emph{Legendre equation}:
+\begin{equation} \label{kugel:eqn:legendre}
+ (1 - z^2)\frac{d^2 Z}{dz}
+ - 2z\frac{d Z}{dz}
+ + n(n + 1) Z(z) = 0,
+ \quad
+ z \in [-1; 1].
+\end{equation}
+
+The Legendre equation is a second order differential equation, and therefore it
+has 2 independent solutions, which are known as \emph{Legendre functions} of the
+first and second kind. For the scope of this text we will only derive a special
+case of the former that is known known as the \emph{Legendre polynomials}, since
+we only need a solution between $-1$ and $1$.
+
+\begin{lemma}[Legendre polynomials]
+ \label{kugel:lem:legendre-poly}
+ The polynomial function
+ \[
+ P_n(z) = \sum^{\lfloor n/2 \rfloor}_{k=0}
+ \frac{(-1)^k}{2^n s^k!} \frac{(2n - 2k)!}{(n - k)! (n-2k)!} z^{n - 2k}
+ \]
+ is the only finite solution of the Legendre equation
+ \eqref{kugel:eqn:legendre} when $n \in \mathbb{Z}$ and $z \in [-1; 1]$.
+\end{lemma}
+\begin{proof}
+ This results is derived in section \ref{kugel:sec:proofs:legendre}.
+\end{proof}
+
+Since the Legendre \emph{polynomials} are indeed polynomials, they can also be
+expressed using the hypergeometric functions described in section
+\ref{buch:rekursion:section:hypergeometrische-funktion}, so in fact
+\begin{equation}
+ P_n(z) = {}_2F_1 \left( \begin{matrix}
+ n + 1, & -n \\ \multicolumn{2}{c}{1}
+ \end{matrix} ; \frac{1 - z}{2} \right).
+\end{equation}
+Further, there are a few more interesting but not very relevant forms to write
+$P_n(z)$ such as \emph{Rodrigues' formula} and \emph{Laplace's integral
+representation} which are
+\begin{equation*}
+ P_n(z) = \frac{1}{2^n} \frac{d^n}{dz^n} (x^2 - 1)^n,
+ \qquad \text{and} \qquad
+ P_n(z) = \frac{1}{\pi} \int_0^\pi \left(
+ z + \cos\vartheta \sqrt{z^2 - 1}
+ \right) \, d\vartheta
+\end{equation*}
+respectively, both of which we will not prove (see chapter 3 of
+\cite{bell_special_2004} for a proof). Now that we have a solution for the
+Legendre equation, we can make use of the following lemma patch the solutions
+such that they also become solutions of the associated Legendre equation
+\eqref{kugel:eqn:associated-legendre}.
+
+\begin{lemma} \label{kugel:lem:extend-legendre}
+ If $Z_n(z)$ is a solution of the Legendre equation \eqref{kugel:eqn:legendre},
+ then
+ \begin{equation*}
+ Z^m_n(z) = (1 - z^2)^{m/2} \frac{d^m}{dz^m}Z_n(z)
+ \end{equation*}
+ solves the associated Legendre equation \eqref{kugel:eqn:associated-legendre}.
+ \nocite{bell_special_2004}
+\end{lemma}
+\begin{proof}
+ See section \ref{kugel:sec:proofs:legendre}.
+\end{proof}
+
+What is happening in lemma \ref{kugel:lem:extend-legendre}, is that we are
+essentially inserting a square root function in the solution in order to be able
+to reach the parts of the domain near the poles at $\pm 1$ of the associated
+Legendre equation, which is not possible only using power series
+\kugeltodo{Reference book theory on extended power series method.}. Now, since
+we have a solution in our domain, namely $P_n(z)$, we can insert it in the lemma
+obtain the \emph{associated Legendre functions}.
+
+\begin{definition}[Ferrers or associated Legendre functions]
+ \label{kugel:def:ferrers-functions}
+ The functions
+ \begin{equation}
+ P^m_n (z) = \frac{1}{n!2^n}(1-z^2)^{\frac{m}{2}}\frac{d^{m}}{dz^{m}} P_n(z)
+ = \frac{1}{n!2^n}(1-z^2)^{\frac{m}{2}}\frac{d^{m+n}}{dz^{m+n}}(1-z^2)^n
+ \end{equation}
+ are known as Ferrers or associated Legendre functions.
+\end{definition}
+
+\kugeltodo{Discuss $|m| \leq n$.}
+
+\if 0
+The constraint $|m|<n$, can be justified by considering Eq.\eqref{kugel:eq:associated_leg_func}, in which the derivative of degree $m+n$ is present. A derivative to be well defined must have an order that is greater than zero. Furthermore, it can be seen that this derivative is applied on a polynomial of degree $2n$. As is known from Calculus 1, if you derive a polynomial of degree $2n$ more than $2n$ times, you get zero, which is a trivial solution in which we are not interested.\newline
+We can thus summarize these two conditions by writing:
+\begin{equation*}
+ \begin{rcases}
+ m+n \leq 2n &\implies m \leq n \\
+ m+n \geq 0 &\implies m \geq -n
+ \end{rcases} |m| \leq n.
