From b31c40a22e885205373ff1a3284935d544c99889 Mon Sep 17 00:00:00 2001
From: canuel <cattaneo.manuel@hotmail.com>
Date: Tue, 16 Aug 2022 14:32:49 +0200
Subject: started the chapter about spherical harmonics (more specific about
 the derivation of them)

---
 buch/papers/kugel/packages.tex            |   2 +-
 buch/papers/kugel/spherical-harmonics.tex | 387 +++++++++++++++++++++++++++++-
 2 files changed, 387 insertions(+), 2 deletions(-)

diff --git a/buch/papers/kugel/packages.tex b/buch/papers/kugel/packages.tex
index 61f91ad..1c4f3e0 100644
--- a/buch/papers/kugel/packages.tex
+++ b/buch/papers/kugel/packages.tex
@@ -7,4 +7,4 @@
 % if your paper needs special packages, add package commands as in the
 % following example
 %\usepackage{packagename}
-
+\usepackage{cases}
diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex
index 6b23ce5..c76e757 100644
--- a/buch/papers/kugel/spherical-harmonics.tex
+++ b/buch/papers/kugel/spherical-harmonics.tex
@@ -1,9 +1,394 @@
 % vim:ts=2 sw=2 et spell:
 
 \section{Spherical Harmonics}
+We finally arrived at the main section, which gives our chapter its name. The idea is to discuss spherical harmonics, their mathematical derivation and some of their properties and applications.\newline
+The subsection \ref{} will be devoted to the Eigenvalue problem of the Laplace operator. Through the latter, we will derive the set of Eigenfunctions that obey the equation presented in \ref{}[TODO: reference to eigenvalue equation], which will be defined as \emph{Spherical Harmonics}. In fact, this subsection will present their mathematical derivation.\newline
+In the subsection \ref{}, on the other hand, some interesting properties related to them will be discussed. Some of these will come back to help us understand in more detail why they are useful in various real-world applications, which will be presented in the section \ref{}.\newline
+One specific property will be studied in more detail in the subsection \ref{}, namely the recursive property.
+The last subsection is devoted to one of the most beautiful applications (In our humble opinion), namely the derivation of a Fourier-style series expansion but defined on the sphere instead of a plane.\newline 
+More importantly, this subsection will allow us to connect all the dots we have created with the previous sections, concluding that Fourier is just a specific case of the application of the concept of orthogonality.\newline
+Our hope is that after reading this section you will appreciate the beauty and power of generalization that mathematics offers us.
 
-\subsection{Eigenvalue Problem in Spherical Coordinates}
+\subsection{Eigenvalue Problem on the Spherical surface}
+\subsubsection{Unormalized Spherical Harmonics}
+From the chapter \ref{}, we know that the spherical Laplacian is defined as. \begin{equation*}
+    \nabla^2_S := \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2} 
+    \left[
+        \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial}{\partial\vartheta} \right)
+                + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2}
+    \right] 
+\end{equation*}
+But we do not want to consider this algebraic monster entirely, since this includes the whole set $\mathbb{R}^3$; rather, we want to focus only on the spherical surface (as the title suggests). We can then further concretise our calculations by selecting any number for the variable $r$, so that we have a sphere and, more importantly, a spherical surface on which we can ``play''.\newline
+Surely you have already heard of the unit circle, a geometric entity used extensively in many mathematical contexts. The most famous and basic among them is surely trigonometry.\newline
+Extending this concept into three dimensions, we will talk about the unit sphere. This is a very famous sphere, as is the unit circle. So since we need a sphere why not use the most famous one? Thus imposing $r=1$.\newline
+Now, since the variable $r$ became a constant, we can leave out all derivatives with respect to $r$, setting them to zero. Then substituting the value of $r$ for 1, we will obtain the operator we will refer to as \emph{Spherical Surface Operator}:
+\begin{equation*}
+    \nabla^2_{\partial S} := \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial}{\partial\vartheta} \right)
+                + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2}.
