diff options
Diffstat (limited to 'buch')
-rw-r--r-- | buch/papers/kugel/spherical-harmonics.tex | 396 | ||||
-rw-r--r-- | buch/papers/parzyl/img/Plane_2D.png | bin | 0 -> 209118 bytes | |||
-rw-r--r-- | buch/papers/parzyl/img/coordinates.png | bin | 0 -> 1215422 bytes | |||
-rw-r--r-- | buch/papers/parzyl/references.bib | 9 | ||||
-rw-r--r-- | buch/papers/parzyl/teil0.tex | 29 | ||||
-rw-r--r-- | buch/papers/parzyl/teil1.tex | 14 | ||||
-rw-r--r-- | buch/papers/parzyl/teil2.tex | 70 | ||||
-rw-r--r-- | buch/papers/parzyl/teil3.tex | 14 |
8 files changed, 444 insertions, 88 deletions
diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex index 2ded50b..bff91ef 100644 --- a/buch/papers/kugel/spherical-harmonics.tex +++ b/buch/papers/kugel/spherical-harmonics.tex @@ -107,7 +107,7 @@ the surface of the unit sphere. Now that we have defined an operator, we can go and study its eigenfunctions, which means that we would like to find the functions $f(\vartheta, \varphi)$ that satisfy the equation -\begin{equation} \label{kuvel:eqn:eigen} +\begin{equation} \label{kugel:eqn:eigen} \surflaplacian f = -\lambda f. \end{equation} Perhaps it may not be obvious at first glance, but we are in fact dealing with a @@ -178,7 +178,7 @@ write the solutions The restriction that the separation constant $m$ needs to be an integer arises from the fact that we require a $2\pi$-periodicity in $\varphi$ since the coordinate systems requires that $\Phi(\varphi + 2\pi) = \Phi(\varphi)$. -Unfortunately, solving \eqref{kugel:eqn:ode-theta} is as straightforward, +Unfortunately, solving \eqref{kugel:eqn:ode-theta} is not as straightforward, actually, it is quite difficult, and the process is so involved that it will require a dedicated section of its own. @@ -220,7 +220,7 @@ and $\lambda = n(n+1)$, we obtain what is known in the literature as the \emph{associated Legendre equation of order $m$}: \nocite{olver_introduction_2013} \begin{equation} \label{kugel:eqn:associated-legendre} - (1 - z^2)\frac{d^2 Z}{dz} + (1 - z^2)\frac{d^2 Z}{dz^2} - 2z\frac{d Z}{dz} + \left( n(n + 1) - \frac{m^2}{1 - z^2} \right) Z(z) = 0, \quad @@ -236,7 +236,7 @@ This reduces the problem because it removes the double pole, which is always tricky to deal with. In fact, the reduced problem when $m = 0$ is known as the \emph{Legendre equation}: \begin{equation} \label{kugel:eqn:legendre} - (1 - z^2)\frac{d^2 Z}{dz} + (1 - z^2)\frac{d^2 Z}{dz^2} - 2z\frac{d Z}{dz} + n(n + 1) Z(z) = 0, \quad @@ -250,7 +250,7 @@ case of the former that is known known as the \emph{Legendre polynomials}, since we only need a solution between $-1$ and $1$. \begin{lemma}[Legendre polynomials] - \label{kugel:lem:legendre-poly} + \label{kugel:thm:legendre-poly} The polynomial function \[ P_n(z) = \sum^{\lfloor n/2 \rfloor}_{k=0} @@ -275,7 +275,7 @@ Further, there are a few more interesting but not very relevant forms to write $P_n(z)$ such as \emph{Rodrigues' formula} and \emph{Laplace's integral representation} which are \begin{equation*} - P_n(z) = \frac{1}{2^n} \frac{d^n}{dz^n} (x^2 - 1)^n, + P_n(z) = \frac{1}{2^n n!} \frac{d^n}{dz^n} (z^2 - 1)^n, \qquad \text{and} \qquad P_n(z) = \frac{1}{\pi} \int_0^\pi \left( z + \cos\vartheta \sqrt{z^2 - 1} @@ -287,7 +287,7 @@ Legendre equation, we can make use of the following lemma patch the solutions such that they also become solutions of the associated Legendre equation \eqref{kugel:eqn:associated-legendre}. -\begin{lemma} \label{kugel:lem:extend-legendre} +\begin{lemma} \label{kugel:thm:extend-legendre} If $Z_n(z)$ is a solution of the Legendre equation \eqref{kugel:eqn:legendre}, then \begin{equation*} @@ -300,7 +300,7 @@ such that they also become solutions of the associated Legendre equation See section \ref{kugel:sec:proofs:legendre}. \end{proof} -What is happening in lemma \ref{kugel:lem:extend-legendre}, is that we are +What is happening in lemma \ref{kugel:thm:extend-legendre}, is that we are essentially inserting a square root function in the solution in order to be able to reach the parts of the domain near the poles at $\pm 1$ of the associated Legendre equation, which is not possible only using power series @@ -312,8 +312,8 @@ obtain the \emph{associated Legendre functions}. \label{kugel:def:ferrers-functions} The functions \begin{equation} - P^m_n (z) = \frac{1}{n!2^n}(1-z^2)^{\frac{m}{2}}\frac{d^{m}}{dz^{m}} P_n(z) - = \frac{1}{n!2^n}(1-z^2)^{\frac{m}{2}}\frac{d^{m+n}}{dz^{m+n}}(1-z^2)^n + P^m_n (z) = (1-z^2)^{\frac{m}{2}}\frac{d^{m}}{dz^{m}} P_n(z) + = \frac{1}{2^n n!