aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen
diff options
context:
space:
mode:
Diffstat (limited to 'vorlesungen')
-rw-r--r--vorlesungen/12_dreieck/common.tex2
-rw-r--r--vorlesungen/12_dreieck/slides.tex4
-rw-r--r--vorlesungen/18_hermiteintegrierbar/Makefile33
-rw-r--r--vorlesungen/18_hermiteintegrierbar/MathSem-18-hermiteintegrierbar.tex14
-rw-r--r--vorlesungen/18_hermiteintegrierbar/common.tex17
-rw-r--r--vorlesungen/18_hermiteintegrierbar/hermiteintegrierbar-handout.tex11
-rw-r--r--vorlesungen/18_hermiteintegrierbar/slides.tex11
-rw-r--r--vorlesungen/slides/dreieck/Makefile.inc5
-rw-r--r--vorlesungen/slides/dreieck/beta.tex70
-rw-r--r--vorlesungen/slides/dreieck/betaplot.tex38
-rw-r--r--vorlesungen/slides/dreieck/chapter.tex3
-rw-r--r--vorlesungen/slides/dreieck/dichte.tex67
-rw-r--r--vorlesungen/slides/dreieck/minmax.tex22
-rw-r--r--vorlesungen/slides/dreieck/orderplot.tex16
-rw-r--r--vorlesungen/slides/dreieck/ordnungsstatistik.tex69
-rw-r--r--vorlesungen/slides/dreieck/stichprobe.tex20
-rw-r--r--vorlesungen/slides/hermite/Makefile.inc5
-rw-r--r--vorlesungen/slides/hermite/hermiteentwicklung.tex72
-rw-r--r--vorlesungen/slides/hermite/loesung.tex65
-rw-r--r--vorlesungen/slides/hermite/normalhermite.tex103
-rw-r--r--vorlesungen/slides/hermite/normalintegrale.tex57
-rw-r--r--vorlesungen/slides/hermite/skalarprodukt.tex82
-rw-r--r--vorlesungen/slides/test.tex6
23 files changed, 778 insertions, 14 deletions
diff --git a/vorlesungen/12_dreieck/common.tex b/vorlesungen/12_dreieck/common.tex
index 9414e42..1be1b4f 100644
--- a/vorlesungen/12_dreieck/common.tex
+++ b/vorlesungen/12_dreieck/common.tex
@@ -9,7 +9,7 @@
\usetheme[hideothersubsections,hidetitle]{Hannover}
}
\beamertemplatenavigationsymbolsempty
-\title[Dreieckstest]{Dreieckstest}
+\title[Ordnungsstatistik]{Ordnungsstatistik und Beta-Funktion}
\author[A.~Müller]{Prof. Dr. Andreas Müller}
\date[]{30.~Mai 2022}
\newboolean{presentation}
diff --git a/vorlesungen/12_dreieck/slides.tex b/vorlesungen/12_dreieck/slides.tex
index 211a105..19b7417 100644
--- a/vorlesungen/12_dreieck/slides.tex
+++ b/vorlesungen/12_dreieck/slides.tex
@@ -6,3 +6,7 @@
\folie{dreieck/stichprobe.tex}
\folie{dreieck/minmax.tex}
\folie{dreieck/ordnungsstatistik.tex}
+\folie{dreieck/dichte.tex}
+\folie{dreieck/orderplot.tex}
+\folie{dreieck/beta.tex}
+\folie{dreieck/betaplot.tex}
diff --git a/vorlesungen/18_hermiteintegrierbar/Makefile b/vorlesungen/18_hermiteintegrierbar/Makefile
new file mode 100644
index 0000000..a2dfb87
--- /dev/null
+++ b/vorlesungen/18_hermiteintegrierbar/Makefile
@@ -0,0 +1,33 @@
+#
+# Makefile -- hermiteintegrierbar
+#
+# (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+#
+all: hermiteintegrierbar-handout.pdf MathSem-18-hermiteintegrierbar.pdf
+
+include ../slides/Makefile.inc
+
+SOURCES = common.tex slides.tex $(slides)
+
+MathSem-18-hermiteintegrierbar.pdf: MathSem-18-hermiteintegrierbar.tex $(SOURCES)
+ pdflatex MathSem-18-hermiteintegrierbar.tex