+\end{equation*}
+As can be seen, for this definition, the subscript ``$\partial S$'' was used to emphasize the fact that we are on the spherical surface, which can be understood as a boundary of the sphere.\newline
+Now that we have defined an operator, we can go on to calculate its eigenfunctions. As mentioned earlier, we can translate this problem at first abstract into a much more concrete problem, which has to do with the field of \emph{Partial Differential Equaitons} (PDEs). The functions we want to find are simply functions that respect the following expression:
+\begin{equation}\label{kugel:eq:sph_srfc_laplace}
+    \nabla^2_{\partial S} f = \lambda f 
+\end{equation}
+Which is traditionally written as follows:
+\begin{equation*}
+    \nabla^2_{\partial S} f = -\lambda f 
+\end{equation*}
+Perhaps the fact that we are dealing with a PDE may not be obvious at first glance, but if we extend the operator $\nabla^2_{\partial S}$ according to Eq.(\ref{kugel:eq:sph_srfc_laplace}), we will get:
+\begin{equation}\label{kugel:eq:PDE_sph}
+    \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial f}{\partial\vartheta} \right)
+                + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 f}{\partial\varphi^2} + \lambda f = 0, 
+\end{equation}
+making it emerge.\newline
+All functions satisfying Eq.(\ref{kugel:eq:PDE_sph}), are called eigenfunctions. Our new goal is therefore to solve this PDE. The task seems very difficult but we can simplify it with a well-known technique, namely the \emph{separation Ansatz}. The latter consists in assuming that the function $f(\vartheta, \varphi)$ we are looking for can be factorized in the following form 
+\begin{equation}\label{kugel:eq:sep_ansatz_0}
+    f(\vartheta, \varphi) = \Theta(\vartheta)\Phi(\varphi). 
+\end{equation}
+In short, we are saying that the effect of the two independent variables can be described using the multiplication of two functions that describe their effect separately. If we include this assumption in Eq.(\ref{kugel:eq:PDE_sph}), we have:
+\begin{equation}
+    \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial  \Theta(\vartheta)}{\partial\vartheta} \right)\Phi(\varphi)
+                + \frac{1}{\sin^2 \vartheta} \frac{\partial^2  \Phi(\varphi)}{\partial\varphi^2} \Theta(\vartheta) + \lambda  \Theta(\vartheta)\Phi(\varphi) = 0.  \label{kugel:eq:sep_ansatz_1}
+\end{equation}
+Dividing Eq.(\ref{kugel:eq:sep_ansatz_1}) by $\Theta(\vartheta)\Phi(\varphi)$ and inserting an auxiliary variable $m$, which we will call the separating constant, we will have:
+\begin{equation*}
+\frac{1}{\Theta(\vartheta)}\sin \vartheta \frac{d}{d \vartheta} \left( \sin \vartheta \frac{d \Theta}{d \vartheta} \right) + \lambda \sin^2 \vartheta = -\frac{1}{\Phi(\varphi)} \frac{d^2\Phi(\varphi)}{d\varphi^2} = m,
+\end{equation*}
+which is equivalent to the following system of two \emph{Ordinary Differential Equations} (ODEs)
+\begin{align}
+    \frac{d^2\Phi(\varphi)}{d\varphi^2} &= -m \Phi(\varphi) \label{kugel:eq:ODE_1} \\ 
+    \sin \vartheta \frac{d}{d \vartheta} \left( \sin \vartheta \frac{d \Theta}{d \vartheta} \right) + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right)\Theta(\vartheta) &= 0 \label{kugel:eq:ODE_2} 
+\end{align}
+The solution of Eq.(\ref{kugel:eq:ODE_1}) is quite trivial. The complex exponential is obviously the function we are looking for, so we can write
+\begin{equation*}
+    \Phi_m(\varphi) = e^{j m \varphi}, \quad m \in \mathbb{Z}.
+\end{equation*}
+The restriction for the separation constant $m$ arises from the fact that we require the following periodic constraint $\Phi_m(\varphi + 2\pi) = \Phi_m(\varphi)$.\newline
+As for Eq.(\ref{kugel:eq:ODE_2}), the resolution will not be so straightforward. We can begin by considering the substitution $x = \cos \vartheta$. The operator $\frac{d}{d \vartheta}$ will be:
+\begin{align*}
+    \frac{d}{d \vartheta} = \frac{dx}{d \vartheta}\frac{d}{dx} &= -\sin \vartheta \frac{d}{dx} \\
+    &= -\sqrt{1-x^2} \frac{d}{dx}.
