diff options
Diffstat (limited to 'buch')
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 62 |
1 files changed, 33 insertions, 29 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index c01a164..f346fa2 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -131,14 +131,33 @@ Differenzialgleichungen aufgeteilt werden: \end{equation} % -% Überprüfung Orthogonalität der Lösungen +% Überprüfung SLP, dann Orthogonalität der Lösungen % -Es ist an dieser Stelle zu bemerken, dass die Gleichung in $x$ in -Sturm-Liouville-Form ist. -Erfüllen die Randbedingungen des Stab-Problems auch die Randbedingungen des -Sturm-Liouville-Problems, kann bereits die Aussage gemacht werden, dass alle -Lösungen für die Gleichung in $x$ orthogonal sein werden. +An dieser Stelle wird nun gezeigt, dass die Gleichung in $x$ ein +Sturm-Liouville-Problem ist. +Dazu werden zunächst die Koeffizientenfunktionen $p(x)$, $q(x)$ und $w(x)$ +benötigt. +Dafür wird die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} +mit der +Sturm-Liouville-Form~\eqref{sturmliouville:eq:sturm-liouville-equation} +verglichen, was zu +\[ +\begin{aligned} + p(x) &= 1 \\ + q(x) &= 0 \\ + w(x) &= 1 +\end{aligned} +\] +führt. + +Diese können bereits auf die Bedingungen in +Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} geprüft +werden. +Es ist schnell ersichtlich, dass die ersten drei Kriterien erfüllt sind. +Werden nun auch noch die Randbedingungen erfüllt, handelt es sich also um ein +reguläres Sturm-Liouville-Problem und es kann bereits die Aussage gemacht +werden, dass alle Lösungen für die Gleichung in $x$ orthogonal sein werden. Da die Bedingungen des Stab-Problems nur Anforderungen an $x$ stellen, können diese direkt für $X(x)$ übernomen werden. @@ -146,7 +165,7 @@ Es gilt also beispielsweise wegen \eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}, dass $X(0) = X(l) = 0$. -Damit die Lösungen von $X$ orthogonal sind, müssen nun also die Gleichungen +Damit die Lösungen von $X$ orthogonal sind, müssen also noch die Gleichungen \begin{equation} \begin{aligned} \label{sturmliouville:eq:example-fourier-randbedingungen} @@ -164,28 +183,6 @@ erfüllt sein und es muss ausserdem \end{equation} gelten. -Um zu verifizieren, dass die Randbedingungen erfüllt sind, werden also die -Koeffizientenfunktionen $p(x)$, $q(x)$ und $w(x)$ benötigt. -Dazu wird die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} -mit der -Sturm-Liouville-Form~\eqref{sturmliouville:eq:sturm-liouville-equation} -verglichen, was zu -\[ -\begin{aligned} - p(x) &= 1 \\ - q(x) &= 0 \\ - w(x) &= 1 -\end{aligned} -\] -führt. - -Diese können bereits auf die Bedingungen in -Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} geprüft -werden. -Es ist schnell ersichtlich, dass die ersten drei Kriterien erfüllt sind. -Werden nun auch noch die Randbedingungen erfüllt, handelt es sich also um ein -reguläres Sturm-Liouville-Problem. - Es werden nun $p(x)$ und die Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant} des Stab-Problems in \eqref{sturmliouville:eq:example-fourier-randbedingungen} @@ -204,6 +201,7 @@ und $k_b \neq 0$ gewählt werden. Somit ist gezeigt, dass die Randbedingungen des Stab-Problems für Enden auf konstanter Temperatur auch die Sturm-Liouville-Randbedingungen erfüllen. + Daraus folg zunächst, dass es sich um ein reguläres Sturm-Liouville-Problem handelt und weiter, dass alle daraus resultierenden Lösungen orthogonal sind. Analog dazu kann gezeit werden, dass die Randbedingungen für einen Stab mit @@ -291,6 +289,9 @@ Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ und $\beta$ im allgemeinen ungleich $0$ sind, müssen die Randbedingungen durch die trigonometrischen Funktionen erfüllt werden. +\subsubsection{Einsetzen der +Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}} + Es werden nun die Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant} für einen Stab mit Enden auf konstanter Temperatur in die @@ -337,6 +338,9 @@ Ausserdem ist zu bemerken, dass dies auch gleich $-\alpha^{2}$ ist. Da aber $A = 0$ gilt und der Summand mit $\alpha$ verschwindet, ist dies keine Verletzung der Randbedingungen. +\subsubsection{Einsetzen der +Randbedingungen~\eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated}} + Durch analoges Vorgehen kann nun auch das Problem mit isolierten Enden gelöst werden. Setzt man die |