+
+hermiteintegrierbar-handout.pdf: hermiteintegrierbar-handout.tex $(SOURCES)
+ pdflatex hermiteintegrierbar-handout.tex
+
+thumbnail: thumbnail.jpg # fix1.jpg
+
+thumbnail.pdf: MathSem-18-hermiteintegrierbar.pdf
+ pdfjam --outfile thumbnail.pdf --papersize '{16cm,9cm}' \
+ MathSem-18-hermiteintegrierbar.pdf 1
+thumbnail.jpg: thumbnail.pdf
+ convert -density 300 thumbnail.pdf \
+ -resize 1920x1080 -units PixelsPerInch thumbnail.jpg
+
+fix1.pdf: MathSem-18-hermiteintegrierbar.pdf
+ pdfjam --outfile fix1.pdf --papersize '{16cm,9cm}' \
+ MathSem-18-hermiteintegrierbar.pdf 1
+fix1.jpg: fix1.pdf
+ convert -density 300 fix1.pdf \
+ -resize 1920x1080 -units PixelsPerInch fix1.jpg
+
diff --git a/vorlesungen/18_hermiteintegrierbar/MathSem-18-hermiteintegrierbar.tex b/vorlesungen/18_hermiteintegrierbar/MathSem-18-hermiteintegrierbar.tex
new file mode 100644
index 0000000..7a3a647
--- /dev/null
+++ b/vorlesungen/18_hermiteintegrierbar/MathSem-18-hermiteintegrierbar.tex
@@ -0,0 +1,14 @@
+%
+% MathSem-18-hermiteintegrierbar.tex -- Präsentation
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\documentclass[aspectratio=169]{beamer}
+\input{common.tex}
+\setboolean{presentation}{true}
+\begin{document}
+\begin{frame}
+\titlepage
+\end{frame}
+\input{slides.tex}
+\end{document}
diff --git a/vorlesungen/18_hermiteintegrierbar/common.tex b/vorlesungen/18_hermiteintegrierbar/common.tex
new file mode 100644
index 0000000..8b1c71f
--- /dev/null
+++ b/vorlesungen/18_hermiteintegrierbar/common.tex
@@ -0,0 +1,17 @@
+%
+% common.tex -- gemeinsame definition
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\input{../common/packages.tex}
+\input{../common/common.tex}
+\mode<beamer>{%
+\usetheme[hideothersubsections,hidetitle]{Hannover}
+}
+\beamertemplatenavigationsymbolsempty
+\title[$\int P(t)e^{-t^2}\,dt$]{Elementare Stammfunktion für
+$\displaystyle\int P(t)e^{-t^2}\,dt$?}
+\author[A.~Müller]{Prof. Dr. Andreas Müller}
+\date[]{}
+\newboolean{presentation}
+
diff --git a/vorlesungen/18_hermiteintegrierbar/hermiteintegrierbar-handout.tex b/vorlesungen/18_hermiteintegrierbar/hermiteintegrierbar-handout.tex
new file mode 100644
index 0000000..a466024
--- /dev/null
+++ b/vorlesungen/18_hermiteintegrierbar/hermiteintegrierbar-handout.tex
@@ -0,0 +1,11 @@
+%
+% hermiteintegrierbar-handout.tex -- Handout XXX
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\documentclass[handout,aspectratio=169]{beamer}
+\input{common.tex}
+\setboolean{presentation}{false}
+\begin{document}
+\input{slides.tex}
+\end{document}
diff --git a/vorlesungen/18_hermiteintegrierbar/slides.tex b/vorlesungen/18_hermiteintegrierbar/slides.tex
new file mode 100644
index 0000000..cb3bbea
--- /dev/null
+++ b/vorlesungen/18_hermiteintegrierbar/slides.tex
@@ -0,0 +1,11 @@
+%
+% slides.tex -- XXX
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\folie{hermite/normalintegrale.tex}
+\folie{hermite/normalhermite.tex}