+\end{equation*}
+The set of functions in Eq.\eqref{kugel:eq:sph_harm_0} is named \emph{Spherical Harmonics}, which are the eigenfunctions of the Laplace operator on the \emph{spherical surface domain}, which is exactly what we were looking for at the beginning of this section.
+\fi
+
+\subsection{Spherical Harmonics}
+
+Finally, we can go back to solving our boundary value problem we started in
+section \ref{kugel:sec:construction:eigenvalue}. We had left off in the middle
+of the separation, were we had used the Ansatz $f(\vartheta, \varphi) =
+\Theta(\vartheta) \Phi(\varphi)$ to find that $\Phi(\varphi) = e^{im\varphi}$,
+and we were solving for $\Theta(\vartheta)$. As you may recall, previously we
+performed the substitution $z = \cos \vartheta$. Now we can finally to bring back the
+solution to the associated Legendre equation $P^m_n(z)$ into the $\vartheta$
+domain and combine it with $\Phi(\varphi)$ to get the full result:
+\begin{equation*}
+ f(\vartheta, \varphi)
+ = \Theta(\vartheta)\Phi(\varphi)
+ = P^m_n (\cos \vartheta) e^{im\varphi}.
+\end{equation*}
+This family of functions, which recall are the solutions of the eigenvalue
+problem of the surface spherical Laplacian, are the long anticipated
+\emph{complex spherical harmonics}, and they are usually denoted with
+$Y^m_n(\vartheta, \varphi)$.
+
+\begin{definition}[Spherical harmonics]
+ \label{kugel:def:spherical-harmonics}
+ The functions
+ \begin{equation*}
+ Y_{m,n}(\vartheta, \varphi) = P^m_n(\cos \vartheta) e^{im\varphi},
+ \end{equation*}
+ where $m, n \in \mathbb{Z}$ and $|m| < n$ are called spherical harmonics.
+\end{definition}
+
+\begin{figure}
+ \centering
+ \kugelplaceholderfig{\textwidth}{.8\paperheight}
+ \caption{
+ \kugeltodo{Big picture with the first few spherical harmonics.}
+ }
+\end{figure}
+
+\subsection{Normalization}
+
+\kugeltodo{Discuss various normalizations.}
+
+\if 0
+As explained in the chapter \ref{}, the concept of orthogonality is very important and at the practical level it is very useful, because it allows us to develop very powerful techniques at the mathematical level.\newline
+Throughout this book we have been confronted with the Sturm-Liouville theory (see chapter \ref{}). The latter, among other things, carries with it the concept of orthogonality. Indeed, if we consider the solutions of the Sturm-Liouville equation, which can be expressed in this form
+\begin{equation}\label{kugel:eq:sturm_liouville}
+ \mathcal{S}f := \frac{d}{dx}\left[p(x)\frac{df}{dx}\right]+q(x)f(x)
+\end{equation}
+possiamo dire che formano una base ortogonale.\newline
+Adesso possiamo dare un occhiata alle due equazioni che abbiamo ottenuto tramite la Separation Ansatz (Eqs.\eqref{kugel:eq:associated_leg_eq}\eqref{kugel:eq:ODE_1}), le quali possono essere riscritte come:
+\begin{align*}
+ \frac{d}{dx} \left[ (1-x^2) \cdot \frac{dP_{m,n}}{dx} \right] &+ \left(n(n+1)-\frac{m}{1-x^2} \right) \cdot P_{m,n}(x) = 0, \\
+ \frac{d}{d\varphi} \left[ 1 \cdot \frac{ d\Phi }{d\varphi} \right] &+ 1 \cdot \Phi(\varphi) = 0.
+\end{align*}
+Si può concludere in modo diretto che sono due casi dell'equazione di Sturm-Liouville. Questo significa che le loro soluzioni sono ortogonali sotto l'inner product con weight function $w(x)=1$, dunque:
+\begin{align}
+\int_{0}^{2\pi} \Phi_m(\varphi)\Phi_m'(\varphi) d\varphi &= \delta_{m'm}, \nonumber \\
+\int_{-1}^1 P_{m,m'}(x)P_{n,n'}(x) dx &= \delta_{m'm}\delta_{n'n}. \label{kugel:eq:orthogonality_associated_func}
+\end{align}
+Inoltre, possiamo provare l'ortogonalità di $\Theta(\vartheta)$ utilizzando \eqref{kugel:eq:orthogonality_associated_func}:
+\begin{align}
+ x
+\end{align}
+Ora, visto che la soluzione dell'eigenfunction problem è formata dalla moltiplicazione di $\Phi_m(\varphi)$ e $P_{m,n}(x)$
+\fi
\subsection{Properties}
\subsection{Recurrence Relations}
-\section{Series Expansions in \(C(S^2)\)}
+\section{Series Expansions in $C(S^2)$}
-\nocite{olver_introduction_2013}
+\subsection{Orthogonality of $P_n$, $P^m_n$ and $Y^m_n$}
+
+\subsection{Series Expansion}
+
+\subsection{Fourier on $S^2$}