+\end{align*} 
+Eq.(\ref{kugel:eq:ODE_2}) will then become.
+\begin{align*}
+   \frac{-\sqrt{1-x^2}}{\sqrt{1-x^2}} \frac{d}{dx} \left( \left(\sqrt{1-x^2}\right) \left(-\sqrt{1-x^2}\right) \frac{d \Theta}{dx} \right) + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right)\Theta(\vartheta) &= 0 \\
+   \frac{d}{dx} \left( (1-x^2) \frac{d \Theta}{dx} \right) + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right)\Theta(\vartheta) &= 0 \\
+   (1-x^2)\frac{d^2 \Theta}{dx} - 2x\frac{d \Theta}{dx} + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right)\Theta(\vartheta) &= 0 \\
+   (1-x^2)\frac{d^2 \Theta}{dx} - 2x\frac{d \Theta}{dx} + \left( \lambda - \frac{m}{1-x^2} \right)\Theta(\vartheta) &= 0 
+\end{align*}
+By making two final cosmetic substitutions, namely $\Theta(\vartheta)=\Theta(\cos^{-1}x):=y(x)$ and $\lambda=n(n+1)$, we will be able to define the \emph{Associated Legendre Equation} in its standard and most familiar form
+\begin{definition}{Associated Legendre Equation}
+    \begin{equation}\label{kugel:eq:associated_leg_eq}
+        (1-x^2)\frac{d^2 y}{dx} - 2x\frac{d y}{dx} + \left( n(n+1) - \frac{m}{1-x^2} \right)y(x) = 0. 
+    \end{equation}
+\end{definition}
+Our new goal then became solving Eq.(\ref{kugel:eq:asssociated_leg_eq}). After that we can fit the solution into Eq.(\ref{kugel:eq:sep_ansatz_0}), obtaining $f(\vartheta, \varphi)$, the solution of the eigenvalue problem. \newline
+We simplified the problem somewhat but the task still remains very difficult. We can rely on a lemma to continue but first we need to define an additional equation, namely the \emph{Legendre Equation}
+\begin{definition}{Legendre equation}\newline
+    Setting $m=0$ in Eq.(\ref{kugel:eq:asssociated_leg_eq}), we get
+    \begin{equation}\label{kugel:eq:leg_eq}
+        (1-x^2)\frac{d^2 y}{dx} - 2x\frac{d y}{dx} + n(n+1)y(x) = 0,
+    \end{equation}
+    also known as \emph{Legendre Equation}.
+\end{definition}
+Now we can continue with the lemma
+\begin{lemma}\label{kugel:lemma_1}
+    If $y_n(x)$ is a solution of Eq.(\ref{kugel:eq:leg_eq}), then the function
+    \begin{equation*}
+        y_{m,n}(x) = (1-x^2)^{\frac{m}{2}}\frac{d^m}{dx^m}y_n(x)
+    \end{equation*}
+    satisfies Eq.(\ref{kugel:eq:associated_leg_eq})
+\end{lemma}
+\begin{proof} [TODO: modificare la $m$ (è già usata come costante di separazione) o forse è giusta (?)]
+    To begin, we can start by differentiating $m$ times Eq.\eqref{kugel:eq:leg_eq} (which is staisfied by $y(x)$), obtaining
+    \begin{equation}\label{eq:lagrange_mderiv}
+    \frac{d^m}{dx^m}\left[ (1-x^2)\frac{d^2y}{dx^2} \right] -2 \frac{d^m}{dx^m}\left[ x\frac{dy}{dx} \right] + n(n+1)\frac{d^m}{dx^m}y=0.
+    \end{equation}
+    \emph{Leibniz's theorem} says, that if we want to differentiate $m$ times a multiplication of two functions, we can use the binomial coefficients to build up a sum. This allows us to be more compact, obtaining 
+    \begin{equation}\label{eq:leibniz}
+    \frac{d^m}{dx^m}[u(x)v(x)] = \sum_{i=0}^m \binom{n}{i} \frac{d^{m-i}u}{dx^{m-1}} \frac{d^{i}v}{dx^i}.