+\folie{hermite/hermiteentwicklung.tex}
+\folie{hermite/loesung.tex}
+\folie{hermite/skalarprodukt.tex}
+
diff --git a/vorlesungen/slides/dreieck/Makefile.inc b/vorlesungen/slides/dreieck/Makefile.inc
index 0575397..bbc19b6 100644
--- a/vorlesungen/slides/dreieck/Makefile.inc
+++ b/vorlesungen/slides/dreieck/Makefile.inc
@@ -4,6 +4,11 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
chapterdreieck = \
+ ../slides/dreieck/stichprobe.tex \
../slides/dreieck/minmax.tex \
../slides/dreieck/ordnungsstatistik.tex \
+ ../slides/dreieck/orderplot.tex \
+ ../slides/dreieck/dichte.tex \
+ ../slides/dreieck/beta.tex \
+ ../slides/dreieck/betaplot.tex \
../slides/dreieck/test.tex
diff --git a/vorlesungen/slides/dreieck/beta.tex b/vorlesungen/slides/dreieck/beta.tex
new file mode 100644
index 0000000..fc3606a
--- /dev/null
+++ b/vorlesungen/slides/dreieck/beta.tex
@@ -0,0 +1,70 @@
+%
+% beta.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beta-Verteilung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.40\textwidth}
+\begin{block}{Ordnungsstatistik}
+\begin{align*}
+\varphi(x)
+&=
+{\color{blue}N} x^{k-1} (1-x)^{n-k}
+\\
+&\uncover<8->{
+=
+\beta_{k,n-k+1}(x)
+}
+\end{align*}
+\end{block}
+\uncover<8->{%
+\begin{block}{Risch-Algorithmus}
+Die Beta-Verteilungen haben ausser in Spezialfällen
+keine Stammfunktion in geschlossener Form.
+\end{block}}
+\end{column}
+\begin{column}{0.56\textwidth}
+\uncover<2->{%
+\begin{definition}
+Beta-Verteilung
+\[
+\beta_{a,b}(x)
+=
+\begin{cases}
+\displaystyle
+\uncover<7->{
+{\color{blue}
+\frac{1}{B(a,b)}
+}
+}
+x^{a-1}(1-x)^{b-1}
+&0\le x\le 1
+\\
+0&\text{sonst}
+\end{cases}
+\]
+\end{definition}}
+\uncover<3->{%
+\begin{block}{Normierung}
+\begin{align*}
+{\color{blue}\frac{1}{{N}}}
+&\uncover<4->{=
+\int_{-\infty}^\infty \beta_{a,b}(x)\,dx}
+\\
+&\uncover<5->{=
+\int_{0}^1 x^{a-1}(1-x)^{b-1}\,dx}
+\\
+&\uncover<6->{=
+B(a,b)}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/dreieck/betaplot.tex b/vorlesungen/slides/dreieck/betaplot.tex
new file mode 100644
index 0000000..ee932e8
--- /dev/null
+++ b/vorlesungen/slides/dreieck/betaplot.tex
@@ -0,0 +1,38 @@
+%
+% betaplot.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beta-Verteilungen}
+\begin{center}
+\begin{tikzpicture}[>=latex]
+
+\only<1>{
+\begin{scope}
+ \clip (-7,-3.2) rectangle (7,3.2);
+ \node at (0,-6.5) {\includegraphics[width=13.5cm]{../../buch/chapters/040-rekursion/images/beta.pdf}};
+\end{scope}
+}
+
+\only<2>{
+\begin{scope}
+ \clip (-7,-3.2) rectangle (7,3.2);
+ \node at (0,-0) {\includegraphics[width=13.5cm]{../../buch/chapters/040-rekursion/images/beta.pdf}};
+\end{scope}
+}
+
+\only<3>{
+\begin{scope}
+ \clip (-7,-3.2) rectangle (7,3.2);
+ \node at (0,6.5) {\includegraphics[width=13.5cm]{../../buch/chapters/040-rekursion/images/beta.pdf}};
+\end{scope}
+}
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/dreieck/chapter.tex b/vorlesungen/slides/dreieck/chapter.tex
index 2c91eb5..0f58c4c 100644
