From 494636b6d00b0697bda4c5840a3666b0867f22e8 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 17 Aug 2022 17:18:13 +0200 Subject: kugel: Minor changes --- buch/papers/kugel/main.tex | 2 +- buch/papers/kugel/packages.tex | 5 ++ buch/papers/kugel/preliminaries.tex | 8 +-- buch/papers/kugel/spherical-harmonics.tex | 87 ++++++++++++++++++++++--------- 4 files changed, 73 insertions(+), 29 deletions(-) diff --git a/buch/papers/kugel/main.tex b/buch/papers/kugel/main.tex index ad19178..d063f87 100644 --- a/buch/papers/kugel/main.tex +++ b/buch/papers/kugel/main.tex @@ -11,7 +11,7 @@ \chapterauthor{Manuel Cattaneo, Naoki Pross} \input{papers/kugel/introduction} -% \input{papers/kugel/preliminaries} +\input{papers/kugel/preliminaries} \input{papers/kugel/spherical-harmonics} \input{papers/kugel/applications} \input{papers/kugel/proofs} diff --git a/buch/papers/kugel/packages.tex b/buch/papers/kugel/packages.tex index b0e1f61..ead7653 100644 --- a/buch/papers/kugel/packages.tex +++ b/buch/papers/kugel/packages.tex @@ -1,3 +1,4 @@ +% vim:ts=2 sw=2 et: % % packages.tex -- packages required by the paper kugel % @@ -10,6 +11,10 @@ \usepackage{cases} \newcommand{\kugeltodo}[1]{\textcolor{red!70!black}{\texttt{[TODO: #1]}}} +\newcommand{\kugelplaceholderfig}[2]{ \begin{tikzpicture}% + \fill[lightgray!20] (0, 0) rectangle (#1, #2);% + \node[gray, anchor = center] at ({#1 / 2}, {#2 / 2}) {\Huge \ttfamily \bfseries TODO}; + \end{tikzpicture}} \DeclareMathOperator{\sphlaplacian}{\nabla^2_{\mathit{S}}} \DeclareMathOperator{\surflaplacian}{\nabla^2_{\partial \mathit{S}}} diff --git a/buch/papers/kugel/preliminaries.tex b/buch/papers/kugel/preliminaries.tex index 03cd421..e48abe4 100644 --- a/buch/papers/kugel/preliminaries.tex +++ b/buch/papers/kugel/preliminaries.tex @@ -44,23 +44,23 @@ numbers \(\mathbb{R}\). \) \end{definition} -\texttt{TODO: Text here.} +\kugeltodo{Text here.} \begin{definition}[Span] \end{definition} -\texttt{TODO: Text here.} +\kugeltodo{Text here.} \begin{definition}[Linear independence] \end{definition} -\texttt{TODO: Text here.} +\kugeltodo{Text here.} \begin{definition}[Basis] \end{definition} -\texttt{TODO: Text here.} +\kugeltodo{Text here.} \begin{definition}[Inner product] \label{kugel:def:inner-product} \nocite{axler_linear_2014} diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex index 5645941..2ded50b 100644 --- a/buch/papers/kugel/spherical-harmonics.tex +++ b/buch/papers/kugel/spherical-harmonics.tex @@ -2,8 +2,8 @@ \section{Construction of the Spherical Harmonics} -\if 0 -\kugeltodo{Rewrite this section if the preliminaries become an addendum} +\kugeltodo{Review text, or rewrite if preliminaries becomes an addendum} + We finally arrived at the main section, which gives our chapter its name. The idea is to discuss spherical harmonics, their mathematical derivation and some of their properties and applications. @@ -29,9 +29,9 @@ created with the previous sections, concluding that Fourier is just a specific case of the application of the concept of orthogonality. Our hope is that after reading this section you will appreciate the beauty and power of generalization that mathematics offers us. -\fi \subsection{Eigenvalue Problem} +\label{kugel:sec:construction:eigenvalue} \begin{figure} \centering @@ -111,8 +111,9 @@ that satisfy the equation \surflaplacian f = -\lambda f. \end{equation} Perhaps it may not be obvious at first glance, but we are in fact dealing with a -partial differential equation (PDE) \kugeltodo{Boundary conditions?}. If we unpack the notation of the operator -$\nabla^2_{\partial S}$ according to definition +partial differential equation (PDE) \kugeltodo{Boundary conditions?}. If we +unpack the notation of the operator $\nabla^2_{\partial S}$ according to +definition \ref{kugel:def:surface-laplacian}, we get: \begin{equation} \label{kugel:eqn:eigen-pde} \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( @@ -139,7 +140,8 @@ convenience. If we substitute this assumption in \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial \Theta(\vartheta)}{\partial\vartheta} \right) \Phi(\varphi) - + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 \Phi(\varphi)}{\partial\varphi^2} + + \frac{1}{\sin^2 \vartheta} + \frac{\partial^2 \Phi(\varphi)}{\partial\varphi^2} \Theta(\vartheta) + \lambda \Theta(\vartheta)\Phi(\varphi) = 0. \end{equation*} @@ -182,6 +184,14 @@ require a dedicated section of its own. \subsection{Legendre Functions} +\begin{figure} + \centering + \kugelplaceholderfig{.8\textwidth}{5cm} + \caption{ + \kugeltodo{Why $z = \cos \vartheta$.} + } +\end{figure} + To solve \eqref{kugel:eqn:ode-theta} we start with the substitution $z = \cos \vartheta$ \kugeltodo{Explain geometric origin with picture}. The operator $\frac{d}{d \vartheta}$ becomes @@ -298,26 +308,19 @@ Legendre equation, which is not possible only using power series we have a solution in our domain, namely $P_n(z)$, we can insert it in the lemma obtain the \emph{associated Legendre functions}. -\begin{definition}[Ferrers or Associated Legendre functions] +\begin{definition}[Ferrers or associated Legendre functions] + \label{kugel:def:ferrers-functions} The functions - \begin{equation}\label{kugel:eq:associated_leg_func} + \begin{equation} P^m_n (z) = \frac{1}{n!2^n}(1-z^2)^{\frac{m}{2}}\frac{d^{m}}{dz^{m}} P_n(z) = \frac{1}{n!2^n}(1-z^2)^{\frac{m}{2}}\frac{d^{m+n}}{dz^{m+n}}(1-z^2)^n \end{equation} are known as Ferrers or associated Legendre functions. \end{definition} -\subsection{Spherical Harmonics} +\kugeltodo{Discuss $|m| \leq n$.} -As you may recall, previously we performed the substitution $x=\cos \vartheta$. Now we need to return to the old domain, which can be done straightforwardly: -\begin{equation*} - \Theta(\vartheta) = P_{m,n}(\cos \vartheta), -\end{equation*} -obtaining the much sought function $\Theta(\vartheta)$. \newline -So we finally reached the end of this tortuous path. Now we just need to put together all the information we have to construct $f(\vartheta, \varphi)$ in the following way: -\begin{equation}\label{kugel:eq:sph_harm_0} - f(\vartheta, \varphi) = \Theta(\vartheta)\Phi(\varphi) = P_{m,n}(\cos \vartheta)e^{jm\varphi}, \quad |m|\leq n. -\end{equation} +\if 0 The constraint $|m|