}(1-z^2)^{\frac{m}{2}}\frac{d^{m+n}}{dz^{m+n}}(1-z^2)^n \end{equation} are known as Ferrers or associated Legendre functions. \end{definition} @@ -356,9 +356,10 @@ $Y^m_n(\vartheta, \varphi)$. \label{kugel:def:spherical-harmonics} The functions \begin{equation*} - Y_{m,n}(\vartheta, \varphi) = P^m_n(\cos \vartheta) e^{im\varphi}, + Y^m_n (\vartheta, \varphi) = P^m_n(\cos \vartheta) e^{im\varphi}, \end{equation*} - where $m, n \in \mathbb{Z}$ and $|m| < n$ are called spherical harmonics. + where $m, n \in \mathbb{Z}$ and $|m| < n$ are called (unnormalized) spherical + harmonics. \end{definition} \begin{figure} @@ -366,45 +367,358 @@ $Y^m_n(\vartheta, \varphi)$. \kugelplaceholderfig{\textwidth}{.8\paperheight} \caption{ \kugeltodo{Big picture with the first few spherical harmonics.} + \label{kugel:fig:spherical-harmonics} } \end{figure} -\subsection{Normalization} +\kugeltodo{Describe how they look like with fig. +\ref{kugel:fig:spherical-harmonics}} -\kugeltodo{Discuss various normalizations.} +\subsection{Orthogonality of $P_n$, $P^m_n$ and $Y^m_n$} -\if 0 -As explained in the chapter \ref{}, the concept of orthogonality is very important and at the practical level it is very useful, because it allows us to develop very powerful techniques at the mathematical level.\newline -Throughout this book we have been confronted with the Sturm-Liouville theory (see chapter \ref{}). The latter, among other things, carries with it the concept of orthogonality. Indeed, if we consider the solutions of the Sturm-Liouville equation, which can be expressed in this form -\begin{equation}\label{kugel:eq:sturm_liouville} - \mathcal{S}f := \frac{d}{dx}\left[p(x)\frac{df}{dx}\right]+q(x)f(x) -\end{equation} -possiamo dire che formano una base ortogonale.\newline -Adesso possiamo dare un occhiata alle due equazioni che abbiamo ottenuto tramite la Separation Ansatz (Eqs.\eqref{kugel:eq:associated_leg_eq}\eqref{kugel:eq:ODE_1}), le quali possono essere riscritte come: -\begin{align*} - \frac{d}{dx} \left[ (1-x^2) \cdot \frac{dP_{m,n}}{dx} \right] &+ \left(n(n+1)-\frac{m}{1-x^2} \right) \cdot P_{m,n}(x) = 0, \\ - \frac{d}{d\varphi} \left[ 1 \cdot \frac{ d\Phi }{d\varphi} \right] &+ 1 \cdot \Phi(\varphi) = 0. -\end{align*} -Si può concludere in modo diretto che sono due casi dell'equazione di Sturm-Liouville. Questo significa che le loro soluzioni sono ortogonali sotto l'inner product con weight function $w(x)=1$, dunque: -\begin{align} -\int_{0}^{2\pi} \Phi_m(\varphi)\Phi_m'(\varphi) d\varphi &= \delta_{m'm}, \nonumber \\ -\int_{-1}^1 P_{m,m'}(x)P_{n,n'}(x) dx &= \delta_{m'm}\delta_{n'n}. \label{kugel:eq:orthogonality_associated_func} -\end{align} -Inoltre, possiamo provare l'ortogonalità di $\Theta(\vartheta)$ utilizzando \eqref{kugel:eq:orthogonality_associated_func}: -\begin{align} - x -\end{align} -Ora, visto che la soluzione dell'eigenfunction problem è formata dalla moltiplicazione di $\Phi_m(\varphi)$ e $P_{m,n}(x)$ -\fi +We shall now discuss an important property of the spherical harmonics: they form +an orthogonal system. And since the spherical harmonics contain the Ferrers or +associated Legendre functions, we need to discuss their orthogonality first. +But the Ferrers functions themselves depend on the Legendre polynomials, so that +will be our starting point. -\subsection{Properties} +\begin{lemma} For the Legendre polynomials $P_n(z)$ and $P_k(z)$ it holds that + \label{kugel:thm:legendre-poly-ortho} + \begin{equation*} + \int_{-1}^1 P_n(z) P_k(z) \, dz + = \frac{2}{2n + 1} \delta_{nk} + = \begin{cases} + \frac{2}{2n + 1} & \text{if } n = k, \\ + 0 & \text{otherwise}. + \end{cases} + \end{equation*} +\end{lemma} +\begin{proof} + To start, consider the fact that the Legendre equation + \eqref{kugel:eqn:legendre}, of which two distinct Legendre polynomials + $P_n(z)$ and $P_k(z)$ are a solution ($n \neq k$), can be rewritten in the + following form: + \begin{equation} + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dZ}{dz} + \right] + n(n+1) Z(z) = 