--- a/vorlesungen/slides/dreieck/chapter.tex
+++ b/vorlesungen/slides/dreieck/chapter.tex
@@ -6,3 +6,6 @@
\folie{dreieck/test.tex}
\folie{dreieck/minmax.tex}
\folie{dreieck/ordnungsstatistik.tex}
+\folie{dreieck/dichte.tex}
+\folie{dreieck/beta.tex}
+\folie{dreieck/betaplot.tex}
diff --git a/vorlesungen/slides/dreieck/dichte.tex b/vorlesungen/slides/dreieck/dichte.tex
new file mode 100644
index 0000000..168523a
--- /dev/null
+++ b/vorlesungen/slides/dreieck/dichte.tex
@@ -0,0 +1,67 @@
+%
+% dichte.tex -- Wahrscheinlichkeitsdichte
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Wahrscheinlichkeitsdichte}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.40\textwidth}
+\begin{block}{Definition}
+\[
+\varphi_{X_{k:n}}(x)
+=
+\frac{d}{dx} F_{X_{k:n}}(x)
+\]
+\end{block}
+\end{column}
+\begin{column}{0.60\textwidth}
+\uncover<4->{%
+\begin{block}{Gleichverteilung}
+\[
+{\color{darkgreen}F(x)}=\begin{cases}
+0&x \le 0\\
+x&0\le x \le 1,\\
+1&x\ge 1
+\end{cases}
+\quad
+\uncover<5->{
+{\color{red}\varphi(x)}
+=
+\begin{cases}
+1&0\le x \le 1\\
+0&\text{sonst}
+\end{cases}}
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\uncover<2->{%
+\begin{block}{Ordnungsstatistik}
+nach einiger Rechnung:
+\begin{align*}
+\varphi_{X_{k:n}}(x)
+&=
+{\color<3->{red}\varphi_X(x)}\,k\binom{n}{k}{\color<3->{darkgreen}F_X(x)}^{k-1}
+(1-{\color<3->{darkgreen}F_X(x)})^{n-k}
+\intertext{\uncover<4->{für Gleichverteilung}}
+\uncover<6->{
+\varphi_{X_{k:n}}(x)
+&=
+\begin{cases}
+\displaystyle
+{\color<7->{blue}k\binom{n}{k}}{\color{darkgreen}x}^{k-1}(1-{\color{darkgreen}x})^{n-k}
+&0\le x \le 1\\
+0&\text{sonst}
+\end{cases}
+\qquad\uncover<7->{\text{({\color{blue}Normierung})}}
+}
+\end{align*}
+\end{block}}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/dreieck/minmax.tex b/vorlesungen/slides/dreieck/minmax.tex
index 9ef8d1a..ff3a231 100644
--- a/vorlesungen/slides/dreieck/minmax.tex
+++ b/vorlesungen/slides/dreieck/minmax.tex
@@ -17,48 +17,66 @@ Verteilungsfunktion von
Z=\operatorname{max}(X_1,\dots,X_n)
\]
\begin{align*}
+\uncover<3->{
F_Z(x)
&=
-P(Z\le x)
+P(Z\le x)}
\\
+\uncover<4->{
&=
P(X_1\le x\wedge\dots\wedge X_n\le x)
+}
\\
+\uncover<5->{
&=
P(X_1\le x)\cdot \ldots\cdot P(X_n\le x)
+}
\\
+\uncover<6->{
&=
F_X(x)^n
+}
\end{align*}
\end{block}
\end{column}
\begin{column}{0.48\textwidth}
+\uncover<2->{%
\begin{block}{Minimum}
Verteilungsfunktion von
\[
Z=\operatorname{min}(X_1,\dots,X_n)
\]
\begin{align*}
+\uncover<7->{
F_Z(x)
&=
P(Z\le x)
+}
\\
+\uncover<8->{
&=P(\overline{
X_1\le x\wedge\dots\wedge X_n \le x
})
+}
\\
+\uncover<9->{
&=
1-P(
X_1> x\wedge\dots\wedge X_n > x
)
+}
\\
+\uncover<10->{
&=
1-(P(X_1>x)\cdot\ldots\cdot P(X_n>x))
+}
\\
+\uncover<11->{
&=
1-(1-F_X(x))^n
+}
\end{align*}
-\end{block}
+\end{block}}
\end{column}
\end{columns}
\end{frame}
diff --git a/vorlesungen/slides/dreieck/orderplot.tex b/vorlesungen/slides/dreieck/orderplot.tex
new file mode 100644
index 0000000..7cf10c6
