From 0f9fe03b68dc81c69a2f926d2a6782fe933d70f6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Fri, 26 Aug 2022 16:51:57 +0200 Subject: Final corrections. --- buch/papers/sturmliouville/eigenschaften.tex | 2 +- buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 2 +- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 12 ++++++------ 3 files changed, 8 insertions(+), 8 deletions(-) diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 2e3d4fd..0f1f235 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -9,7 +9,7 @@ \label{sturmliouville:sec:solution-properties}} \rhead{Eigenschaften von Lösungen} -Im weiteren werden nun die Eigenschaften der Lösung eines +Im Weiteren werden nun die Eigenschaften der Lösung eines Sturm-Liouville-Problems diskutiert. Im wesentlichen wird darauf eingegangen, wie die Orthogonalität der Lösungen zustande kommt, damit diese später in den Beispielen verwendet werden kann. diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index c509b96..5d13df6 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -63,7 +63,7 @@ damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. Es wurde somit gezeigt, dass die Sturm-Liouville-Randbedingungen erfüllt sind. -\subsection*{Handelt es sich um ein reguläres oder Singuläres Problem?} +\subsection*{Handelt es sich um ein reguläres oder singuläres Problem?} Für das reguläre Problem muss laut der Definition~\ref{sturmliouville:def:reguläres_sturm-liouville-problem} die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index ff32bf1..93a1eb0 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -139,8 +139,8 @@ An dieser Stelle wird nun gezeigt, dass die Gleichung in $x$ ein Sturm-Liouville-Problem ist. Dazu werden zunächst die Koeffizientenfunktionen $p(x)$, $q(x)$ und $w(x)$ benötigt. -Dafür wird die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} -mit der +Um diese zu erhalten, wird die +Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} mit der Sturm-Liouville-Form~\eqref{sturmliouville:eq:sturm-liouville-equation} verglichen, was zu \[ @@ -166,7 +166,7 @@ Es gilt also beispielsweise wegen \eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-constant}, dass $X(0) = X(l) = 0$. -Damit die Lösungen von $X$ orthogonal sind, müssen also noch die Gleichungen +Damit die Lösungen von $X$ orthogonal sind, müssen also die Gleichungen \begin{equation} \begin{aligned} \label{sturmliouville:eq:example-fourier-randbedingungen} @@ -287,7 +287,7 @@ und \eqref{sturmliouville:eq:example-fourier-boundary-condition-ends-isolated} benötigt. Da die Koeffizienten $A$ und $B$, sowie die Parameter $\alpha$ und $\beta$ im -allgemeinen ungleich $0$ sind, müssen die Randbedingungen durch die +Allgemeinen ungleich $0$ sind, müssen die Randbedingungen durch die trigonometrischen Funktionen erfüllt werden. \subsubsection{Einsetzen der @@ -425,7 +425,7 @@ gilt, endet man somit bei \sum_{n = 1}^{\infty} b_n\sin\left(\frac{n\pi}{l}x\right). \] Dies ist die allgemeine Fourierreihe, welche unsere Stab-Probleme löst. -Wie zuvor bereits erwähnt, wissen wir dass sämtliche Lösungsfunktionen +Wie zuvor bereits erwähnt, wissen wir, dass sämtliche Lösungsfunktionen orthogonal zueinander sind bezüglich des Skalarproduktes~\eqref{sturmliouville:eq:modified-dot-product}. Dieses vereinfacht sich noch etwas, da aus @@ -706,7 +706,7 @@ was sich wie folgt nach $a_0$ auflösen lässt: \subsection{Lösung der Differentialgleichung in \texorpdfstring{$t$}{t}} Zuletzt wird die zweite Gleichung der Separation~\eqref{sturmliouville:eq:example-fourier-separated-t} betrachtet. -Dazu betrachtet man das charakteristische Polynom +Dazu nimmt man das charakteristische Polynom \[ \lambda - \kappa \mu = -- cgit v1.2.1