From 1666b63c2f4d5e8392c40ab6f6c8e9e71f20f4a3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 28 Jul 2022 07:14:37 +0200 Subject: Resolve error in orthogonality proof --- buch/papers/laguerre/eigenschaften.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index 6ba9135..1411f7c 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -97,38 +97,38 @@ Ausserdem ist ersichtlich, dass $p(x)$ die Differentialgleichung \begin{align*} x \frac{dp}{dx} = --(\nu + 1 - x) p +(\nu + 1 - x) p \end{align*} erfüllen muss. Durch Separation erhalten wir dann \begin{align*} \int \frac{dp}{p} & = --\int \frac{\nu + 1 - x}{x} \, dx +\int \frac{\nu + 1 - x}{x} \, dx = --\int \frac{\nu + 1}{x} \, dx - \int 1\, dx +\int \frac{\nu + 1}{x} \, dx - \int 1\, dx \\ \log p & = --(\nu + 1)\log x - x + c +(\nu + 1)\log x - x + c \\ p(x) & = --C x^{\nu + 1} e^{-x} +C x^{\nu + 1} e^{-x} . \end{align*} Eingefügt in Gleichung~\eqref{laguerre:sl-lag} ergibt sich \begin{align*} \frac{C}{w(x)} \left( -x^{\nu+1} e^{-x} \frac{d^2}{dx^2} + +-x^{\nu+1} e^{-x} \frac{d^2}{dx^2} - (\nu + 1 - x) x^{\nu} e^{-x} \frac{d}{dx} \right) = x \frac{d^2}{dx^2} + (\nu + 1 - x) \frac{d}{dx}. \end{align*} Mittels Koeffizientenvergleich kann nun abgelesen werden, -dass $w(x) = x^\nu e^{-x}$ und $C=1$ mit $\nu > -1$. +dass $w(x) = x^\nu e^{-x}$ und $C=-1$ mit $\nu \geq 0$. Die Gewichtsfunktion $w(x)$ wächst für $x\rightarrow-\infty$ sehr schnell an, deshalb ist die Laguerre-Gewichtsfunktion nur geeignet für den Definitionsbereich $(0, \infty)$. -- cgit v1.2.1 From 8daaabab904020da2111d6bee3ce26db3b4b6df0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 28 Jul 2022 07:30:31 +0200 Subject: Redescribe why definition range of Laguerre is (0,\infty) --- buch/papers/laguerre/eigenschaften.tex | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index 1411f7c..b007c2d 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -128,10 +128,11 @@ Eingefügt in Gleichung~\eqref{laguerre:sl-lag} ergibt sich x \frac{d^2}{dx^2} + (\nu + 1 - x) \frac{d}{dx}. \end{align*} Mittels Koeffizientenvergleich kann nun abgelesen werden, -dass $w(x) = x^\nu e^{-x}$ und $C=-1$ mit $\nu \geq 0$. -Die Gewichtsfunktion $w(x)$ wächst für $x\rightarrow-\infty$ sehr schnell an, -deshalb ist die Laguerre-Gewichtsfunktion nur geeignet für den -Definitionsbereich $(0, \infty)$. +dass $w(x) = x^\nu e^{-x}$ und $C=-1$. %mit $\nu \geq 0$. +Die Gewichtsfunktion $w(x)$ wächst für $x\rightarrow-\infty$ sehr schnell an. +Ausserdem hat die Gewichtsfunktion $w(x)$ für negative $\nu$ einen Pol bei $x=0$, +daher ist die Laguerre-Gewichtsfunktion nur für den +Definitionsbereich $(0, \infty)$ geeignet. \subsubsection{Randbedingungen} Bleibt nur noch sicherzustellen, dass die Randbedingungen -- cgit v1.2.1