--- /dev/null
+++ b/vorlesungen/slides/dreieck/orderplot.tex
@@ -0,0 +1,16 @@
+%
+% orderplot.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Ordnungstatistik}
+\vspace*{-18pt}
+\begin{center}
+\includegraphics[width=10cm]{../../buch/chapters/040-rekursion/images/order.pdf}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/dreieck/ordnungsstatistik.tex b/vorlesungen/slides/dreieck/ordnungsstatistik.tex
index 6346953..c968e79 100644
--- a/vorlesungen/slides/dreieck/ordnungsstatistik.tex
+++ b/vorlesungen/slides/dreieck/ordnungsstatistik.tex
@@ -8,11 +8,76 @@
\setlength{\abovedisplayskip}{5pt}
\setlength{\belowdisplayskip}{5pt}
\frametitle{Ordnungstatistik}
+\vspace{-10pt}
+\begin{block}{Angeordnete Stichprobe}
+\[
+X_{1:n}
+\le
+X_{2:n}
+\le
+\dots
+\le
+X_{(n-1):n}
+\le
+X_{n:n}
+\]
+$X_{k:n} = \mathstrut$der $k$-te von $n$ Werten
+\end{block}
\vspace{-20pt}
\begin{columns}[t,onlytextwidth]
-\begin{column}{0.48\textwidth}
+\begin{column}{0.44\textwidth}
+\uncover<2->{%
+\begin{block}{Verteilungsfunktion}
+\begin{align*}
+F_{X_{k:n}}(x)
+&=
+P(X_{k:n} \le x)
+\\
+&\uncover<3->{=
+P\bigl(
+|\{i\;|\; {\color<4>{red}X_i\le x}\}| \ge k
+\bigr)}
+\\
+&\uncover<5->{=
+P(\text{Anzahl $A_i$}\ge k)}
+\\
+&\uncover<9->{=
+P(K\ge k)}
+\\
+\uncover<6->{
+F_{X_i}(x)&= P(X_i\le x)}\uncover<7->{ = P(A_i)}\uncover<10->{ = p}
+}
+\end{align*}
+\uncover<4->{$A_i=\{X_i\le x\}$}\uncover<7->{ ist ein Beroulli- Experiment
+\uncover<10->{mit Eintretens- wahrscheinlichkeit $p$}
+\end{block}}
\end{column}
-\begin{column}{0.48\textwidth}
+\begin{column}{0.52\textwidth}
+\uncover<8->{%
+\begin{block}{Wiederholtes Bernoulli-Experiment}
+$K=\mathstrut$Anzahl $k$, für die $A$ eingetreten
+ist\only<11->{, ist binomialverteilt:}
+\begin{align*}
+\uncover<12->{P(K=k)
+&=
+\phantom{\sum_{i=k}^n\mathstrut}
+\binom{n}{k} p^k (1-p)^{n-k}
+}
+\\
+\uncover<13->{
+P(K\ge k)
+&=
+\sum_{i=k}^n
+\binom{n}{i} p^i (1-p)^{n-i}
+}
+\\
+\uncover<14->{
+&=
+\sum_{i=k}^n
+\binom{n}{i} F_X(x)^i (1-F_X(x))^{n-i}
+}
+\end{align*}
+\end{block}}
\end{column}
\end{columns}
\end{frame}
diff --git a/vorlesungen/slides/dreieck/stichprobe.tex b/vorlesungen/slides/dreieck/stichprobe.tex
index da3a20e..4b2eff0 100644
--- a/vorlesungen/slides/dreieck/stichprobe.tex
+++ b/vorlesungen/slides/dreieck/stichprobe.tex
@@ -12,21 +12,22 @@
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
\begin{block}{Zufallsvariable}
-Gegeben eine Zufallsvariable $X$ mit
+Gegeben eine Zufallsvariable $X$ \uncover<5->{mit
Verteilungsfunktion
\[
F_X(x)
=
P(X\le x)
-\]
-und
+\]}
+\uncover<6->{und
Wahrscheinlichkeitsdichte
\[
\varphi_X(x)
=
\frac{d}{dx} F_X(x)
-\]
+\]}
\end{block}
+\uncover<7->{%
\begin{block}{Gleichverteilung}
\[
F(x) = \begin{cases}
@@ -34,6 +35,7 @@ F(x) = \begin{cases}
x&\qquad 0\le x \le 1\\
1&\qquad 1<x
\end{cases}
+\uncover<8->{
\qquad\Rightarrow\qquad
\varphi(x)
=
@@ -41,19 +43,21 @@ x&\qquad 0\le x \le 1\\
1&\qquad 0\le x \le 1\\
0&\qquad\text{sonst}.