0. + \end{equation} + So we rewrite the Legendre equations for $P_n(z)$ and $P_k(z)$: + \begin{align*} + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dP_n}{dz} + \right] + n(n+1) P_n(z) &= 0, + & + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dP_k}{dz} + \right] + k(k+1) P_k(z) &= 0, + \end{align*} + then we multiply the former by $P_k(z)$ and the latter by $P_n(z)$ and + subtract the two to get + \begin{equation*} + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dP_n}{dz} + \right] P_k(z) + n(n+1) P_n(z) P_k(z) + - + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dP_k}{dz} + \right] P_n(z) - k(k+1) P_k(z) P_n(z) = 0. + \end{equation*} + By grouping terms, making order and integrating with respect to $z$ from $-1$ + to 1 we obtain + \begin{gather} + \int_{-1}^1 \left\{ + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dP_n}{dz} + \right] P_k(z) + - + \frac{d}{dz} \left[ + \left( 1 - z^2 \right) \frac{dP_k}{dz} + \right] P_n(z) - k(k+1) P_k(z) P_n(z) + \right\} \,dz \nonumber \\ + + \left[ n(n+1) - k(k+1) \right] \int_{-1}^1 P_k(z) P_n(z) \, dz = 0. + \label{kugel:thm:legendre-poly-ortho:proof:1} + \end{gather} + Since by the product rule + \begin{equation*} + \frac{d}{dz} \left[ (1 - z^2) \frac{dP_k}{dz} P_n(z) \right] + = + \frac{d}{dz} \left[ (1 - z^2) \frac{dP_n}{dz} \right] P_k(z) + + (1 - z^2) \frac{dP_n}{dz} \frac{dP_k}{dz}, + \end{equation*} + we can simplify the first term in + \eqref{kugel:thm:legendre-poly-ortho:proof:1} to get + \begin{gather*} + \int_{-1}^1 \left\{ + \frac{d}{dz} \left[ (1 - z^2) \frac{dP_k}{dz} P_n(z) \right] + - \cancel{(1 - z^2) \frac{dP_n}{dz} \frac{dP_k}{dz}} + - \frac{d}{dz} \left[ (1 - z^2) \frac{dP_n}{dz} P_k(z) \right] + + \cancel{(1 - z^2) \frac{dP_k}{dz} \frac{dP_n}{dz}} + \right\} \, dz \\ + = \int_{-1}^1 \frac{d}{dz} \left\{ (1 - z^2) \left[ + \frac{dP_k}{dz} P_n(z) - \frac{dP_n}{dz} P_k(z) + \right] \right\} \, dz + = (1 - z^2) \left[ + \frac{dP_k}{dz} P_n(z) - \frac{dP_n}{dz} P_k(z) + \right] \Bigg|_{-1}^1, + \end{gather*} + which always equals 0 because the product contains $1 - z^2$ and the bounds + are at $\pm 1$. Thus, of \eqref{kugel:thm:legendre-poly-ortho:proof:1} only + the second term remains and the equation becomes + \begin{equation*} + \left[ n(n+1) - k(k+1) \right] \int_{-1}^1 P_k(z) P_n(z) \, dz = 0. + \end{equation*} + By dividing by the constant in front of the integral we have our first result. + Now we need to show that when $n = k$ the integral equals $2 / (2n + 1)$. + % \begin{equation*} + % \end{equation*} + \kugeltodo{Finish proof. Can we do it without the generating function of + $P_n$?} +\end{proof} + +In a similarly algebraically tedious fashion, we can also continue to check for +orthogonality for the Ferrers functions $P^m_n(z)$, since they are related to +$P_n(z)$ by a $m$-th derivative, and obtain the following result. + +\begin{lemma} For the associated Legendre functions + \label{kugel:thm:associated-legendre-ortho} + \begin{equation*} + \int_{-1}^1 P^m_n(z) P^{m}_{n'}(z) \, dz + = \frac{2(m + n)!}{(2n + 1)(n - m)!} \delta_{nn'} + = \begin{cases} + \frac{2(m + n)!}{(2n + 1)(n - m)!} + & \text{if } n = n', \\ + 0 & \text{otherwise}. + \end{cases} + \end{equation*} +\end{lemma} +\begin{proof} + To show that the expression equals zero when $n \neq n'$ we can perform + exactly the same steps as in the proof of lemma + \ref{kugel:thm:legendre-poly-ortho}, so we will not repeat them here and prove + instead only the case when $n = n'$. + \kugeltodo{Finish proof, or not? I have to look and decide if it is + interesting enough.} +\end{proof} + +By having the orthogonality relations of the Legendre functions we can finally +show that spherical harmonics are also orthogonal under the following inner +product: + +\begin{definition}[Inner product in $S^2$] + \label{kugel:def:inner-product-s2} + For 2 complex valued functions $f(\vartheta, \varphi)$ and $g(\vartheta, + \varphi)$ on the surface of the sphere the inner product is defined to be + \begin{equation*} + \langle f, g \rangle + = \int_{0}^\pi \int_0^{2\pi} + f(\vartheta, \varphi) \overline{g(\vartheta, \varphi)} + \sin \vartheta \, d\varphi \, d\vartheta. + \end{equation*} +\end{definition} + + +\begin{theorem} For the (unnormalized) spherical harmonics + \label{kugel:thm:spherical-harmonics-ortho} + \begin{align*} + \langle Y^m_n, Y^{m'}_{n'} \rangle + &= \int_{0}^\pi \int_0^{2\pi} + Y^m_n(\vartheta, \varphi) \overline{Y^{m'}_{n'}(\vartheta, \varphi)} + \sin \vartheta \, d\varphi \, d\vartheta + \\ + &= \frac{4\pi}{2n + 1} \frac{(m + n)!