+    \end{equation}
+    Using Eq.\eqref{eq:leibniz} in Eq.\eqref{eq:lagrange_mderiv}, we have
+    \begin{align}
+    (1-x^2)\frac{d^{m+2}y}{dx^{m+2}} &+ m \frac{d}{dx}(1-x^2)\frac{d^{m+1}y}{dx^{m+1}} + \frac{m(m-1)}{2}\frac{d^{2}}{dx^{2}}(1-x^2)\frac{d^{m}y}{dx^{m}} + n(n+1)\frac{d^m{}y}{dx^{m}} \nonumber \\
+    &-2\left(x\frac{d^{m+1}y}{dx^{m+1}} + m\frac{d}{dx}x\frac{d^{m}y}{dx^{m}} \right) \nonumber \\
+    &= (1-x^2)\frac{d^{m+2}y}{dx^{m+2}} -2x(m+1)\frac{d^{m+1}y}{dx^{m+1}}+(n(n+1)-m(m-1)-2m)\frac{d^{m}y}{dx^{m}}=0. \label{eq:aux_3}
+    \end{align}
+    To make the notation easier to follow, a new function can be defined
+    \begin{equation*}
+    \frac{d^{m}y}{dx^{m}} := y_m.
+    \end{equation*}
+    Eq.\eqref{eq:aux_3} now becomes
+    \begin{equation}\label{eq:1st_subs}
+    (1-x^2)\frac{d^{2}y_m}{dx^{2}} -2x(m+1)\frac{dy_m}{dx}+(n(n+1)-m(m+1))y_m=0
+    \end{equation}
+    A second function can be further defined as
+    \begin{equation*}
+    (1-x^2)^{\frac{m}{2}}\frac{d^{m}y}{dx^{m}} = (1-x^2)^{\frac{m}{2}}y_m := \hat{y}_m,
+    \end{equation*}
+    allowing to write Eq.\eqref{eq:1st_subs} as
+    \begin{equation}\label{eq:2st_subs}
+    (1-x^2)\frac{d^2}{dx^2}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] -2(m+1)x\frac{d}{dx}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] + (n(n+1)-m(m+1))\hat{y}_m(1-x^2)^{-\frac{m}{2}}=0.
+    \end{equation}
+    The goal now is to compute the two terms 
+    \begin{align*}
+    \frac{d^2}{dx^2}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] &=  \frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} + \frac{d\hat{y}_m}{dx}\frac{m}{2}(1-x^2)^{-\frac{m}{2}-1}2x \\
+    &+ m\left( \frac{d\hat{y}_m}{dx} x (1-x^2)^{-\frac{m}{2}-1} + \hat{y}_m (1-x^2)^{-\frac{m}{2}-1} - \hat{y}_m x (-\frac{m}{2}-1)(1-x^2)^{-\frac{m}{2}} 2x\right) \\
+    &= \frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} + \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-\frac{m}{2}-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-\frac{m}{2}-1}\\
+    &+ m\hat{y}_m  (1-x^2)^{-\frac{m}{2}-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-\frac{m}{2}-2}
+    \end{align*}
+    and
+    \begin{align*}
+    \frac{d}{dx}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] &= \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_m\frac{m}{2}(1-x^2)^{-\frac{m}{2}-1}2x \\
+    &= \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_mm(1-x^2)^{-\frac{m}{2}-1}x,
+    \end{align*}
+    to use them in Eq.\eqref{eq:2st_subs}, obtaining
+    \begin{align*}
+    (1-x^2)\biggl[\frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} &+ \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-\frac{m}{2}-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-\frac{m}{2}-1} \\ 
+    &+ m\hat{y}_m  (1-x^2)^{-\frac{m}{2}-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-\frac{m}{2}-2}\biggr] \\