\end{cases}
+}
\]
-\end{block}
+\end{block}}
\end{column}
\begin{column}{0.48\textwidth}
+\uncover<2->{%
\begin{block}{Stichprobe}
$n$ Zufallsvariablen $X_1,\dots,X_n$
\begin{itemize}
-\item
+\item<3->
alle $X_i$ haben die gleiche Verteilung wie $X$
-\item
+\item<4->
die $X_i$ sind unabhängig
\end{itemize}
-\end{block}
+\end{block}}
\end{column}
\end{columns}
\end{frame}
diff --git a/vorlesungen/slides/hermite/Makefile.inc b/vorlesungen/slides/hermite/Makefile.inc
index 5c55467..58c21f2 100644
--- a/vorlesungen/slides/hermite/Makefile.inc
+++ b/vorlesungen/slides/hermite/Makefile.inc
@@ -4,4 +4,9 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
chapterhermite = \
+ ../slides/hermite/normalintegrale.tex \
+ ../slides/hermite/normalhermite.tex \
+ ../slides/hermite/hermiteentwicklung.tex \
+ ../slides/hermite/loesung.tex \
+ ../slides/hermite/skalarprodukt.tex \
../slides/hermite/test.tex
diff --git a/vorlesungen/slides/hermite/hermiteentwicklung.tex b/vorlesungen/slides/hermite/hermiteentwicklung.tex
new file mode 100644
index 0000000..5f6e1c9
--- /dev/null
+++ b/vorlesungen/slides/hermite/hermiteentwicklung.tex
@@ -0,0 +1,72 @@
+%
+% hermiteentwicklung.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beliebige Polynome}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Polynom}
+\[
+P(x)
+=
+p_0 + p_1x + p_2x^2 + \dots + p_nx^n
+\]
+\uncover<2->{%
+als Linearkombination von Hermite-Polynome schreiben:
+\begin{align*}
+P(x)
+&=
+a_0H_0(x)% + a_1H_1(x)
++ \dots + a_nH_n(x)
+\\
+&=
+a_0\cdot 1
+\\
+&\quad + a_1\cdot 2x
+\\
+&\quad + a_2\cdot(4x^2-2)
+\\
+&\quad + a_3\cdot(8x^3-12x)
+\\
+&\quad + a_4\cdot(16x^4-48x^2+12)
+\\
+&\quad\;\;\vdots
+\\
+&\quad + a_n(2^nx^n + \dots)
+\end{align*}}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Koeffizientenvergleich}
+führt auf ein Gleichungssystem
+\begin{center}
+\begin{tabular}{|>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}c<{$}|>{$}c<{$}|}
+\hline
+a_0&a_1&a_2&a_3&a_4&\dots&\\
+\hline
+ 1& 0& 0& 0& 0&\dots&p_0\\
+ 0& 2& 0& 0& 0&\dots&p_1\\
+-2& 0& 4& 0& 0&\dots&p_2\\
+ 0&-12& 0& 8& 0&\dots&p_3\\
+12& 0&-48& 0& 16&\dots&p_4\\
+\vdots&\vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\
+\hline
+\end{tabular}
+\end{center}
+\uncover<4->{%
+Dreiecksmatrix}\uncover<5->{, Diagonalelement
+$\ne 0$}
+\uncover<6->{$\Rightarrow$
+$\exists$ eindeutige Lösung}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/hermite/loesung.tex b/vorlesungen/slides/hermite/loesung.tex
new file mode 100644
index 0000000..68ee32e
--- /dev/null
+++ b/vorlesungen/slides/hermite/loesung.tex
@@ -0,0 +1,65 @@
+%
+% loesung.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Lösung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Frage}
+Für welche Polynome $P(t)$ kann man eine Stammfunktion
+\[
+\int
+P(t)e^{-\frac{t^2}2}
+\,dt
+\]
+in geschlossener Form angeben?
