From 288eb54f5089c48177434757b083309e05e30bf2 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Sun, 21 Aug 2022 11:48:48 +0200 Subject: kugel: More on Sturm-Liouville --- buch/papers/kugel/spherical-harmonics.tex | 42 ++++++++++++------------------- 1 file changed, 16 insertions(+), 26 deletions(-) diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex index 54c8fa9..bff91ef 100644 --- a/buch/papers/kugel/spherical-harmonics.tex +++ b/buch/papers/kugel/spherical-harmonics.tex @@ -107,7 +107,7 @@ the surface of the unit sphere. Now that we have defined an operator, we can go and study its eigenfunctions, which means that we would like to find the functions $f(\vartheta, \varphi)$ that satisfy the equation -\begin{equation} \label{kuvel:eqn:eigen} +\begin{equation} \label{kugel:eqn:eigen} \surflaplacian f = -\lambda f. \end{equation} Perhaps it may not be obvious at first glance, but we are in fact dealing with a @@ -619,31 +619,21 @@ regrettably sometimes even ourselves, would write instead: reader. \end{proof} - -\if 0 -As explained in the chapter \ref{}, the concept of orthogonality is very important and at the practical level it is very useful, because it allows us to develop very powerful techniques at the mathematical level.\newline -Throughout this book we have been confronted with the Sturm-Liouville theory (see chapter \ref{}). The latter, among other things, carries with it the concept of orthogonality. Indeed, if we consider the solutions of the Sturm-Liouville equation, which can be expressed in this form -\begin{equation}\label{kugel:eq:sturm_liouville} - \mathcal{S}f := \frac{d}{dx}\left[p(x)\frac{df}{dx}\right]+q(x)f(x) -\end{equation} -possiamo dire che formano una base ortogonale.\newline -Adesso possiamo dare un occhiata alle due equazioni che abbiamo ottenuto tramite la Separation Ansatz (Eqs.\eqref{kugel:eq:associated_leg_eq}\eqref{kugel:eq:ODE_1}), le quali possono essere riscritte come: -\begin{align*} - \frac{d}{dx} \left[ (1-x^2) \cdot \frac{dP_{m,n}}{dx} \right] &+ \left(n(n+1)-\frac{m}{1-x^2} \right) \cdot P_{m,n}(x) = 0, \\ - \frac{d}{d\varphi} \left[ 1 \cdot \frac{ d\Phi }{d\varphi} \right] &+ 1 \cdot \Phi(\varphi) = 0. -\end{align*} -Si può concludere in modo diretto che sono due casi dell'equazione di Sturm-Liouville. Questo significa che le loro soluzioni sono ortogonali sotto l'inner product con weight function $w(x)=1$, dunque: -\begin{align} -\int_{0}^{2\pi} \Phi_m(\varphi)\Phi_m'(\varphi) d\varphi &= \delta_{m'm}, \nonumber \\ -\int_{-1}^1 P_{m,m'}(x)P_{n,n'}(x) dx &= \delta_{m'm}\delta_{n'n}. \label{kugel:eq:orthogonality_associated_func} -\end{align} -Inoltre, possiamo provare l'ortogonalità di $\Theta(\vartheta)$ utilizzando \eqref{kugel:eq:orthogonality_associated_func}: -\begin{align} - x -\end{align} -Ora, visto che la soluzione dell'eigenfunction problem è formata dalla moltiplicazione di $\Phi_m(\varphi)$ e $P_{m,n}(x)$ -\fi - +Lemma \ref{kugel:thm:legendre-poly-ortho} has a very similar +proof, while the theorem \ref{kugel:thm:spherical-harmonics-ortho} for the +spherical harmonics is proved by the following argument. The spherical harmonics +are the solutions to the eigenvalue problem $\surflaplacian f = -\lambda f$, +which as discussed in the previous section is solved using separation. So to +prove their orthogonality using the Sturm-Liouville theory we argue that +\begin{equation*} + \surflaplacian = L_\vartheta L_\varphi \iff + \surflaplacian f(\vartheta, \varphi) + = L_\vartheta \Theta(\vartheta) L_\varphi \Phi(\varphi), +\end{equation*} +then we show that both $L_\vartheta$ and $L_\varphi$ are both Sturm-Liouville +operators (we just did the former in the shorter proof above). Since both are +Sturm-Liouville operators their combination, the surface spherical Laplacian, is +also a Sturm-Liouville operator, which then implies orthogonality. \subsection{Normalization and the Phase Factor} -- cgit v1.2.1