+    &-2(m+1)x\left[  \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_mm(1-x^2)^{-\frac{m}{2}-1}x \right] \\
+    &+ (n(n+1)-m(m+1))\hat{y}_m(1-x^2)^{-\frac{m}{2}}=0.\\
+    \end{align*}
+    We can now divide by $(1-x^2)^{-\frac{m}{2}}$, obtaining
+    \begin{align*}
+    (1-x^2)\biggl[\frac{d^2\hat{y}_m}{dx^2} &+ \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-1} + m\hat{y}_m  (1-x^2)^{-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-2}\biggr] \\
+    &-2(m+1)x\left[  \frac{d\hat{y}_m}{dx} + \hat{y}_mm(1-x^2)^{-1}x \right] + (n(n+1)-m(m+1))\hat{y}_m\\
+    &= \frac{d^2\hat{y}_m}{dx^2} + \frac{d\hat{y}_m}{dx}mx + m\frac{d\hat{y}_m}{dx}x + m\hat{y}_m + m\hat{y}_m x^2(m+2)(1-x^2)^{-1} \\
+    &-2(m+1)x\left[  \frac{d\hat{y}_m}{dx} + \hat{y}_mm(1-x^2)^{-1}x \right] + (n(n+1)-m(m+1))\hat{y}_m\\
+    \end{align*}
+    and collecting some terms
+    \begin{equation*}
+    (1-x^2)\frac{d^2\hat{y}_m}{dx^2} - 2x\frac{d\hat{y}_m}{dx} + \left( -x^2 \frac{m^2}{1-x^2} + m+n(n+1)-m(m+1)\right)\hat{y}_m=0.
+    \end{equation*}
+    Showing that 
+    \begin{align*}
+    -x^2 \frac{m^2}{1-x^2} + m+n(n+1)-m(m+1) &= n(n+1)- m^2 -x^2 \frac{m^2}{1-x^2} \\
+    &= n(n+1)- \frac{m}{1-x^2}
+    \end{align*}
+    implies $\hat{y}_m(x)$ being a solution of Eq.\eqref{kugel:eq:associated_leg_eq}
+\end{proof}
+In simpler words, if we find a solution to Eq.\eqref{kugel:eq:leg_eq}, we can extend the latter according to the Lemma \ref{kugel:lemma_1} obtaining the solution of Eq.\eqref{kugel:eq:associated_leg_eq}.\newline
+We can say that we are going in the right direction, as the problem to be solved is decreasing in difficulty. We moved from having to find a solution to Eq.\eqref{kugel:eq:associated_leg_eq} to finding a solution to Eq.\eqref{kugel:eq:leg_eq}, which is much more approachable as a problem. Luckily for us, the lemma we will present below will help us extensively, which is something of an euphemism, since it will give us the solution directly.
+\begin{lemma}
+    The polynomial function
+    \begin{align*}
+        y_n(x)&=\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k}\\
+        &= \frac{1}{n!2^n}\frac{d^n}{dx^n}(1-x^2)^n =: P_n(x),
+    \end{align*}
+    is a solution to the second order differential equation
+    \begin{equation}\label{kugel:eq:sol_leg}
+        (1-x^2)\frac{d^2y}{dx^2}-2x\frac{dy}{dx} + n(n+1)y=0, \quad \forall n>0.
+    \end{equation}
+\end{lemma}
+\begin{proof}
+    In order to find a solution to Eq.\eqref{eq:legendre}, the following Ansatz can be performed:
+    \begin{equation}\label{eq:ansatz}
+    y(x) = \sum_{k=0}^\infty a_k x^k.
+    \end{equation}
+    Given Eq.\eqref{eq:ansatz}, then
+    \begin{align*}
+    \frac{dy}{dx} &= \sum_{k=0}^\infty k a_k x^{k-1}, \\
+    \frac{d^2y}{dx^2} &= \sum_{k=0}^\infty k (k-1) a_k x^{k-2}.