+\end{block}
+\uncover<2->{%
+\begin{block}{``Hermite-Antwort''}
+\[
+\int H_n(x)e^{-x^2}\,dx
+\]
+kann genau für $n>0$ in geschlossener Form angegeben werden.
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Allgemein}
+\begin{align*}
+\int P(x)e^{-x^2}\,dx
+&\uncover<4->{=
+\int \sum_{k=0}^n a_kH_k(x)e^{-x^2}\,dx}
+\\
+\uncover<5->{
+&=
+\sum_{k=0}^n
+a_k
+\int
+H_k(x)e^{-x^2}\,dx
+}
+\\
+\uncover<6->{
+&=
+a_0\operatorname{erf}(x) + C
+}
+\\
+\uncover<6->{
+&\hspace*{2mm} + \sum_{k=1}^n a_k\int H_k(x)e^{-x^2}\,dx
+}
+\end{align*}
+\end{block}}
+\uncover<7->{%
+\begin{theorem}
+Das Integral von $P(x)e^{-x^2}$ ist genau dann elementar darstellbar, wenn
+$a_0=0$
+\end{theorem}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/hermite/normalhermite.tex b/vorlesungen/slides/hermite/normalhermite.tex
new file mode 100644
index 0000000..98721dc
--- /dev/null
+++ b/vorlesungen/slides/hermite/normalhermite.tex
@@ -0,0 +1,103 @@
+%
+% normalhermite.tex -- integrability of hermite polynomials
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Hermite-Polynome}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition (Rodrigues-Formel)}
+\[
+H_n(x)
+=
+(-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}
+\]
+\end{block}
+\vspace{-10pt}
+\uncover<2->{%
+\begin{block}{Orthogonalität}
+$H_n(x)$ sind orthogonale Polynome bezüglich $w(x)=e^{-x^2}$, d.~h.
+\begin{align*}
+\langle H_n,H_m\rangle_w
+&=
+\int H_n(x)H_m(x)e^{-x^2}\,dx
+\\
+&=
+\biggl\{
+\renewcommand{\arraycolsep}{1pt}
+\begin{array}{l@{\quad}l}
+1&\text{falls $n=m$}\\
+0&\text{sonst}
+\end{array}
+\biggr\}
+=
+\delta_{mn}
+\end{align*}
+\end{block}}
+\vspace{-10pt}
+\uncover<3->{%
+\begin{block}{Rekursion: Auf-/Absteigeoperatoren}
+Rekursionsformel:
+\[
+H_n(x)
+=
+2x\cdot H_{n-1}(x) - H_{n-1}'(x)
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Stammfunktion}
+\begin{align*}
+\uncover<4->{
+\int H_n(x) e^{-x^2}\,dx}
+&\uncover<5->{=
+\int \bigl({\color{red}2x}H_{n-1}(x)}
+\\
+\uncover<5->{
+&\qquad -H_{n-1}'(x)\bigr) e^{-x^2}\,dx
+}
+\\
+\uncover<6->{
+{\color{gray}((e^{-x^2})'=-2x)}
+&=
+{\color{red}-}\int {\color{red}(e^{-x^2})'} H_{n-1}(x)\,dx
+}
+\\
+\uncover<6->{
+&\qquad
+-
+\int H_{n-1}'(x) e^{-x^2}\,dx
+}
+\\
+\uncover<7->{
+\text{\color{gray}(Produktregel)}
+&=
+\int (e^{-x^2}H_{n-1}(x))'\,dx
+}
+\\
+\uncover<8->{
+\text{\color{gray}(Ableitung)}
+&=
+e^{-x^2}H_{n-1}(x)
+}
+\end{align*}
+\uncover<9->{%
+ausser für $n=0$:
+\[
+\int
+H_0(x)e^{-x^2}\,dx
+=
+\int
+e^{-x^2}\,dx
+\]}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/hermite/normalintegrale.tex b/vorlesungen/slides/hermite/normalintegrale.tex
new file mode 100644
index 0000000..32333cd
--- /dev/null
+++ b/vorlesungen/slides/hermite/normalintegrale.tex
@@ -0,0 +1,57 @@
+%
+% normalintegrale.tex --
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Integranden $P(t)e^{-t^2}$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Frage}
+Für welche Polynome $P(t)$ kann man eine Stammfunktion
+\[
+\int
+P(t)e^{-t^2}
+\,dt
+\]
+in geschlossener Form angeben?