}{(n - m)!} \delta_{nn'} \delta_{mm'} + = \begin{cases} + \frac{4\pi}{2n + 1} \frac{(m + n)!}{(n - m)!} + & \text{if } n = n' \text{ and } m = m', \\ + 0 & \text{otherwise}. + \end{cases} + \end{align*} +\end{theorem} +\begin{proof} + We will begin by doing a bit of algebraic maipulaiton: + \begin{align*} + \int_{0}^\pi \int_0^{2\pi} + Y^m_n(\vartheta, \varphi) \overline{Y^{m'}_{n'}(\vartheta, \varphi)} + \sin \vartheta \, d\varphi \, d\vartheta + &= \int_{0}^\pi \int_0^{2\pi} + e^{im\varphi} P^m_n(\cos \vartheta) + e^{-im'\varphi} P^{m'}_{n'}(\cos \vartheta) + \, d\varphi \sin \vartheta \, d\vartheta + \\ + &= \int_{0}^\pi + P^m_n(\cos \vartheta) P^{m'}_{n'}(\cos \vartheta) + \int_0^{2\pi} e^{i(m - m')\varphi} + \, d\varphi \sin \vartheta \, d\vartheta + . + \end{align*} + First, notice that the associated Legendre polynomials are assumed to be real, + and are thus unaffected by the complex conjugation. Then, we can see that when + $m = m'$ the inner integral simplifies to $\int_0^{2\pi} 1 \, d\varphi$ which + equals $2\pi$, so in this case the expression becomes + \begin{equation*} + 2\pi \int_{0}^\pi + P^m_n(\cos \vartheta) P^{m'}_{n'}(\cos \vartheta) + \sin \vartheta \, d\vartheta + = -2\pi \int_{1}^{-1} P^m_n(z) P^{m'}_{n'}(z) \, dz + = \frac{4\pi(m + n)!}{(2n + 1)(n - m)!} \delta_{nn'}, + \end{equation*} + where in the second step we performed the substitution $z = \cos\vartheta$; + $d\vartheta = \frac{d\vartheta}{dz} dz= - dz / \sin \vartheta$, and then we + used lemma \ref{kugel:thm:associated-legendre-ortho}. We are allowed to use + the lemma because $m = m'$. + + Now we just need look at the case when $m \neq m'$. Fortunately this is + easier: the inner integral is $\int_0^{2\pi} e^{i(m - m')\varphi} d\varphi$, + or in other words we are integrating a complex exponetial over the entire + period, which always results in zero. Thus, we do not need to do anything and + the proof is complete. +\end{proof} + +These proofs for the various orthogonality relations were quite long and +algebraically tedious, mainly because they are ``low level'', by which we mean +that they (arguably) do not rely on very abstract theory. However, if we allow +ourselves to use the more abstract Sturm Liouville theory discussed in chapters +\ref{buch:integrale:subsection:sturm-liouville-problem} and \kugeltodo{reference +to chapter 17 of haddouche and Löffler} the proofs can become ridiculously +short. Let's do for example lemma \ref{kugel:thm:associated-legendre-ortho}. + +\begin{proof}[ + Shorter proof of lemma \ref{kugel:thm:associated-legendre-ortho} + ] + The associated Legendre polynomials, of which we would like to prove an + orthogonality relation, are the solution to the associated Legendre equation, + which we can write as $LZ(z) = 0$, where + \begin{equation*} + L = \frac{d}{dz} (1 - z^2) \frac{d}{dz} + + n(n+1) - \frac{m^2}{1 - z^2}. + \end{equation*} + Notice that $L$ is in fact a Sturm-Liouville operator of the form + \begin{equation*} + L = \frac{1}{w(z)} \left[ + \frac{d}{dz} p(z) \frac{d}{dz} - \lambda + q(z) + \right], + \end{equation*} + if we let $w(z) = 1$, $p(z) = (1 - z^2 )$, $q(z) = -m^2 / (1 - z^2)$, and + $\lambda = -n(n+1)$. By the theory of Sturm-Liouville operators, we know that + the each solution of the problem $LZ(z) = 0$, namely $P^m_n(z)$, is orthogonal + to every other solution that has a different $\lambda$. In our case $\lambda$ + varies with $n$, so $P^m_n(z)$ with different $n$'s are orthogonal to each + other. +\end{proof} + +But that was still rather informative and had a bit of explanation, which is +terrible. Real snobs, such as Wikipedia contributors, some authors and +regrettably sometimes even ourselves, would write instead: + +\begin{proof}[ + Infuriatingly short proof of lemma \ref{kugel:thm:associated-legendre-ortho} + ] + The associated Legendre polynomials are solutions of the associated Legendre + equation which is a Sturm-Liouville problem and are thus orthogonal to each + other. The factor in front Kronecker delta is left as an exercise to the + reader. +\end{proof} + +Lemma \ref{kugel:thm:legendre-poly-ortho} has a very similar +proof, while the theorem \ref{kugel:thm:spherical-harmonics-ortho} for the +spherical harmonics is proved by the following argument. The spherical harmonics +are the solutions to the eigenvalue problem $\surflaplacian f = -\lambda f$, +which as discussed in the previous section is solved using separation. So to +prove their orthogonality using the Sturm-Liouville theory we argue that +\begin{equation*} + \surflaplacian = L_\vartheta L_\varphi \iff + \surflaplacian f(\vartheta, \varphi) + = L_\vartheta \Theta(\vartheta) L_\varphi \Phi(\varphi), +\end{equation*} +then we show that both $L_\vartheta$ and $L_\varphi$ are both Sturm-Liouville +operators (we just did the former in the shorter proof above). Since both are +Sturm-Liouville operators their combination, the surface spherical Laplacian, is +also a Sturm-Liouville operator, which then implies orthogonality. + +\subsection{Normalization and the Phase Factor} + +At this point we have shown that the spherical harmonics form an orthogonal +system, but in many applications we usually also want a normalization of some +kind. For example the most obvious desirable property could be for the spherical +harmonics to be ortho\emph{normal}, by which we mean that $\langle Y^m_n, +Y^{m'}_{n'} \rangle = \delta_{nn'}$. To obtain orthonormality, we simply add an +ugly normalization factor in front of the previous definition +\ref{kugel:def:spherical-harmonics} as follows. + +\begin{definition}[Orthonormal spherical harmonics] + \label{kugel:def:spherical-harmonics-orthonormal} + The functions + \begin{equation*} + Y^m_n(\vartheta, \varphi) + = \sqrt{\frac{2n + 1}{4\pi} \frac{(n-m)!}{(m+n)!}} + P^m_n(\cos \vartheta) e^{im\varphi} + \end{equation*} + where $m, n \in \mathbb{Z}$ and $|m| < n$ are the orthonormal spherical + harmonics. +\end{definition} + +Orthornomality is very useful, but it is not the only common normalization that +is found in the literature. In physics, geomagnetism to be more specific, it is +common to use the so called Schmidt semi-normalization (or sometimes also called +quasi-normalization). + +\begin{definition}[Schmidt semi-normalized spherical harmonics] + \label{kugel:def:spherical-harmonics-schmidt} + The Schmidt semi-normalized spherical harmonics are + \begin{equation*} + Y^m_n(\vartheta, \varphi) + = \sqrt{2 \frac{(n - m)!}{(n + m)!}} + P^m_n(\cos \vartheta) e^{im\varphi} + \end{equation*} + where $m, n \in \mathbb{Z}$ and $|m| < n$. +\end{definition} + +Additionally, there is another quirk in the literature that should be mentioned. +In some other branches of physics such as seismology and quantum mechanics there +is a so called Condon-Shortley phase factor $(-1)^m$ in front of the square root +in the definition of the normalized spherical harmonics. It is yet another +normalization that is added for physical reasons that are not very relevant to +our discussion, but we mention this potential source of confusion since many +numerical packages (such as \texttt{SHTOOLS} \kugeltodo{Reference}) offer an +option to add or remove it from the computation. + +Though, for our purposes we will mostly only need the orthonormal spherical +harmonics, so from now on, unless specified otherwise when we say spherical +harmonics or write $Y^m_n$, we mean the orthonormal spherical harmonics of +definition \ref{kugel:def:spherical-harmonics-orthonormal}. \subsection{Recurrence Relations} -\section{Series Expansions in $C(S^2)$} +\section{Series Expansions in $L^2(S^2)$} -\subsection{Orthogonality of $P_n$, $P^m_n$ and $Y^m_n$} +We have now reached a point were we have all of the tools that are necessary to +build something truly amazing: a general series expansion formula for functions +on the surface of the sphere. Using the jargon: we will now see that the +spherical harmonics together with the inner product of definition +\ref{kugel:def:inner-product-s2} +\begin{equation*} + \langle f, g \rangle + = \int_{0}^\pi \int_0^{2\pi} + f(\vartheta, \varphi) \overline{g(\vartheta, \varphi)} + \sin \vartheta \, d\varphi \, d\vartheta +\end{equation*} +form a Hilbert space over the space of complex valued $L^2$ functions $S^2 \to +\mathbb{C}$. We will see later that this fact is very consequential and is +extremely useful for many types of applications. If the jargon was too much, no +need to worry, we will now go back to normal words and explain it again in more +detail. + +\subsection{Spherical Harmonics Series} -\subsection{Series Expansion} +To talk about a \emph{series expansion} we first need a series, so we shall +build one using the spherical harmonics. + +\begin{definition}[Spherical harmonic series] + \begin{equation*} + \hat{f}(\vartheta, \varphi) + = \sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} + c_{m,n} Y^m_n(\vartheta, \varphi) + \end{equation*} +\end{definition} \subsection{Fourier on $S^2$} diff --git a/buch/papers/parzyl/img/Plane_2D.png b/buch/papers/parzyl/img/Plane_2D.png Binary files differnew file mode 100644 index 0000000..f55e3cf --- /dev/null +++ b/buch/papers/parzyl/img/Plane_2D.png diff --git a/buch/papers/parzyl/img/coordinates.png b/buch/papers/parzyl/img/coordinates.png Binary files differnew file mode 100644 index 0000000..0ea3701 --- /dev/null +++ b/buch/papers/parzyl/img/coordinates.png diff --git a/buch/papers/parzyl/references.bib b/buch/papers/parzyl/references.bib index 390d5ed..9639d0b 100644 --- a/buch/papers/parzyl/references.bib +++ b/buch/papers/parzyl/references.bib @@ -65,4 +65,13 @@ year = {2022}, month = {8}, day = {17} +} + +@online{parzyl:scalefac, + title = {An introduction to curvlinear orthogonal coordinates}, + url = {http://dslavsk.sites.luc.edu/courses/phys301/classnotes/scalefactorscomplete.pdf}, + date = {2022-08-18}, + year = {2022}, + month = {08}, + day = {18} }
\ No newline at end of file diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 8be936d..3bf9257 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -19,8 +19,8 @@ Die partielle Differentialgleichung \begin{equation} \Delta f = \lambda f \end{equation} -ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwert Problem für den Laplace-Operator. -Sie ist eine der Gleichungen welche auftritt wenn die Wellengleichung +ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwertproblem für den Laplace-Operator. +Sie ist eine der Gleichungen, welche auftritt, wenn die Wellengleichung \begin{equation} \left ( \nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right ) u(\textbf{r},t) = @@ -73,34 +73,35 @@ Das parabolischen Zylinderkoordinatensystem \cite{parzyl:coordinates} ist ein kr bei dem parabolische Zylinder die Koordinatenflächen bilden. Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit \begin{align} - x & = \sigma \tau \\ + x & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ \label{parzyl:coordRelationsa} - y & = \frac{1}{2}\left(\tau^2 - \sigma^2\right) \\ + y & = \sigma \tau\\ z & = z. \label{parzyl:coordRelationse} \end{align} -Wird $\tau$ oder $\sigma$ konstant gesetzt, resultieren die Parabeln +Wird $\sigma$ oder $\tau$ konstant gesetzt, resultieren die Parabeln \begin{equation} - y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right) + x = \frac{1}{2} \left( \frac{y^2}{\sigma^2} - \sigma^2 \right) \end{equation} und \begin{equation} - y = \frac{1}{2} \left( -\frac{x^2}{\tau^2} + \tau^2 \right). + x = \frac{1}{2} \left( -\frac{y^2}{\tau^2} + \tau^2 \right). \end{equation} \begin{figure} \centering - \includegraphics[scale=0.4]{papers/parzyl/img/koordinaten.png} - \caption{Das parabolische Koordinatensystem. Die roten Parabeln haben ein - konstantes $\sigma$ und die grünen ein konstantes $\tau$.} + \includegraphics[scale=0.32]{papers/parzyl/img/coordinates.png} + \caption{Das parabolische Koordinatensystem. Die grünen Parabeln haben ein + konstantes $\sigma$ und die roten ein konstantes $\tau$.} \label{parzyl:fig:cordinates} \end{figure} -Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem. +Abbildung \ref{parzyl:fig:cordinates} zeigt das parabolische Koordinatensystem. Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der Ebene gezogen werden. +Die Flächen mit $\tau = 0$ oder $\sigma = 0$ stellen somit Halbebenen entlang der $z$-Achse dar. Um in diesem Koordinatensystem integrieren und differenzieren zu -können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$. +können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$ \cite{parzyl:scalefac}. Eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten kann im kartesischen Koordinatensystem mit @@ -123,11 +124,11 @@ von \eqref{parzyl:coordRelationsa} - \eqref{parzyl:coordRelationse} als dx &= \frac{\partial x }{\partial \sigma} d\sigma + \frac{\partial x }{\partial \tau} d\tau + \frac{\partial x }{\partial \tilde{z}} d \tilde{z} - = \tau d\sigma + \sigma d \tau \\ + = \tau d\tau - \sigma d \sigma \\ dy &= \frac{\partial y }{\partial \sigma} d\sigma + \frac{\partial y }{\partial \tau} d\tau + \frac{\partial y }{\partial \tilde{z}} d \tilde{z} - = \tau d\tau - \sigma d \sigma \\ + = \tau d\sigma + \sigma d \tau \\ dz &= \frac{\partial \tilde{z} }{\partial \sigma} d\sigma + \frac{\partial \tilde{z} }{\partial \tau} d\tau + \frac{\partial \tilde{z} }{\partial \tilde{z}} d \tilde{z} diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 13d8109..0e1ad1b 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -13,13 +13,13 @@ Die Lösung ist somit i(z) = A\cos{ - \left ( - \sqrt{\lambda + \mu}z + \left ( z + \sqrt{\lambda + \mu} \right )} + B\sin{ - \left ( - \sqrt{\lambda + \mu}z + \left ( z + \sqrt{\lambda + \mu} \right )}. \end{equation} Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} werden in \cite{parzyl:whittaker} @@ -51,7 +51,7 @@ mit Hilfe der Whittaker Gleichung gelöst. M_{k, -m} \left(x\right) \end{equation*} gehören zu den Whittaker Funktionen und sind Lösungen - von der Whittaker Differentialgleichung + der Whittaker Differentialgleichung \begin{equation} \frac{d^2W}{d x^2} + \biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0. @@ -94,8 +94,8 @@ $w$ als Lösung haben. % ({\textstyle \frac{3}{4}} % - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2). %\end{align} - -In der Literatur gibt es verschiedene Standartlösungen für +\subsection{Standardlösungen} +In der Literatur gibt es verschiedene Standardlösungen für \eqref{parzyl:eq:weberDiffEq}, wobei die Differentialgleichung jeweils unterschiedlich geschrieben wird. Whittaker und Watson zeigen in \cite{parzyl:whittaker} die Lösung diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index 573432a..0cf4283 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -9,15 +9,27 @@ Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte, wie in Abbildung \ref{parzyl:fig:leiterplatte} gezeigt, finden will. \begin{figure} - \centering - \includegraphics[width=0.9\textwidth]{papers/parzyl/img/plane.pdf} - \caption{Semi-infinite Leiterplatte} - \label{parzyl:fig:leiterplatte} + \centering + \begin{minipage}{.7\textwidth} + \centering + \includegraphics[width=\textwidth]{papers/parzyl/images/halfplane.pdf} + \caption{Semi-infinite Leiterplatte} + \label{parzyl:fig:leiterplatte} + \end{minipage}% + \begin{minipage}{.25\textwidth} + \centering + \includegraphics[width=\textwidth]{papers/parzyl/img/Plane_2D.png} + \caption{Semi-infinite Leiterplatte dargestellt in 2D} + \label{parzyl:fig:leiterplatte_2d} + \end{minipage} \end{figure} -Das dies so ist kann im zwei Dimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Linie, was man in Abbildung TODO sieht. +Die Äquipotentiallinien sind dabei in rot ,die des elektrischen Feldes in grün und semi-infinite Platte ist in blau dargestellt. +Das dies so ist kann im Zweidimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Halbgerade, was man in Abbildung \ref{parzyl:fig:leiterplatte_2d} sieht. + + Jede komplexe Funktion $F(z)$ kann geschrieben werden als \begin{equation} - F(s) = U(x,y) + iV(x,y) \qquad s \in \mathbb{C}; x,y \in \mathbb{R}. + F(s) = U(x,y) + iV(x,y) \quad s = x + iy \qquad s \in \mathbb{C}; x,y \in \mathbb{R}. \end{equation} Dabei müssen, falls die Funktion differenzierbar ist, die Cauchy-Riemann Differentialgleichungen \begin{equation} @@ -49,23 +61,31 @@ Aus dieser Bedingung folgt 0 }_{\displaystyle{\nabla^2V(x,y) = 0}}. \end{equation} -Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist. +Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist. + + Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt gegeben ist als \begin{equation} \nabla^2\phi(x,y) = 0. \end{equation} -Dies ist eine Bedingung welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. +Dies ist eine Bedingung, welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. + + Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden \begin{equation} \phi(x,y) = U(x,y). \end{equation} -Orthogonal zum Potential ist das elektrische Feld +Orthogonal zu den Äquipotenzialfläche sind die Feldlinien des elektrische Feld \begin{equation} E(x,y) = V(x,y). \end{equation} + + Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete komplexe Funktion $F(s)$ gefunden werden, welche eine semi-infinite Platte beschreiben kann. + + Die gesuchte Funktion in diesem Fall ist \begin{equation} F(s) @@ -83,22 +103,34 @@ Dies kann umgeformt werden zu i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)} . \end{equation} + + Die Äquipotentialflächen können nun betrachtet werden, indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt, \begin{equation} - \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}. +% \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}. + c_1 = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}. \end{equation} Die Flächen mit der gleichen elektrischen Feldstärke können als \begin{equation} - \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}} +% \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}} + c_2 = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}} \end{equation} beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom -kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. +kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. +%Werden diese Formeln nun nach $x$ und $y$ aufgelöst +%\begin{equation} +% x = \sigma \tau, +%\end{equation} +%\begin{equation} +% y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ), +%\end{equation} +%so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann. Werden diese Formeln nun nach $x$ und $y$ aufgelöst -\begin{equation} - x = \sigma \tau, -\end{equation} -\begin{equation} - y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ), -\end{equation} -so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann.
\ No newline at end of file +\begin{align} + x &= c_1^2 - c_2^2 ,\\ + y &= 2c_1 c_2, +\end{align} +so beschreiben sie mit $\tau = c_1 \sqrt{2}$ und $\sigma = c_2 \sqrt{2}$ die Beziehung +zwischen dem parabolischen Zylinderkoordinatensystem und dem kartesischen Koordinatensystem. + diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 166eebf..1b59ed9 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -12,9 +12,9 @@ %Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, %können auch als Potenzreihen geschrieben werden Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. -Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. -Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, x)$ -und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihe +Parabolische Zylinderfunktionen sind Linearkombinationen +$A(\alpha)w_1(\alpha, x) + B(\alpha)w_2(\alpha, x)$ aus einem geraden Teil $w_1(\alpha, x)$ +und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihen \begin{align} w_1(\alpha,x) &= @@ -51,7 +51,7 @@ und = xe^{-\frac{x^2}{4}} \sum^{\infty}_{n=0} - \frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} + \frac{\left ( \frac{1}{2} + \alpha \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ &= e^{-\frac{x^2}{4}} @@ -67,9 +67,9 @@ und \end{align} sind. Die Potenzreihen sind in der regel unendliche Reihen. -Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden +Es gibt allerdings die Möglichkeit, dass für bestimmte $\alpha$ die Terme in der Klammer gleich null werden und die Reihe somit eine endliche Anzahl $n$ Summanden hat. -Dies geschieht bei $w_1(\alpha,x)$ falls +Dies geschieht bei $w_1(\alpha,x)$, falls \begin{equation} \alpha = -n \qquad n \in \mathbb{N}_0 \end{equation} @@ -77,7 +77,7 @@ und bei $w_2(\alpha,x)$ falls \begin{equation} \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. \end{equation} -Der Wert des von $\alpha$ ist abhängig, ob man $D_n(x)$ oder $U(a,x)$ / $V(a,x)$ verwendet. +Der Wert von $\alpha$ ist abhängig, ob man $D_n(x)$, $U(a,x)$ oder $V(a,x)$ verwendet. Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt $\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$. \subsection{Ableitung} |