+    \end{align*}
+    Eq.\eqref{eq:legendre} can be therefore written as
+    \begin{align}
+    &(1-x^2)\sum_{k=0}^\infty k (k-1) a_k x^{k-2} - 2x\sum_{k=0}^\infty k a_k x^{k-1} + n(n+1)\sum_{k=0}^\infty a_k x^k=0 \label{eq:ansatz_in_legendre} \\
+    &=\sum_{k=0}^\infty k (k-1) a_k x^{k-2} - \sum_{k=0}^\infty k (k-1) a_k x^{k} - 2x\sum_{k=0}^\infty k a_k x^{k-1} + n(n+1)\sum_{k=0}^\infty a_k x^k=0. \nonumber
+    \end{align}
+    If one consider the term
+    \begin{equation}\label{eq:term}
+    \sum_{k=0}^\infty k (k-1) a_k x^{k-2},
+    \end{equation}
+    the substitution $\tilde{k}=k-2$ yields Eq.\eqref{eq:term} to
+    \begin{equation*}
+    \sum_{\tilde{k}=-2}^\infty (\tilde{k}+2) (\tilde{k}+1) a_{\tilde{k}+2} x^{\tilde{k}}=\sum_{\tilde{k}=0}^\infty (\tilde{k}+2) (\tilde{k}+1) a_{\tilde{k}} x^{\tilde{k}}.
+    \end{equation*}
+    This means that Eq.\eqref{eq:ansatz_in_legendre} becomes
+    \begin{align}
+    &\sum_{k=0}^\infty (k+1)(k+2) a_{k+2} x^{k} - \sum_{k=0}^\infty k (k-1) a_k x^{k} - 2\sum_{k=0}^\infty k a_k x^k + n(n+1)\sum_{k=0}^\infty a_k x^k \nonumber \\
+    = &\sum_{k=0}^\infty \big[ (k+1)(k+2) a_{k+2} - k (k-1) a_k - 2 k a_k + n(n+1) a_k \big] x^k \stackrel{!}{=} 0. \label{eq:condition}
+    \end{align}
+    The condition in Eq.\eqref{eq:condition} is equivalent to 
+    \begin{equation}\label{eq:condition_2}
+    (k+1)(k+2) a_{k+2} - k (k-1) a_k - 2 k a_k + n(n+1) a_k = 0.
+    \end{equation}
+    We can derive a recursion formula for $a_{k+2}$ from Eq.\eqref{eq:condition_2}, which can be expressed as
+    \begin{equation}\label{eq:recursion}
+    a_{k+2}= \frac{k (k-1) - 2 k + n(n+1)}{(k+1)(k+2)}a_k = \frac{(k-n)(k+n+1)}{(k+2)(k+1)}a_k.
+    \end{equation}
+    All coefficients can be calculated using the latter. 
+    
+    Following Eq.\eqref{eq:recursion}, if we want to compute $a_6$ we would have
+    \begin{align*}
+    a_{6}= -\frac{(n-4)(n+5)}{6\cdot 5}a_4 &= -\frac{(n-4)(5+n)}{6 \cdot 5} -\frac{(n-2)(n+3)}{4 \cdot 3}  a_2 \\
+    &= -\frac{(n-4)(n+5)}{6 \cdot 5} -\frac{(n-2)(n+3)}{4 \cdot 3} -\frac{n(n+1)}{2 \cdot 1}  a_0 \\
+    &= -\frac{(n+5)(n+3)(n+1)n(n-2)(n-4)}{6!} a_0.
+    \end{align*}
+    One can generalize this relation for the $i^\text{th}$ even coefficient as
+    \begin{equation*}
+    a_{2k} = (-1)^k \frac{(n+(2k-1))(n+(2k-1)-2)\hdots (n-(2k-2)+2)(n-(2k-2))}{(2k)!}a_0
+    \end{equation*}
+    where $i=2k$.
+    
+    A similar expression can be written for the odd coefficients $a_{2k-1}$. In this case, the equation starts from $a_1$ and to find the pattern we can write the recursion for an odd coefficient, $a_7$ for example
+    \begin{align*}
+    a_{7}= -\frac{(n-5)(n+6)}{7\cdot 6}a_5 &= - \frac{(n-5)(n+6)}{7\cdot 6} -\frac{(n-3)(n+4)}{5 \cdot 4}  a_3 \\
+    &= - \frac{(n-5)(n+6)}{7\cdot 6} -\frac{(n-3)(n+4)}{5 \cdot 4}  -\frac{(n-1)(n+2)}{3 \cdot 2}  a_1 \\
+    &= -\frac{(n+6)(n+4)(n+2)(n-1)(n-3)(n-5)}{7!} a_1.