+\end{block}
+\uncover<4->{%
+\begin{block}{Allgemeine Antwort}
+Satz von Liouville und
+Risch- Algorithmus können entscheiden, ob es eine elementare Stammfunktion gibt
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Negativbeispiel}
+$P(t) = 1$, das Normalverteilungsintegral
+\[
+F(x)
+=
+\frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2}\,dt
+\]
+ist nicht elementar darstellbar.
+\end{block}}
+\uncover<3->{%
+\begin{block}{Positivbeispiel}
+$P(t)=t$. Wegen
+\begin{align*}
+\frac{d}{dx}e^{-x^2}
+&=
+-xe^{-x^2}
+\intertext{ist}
+\int te^{-t^2}\,dt
+&=
+-e^{-x^2}+C
+\end{align*}
+elementar darstellbar.
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/hermite/skalarprodukt.tex b/vorlesungen/slides/hermite/skalarprodukt.tex
new file mode 100644
index 0000000..a51e9f6
--- /dev/null
+++ b/vorlesungen/slides/hermite/skalarprodukt.tex
@@ -0,0 +1,82 @@
+%
+% skalarprodukt.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Skalarprodukt}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Orthogonale Zerlegung}
+Orthogonale $H_k$ normalisieren:
+\[
+\tilde{H}_k(x) = \frac{1}{\|H_k\|_w} H_k(x)
+\]
+mit Gewichtsfunktion $w(x)=e^{-x^2}$
+\end{block}
+\uncover<2->{%
+\begin{block}{``Hermite''-Analyse}
+\begin{align*}
+P(x)
+&=
+\sum_{k=1}^\infty a_k H_k(x)
+=
+\sum_{k=1}^\infty \tilde{a}_k \tilde{H}_k(x)
+\\
+\uncover<3->{
+\tilde{a}_k
+&=
+\| H_k\|_w\, a_k
+}
+\\
+\uncover<4->{
+a_k
+&=
+\frac{1}{\|H_k\|}
+\langle \tilde{H}_k, P\rangle_w
+}\uncover<5->{=
+\frac{1}{\|H_k\|^2}
+\langle H_k, P\rangle_w
+}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Integrationsproblem}
+Bedingung:
+\begin{align*}
+a_0=0
+\uncover<7->{%
+\qquad\Leftrightarrow\qquad
+\langle H_0,P\rangle_w
+&=
+0}
+\\
+\uncover<8->{%
+\int_{-\infty}^\infty
+P(t) w(t) \,dt
+}\uncover<9->{%
+=
+\int_{-\infty}^\infty
+P(t) e^{-t^2} \,dt
+&=
+0}
+\end{align*}
+\end{block}}
+\uncover<10->{%
+\begin{theorem}
+Das Integral von $P(t)e^{-t^2}$ ist in geschlossener Form darstellbar
+genau dann, wenn
+\[
+\int_{-\infty}^\infty P(t)e^{-t^2}\,dt = 0
+\]
+\end{theorem}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex
index 6aa09f8..ca4ccc9 100644
--- a/vorlesungen/slides/test.tex
+++ b/vorlesungen/slides/test.tex
@@ -3,4 +3,8 @@
%
% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\folie{0/intro.tex}
+\folie{hermite/normalintegrale.tex}
+\folie{hermite/normalhermite.tex}
+\folie{hermite/hermiteentwicklung.tex}
+\folie{hermite/loesung.tex}
+\folie{hermite/skalarprodukt.tex}