+    \end{align*}
+    As before, we can generalize this equation for the $i^\text{th}$ odd coefficient
+    \begin{equation*}
+    a_{2k+1} = (-1)^k \frac{(n + 2k)(n+2k-2)\hdots(n-(2k-1)+2)(n-(2k-1))}{(2k+1)!}a_1
+    \end{equation*}
+    where $i=2k+1$.
+    
+    Let be 
+    \begin{align*}
+    y_\text{e}^K(x) &:= \sum_{k=0}^K(-1)^k \frac{(n+(2k-1))(n+(2k-1)-2)\hdots \color{red}(n-(2k-2)+2)(n-(2k-2))}{(2k)!} x^{2k}, \\
+    y_\text{o}^K(x) &:= \sum_{k=0}^K(-1)^k \frac{(n + 2k)(n+2k-2)\hdots \color{blue} (n-(2k-1)+2)(n-(2k-1))}{(2k+1)!} x^{2k+1}.
+    \end{align*}
+    The solution to the Eq.\eqref{eq:legendre} can be written as
+    \begin{equation}\label{eq:solution}
+    y(x) = \lim_{K \to \infty} \left[ a_0 y_\text{e}^K(x) + a_1 y_\text{o}^K(x) \right].
+    \end{equation}
+    
+    The colored parts can be analyzed separately:
+    \begin{itemize}
+      \item[\textcolor{red}{\textbullet}] Suppose that $n=n_0$ is an even number. Then the red part, for a specific value of $k=k_0$, will follow the following relation:
+    \begin{equation*}
+    n_0-(2k_0-2)=0. 
+    \end{equation*}
+    From that point on, given the recursive nature of Eq.\eqref{eq:recursion}, all the subsequent coefficients will also be 0, making the sum finite.
+    \begin{equation*}
+    a_{2k}=0 \iff y_{\text{o}}^{2k}(x)=y_{\text{o}}^{2k_0}(x), \quad \forall k>k_0
+    \end{equation*} 
+      \item[\textcolor{blue}{\textbullet}] Suppose that $n=n_0$ is an odd number. Then the blue part, for a specific value of $k=k_0$, will follow the following relation 
+    \begin{equation*}
+    n_0-(2k_0-1)=0.  
+    \end{equation*}
+    From that point on, for the same reason as before, all the subsequent coefficients will also be 0, making the sum finite.
+    \begin{equation*}
+    a_{2k+1}=0 \iff y_{\text{o}}^{2k+1}(x)=y_{\text{o}}^{2k_0+1}(x), \quad \forall k>k_0
+    \end{equation*}
+    \end{itemize} 
+    
+    There is the possibility of expressing the solution in Eq.\eqref{eq:solution} in a more compact form, combining the two solutions $y_\text{o}^K(x)$ and $y_\text{e}^K(x)$. They are both a polynomial of maximum degree $n$, assuming $n \in \mathbb{N}$. In the case where $n$ is even, the polynomial solution
+    \begin{equation*}
+    \lim_{K\to \infty} y_\text{e}^K(x)
+    \end{equation*}
+    will be a finite sum. If instead $n$ is odd, will be 
+    \begin{equation*}
+    \lim_{K\to \infty} y_\text{o}^K(x)
+    \end{equation*}
+    to be a finite sum. 
+    
+    Depending on the coefficient we start with, $a_1$ or $a_0$, we will obtain the odd or even polynomial respectively. Starting with the last coefficient $a_n$ and, recursively, calculating all the others in descending order, we can express the two parts $y_\text{o}^K(x)$ and $y_\text{e}^K(x)$ with a single sum. Hence, because we start with the last coefficient, the choice concerning $a_1$ and $a_0$ will be at the end of the sum, and not at the beginning. To compact Eq.\eqref{eq:solution}, Eq.\eqref{eq:recursion} can be reconsidered to calculate the coefficient $a_{k-2}$, using $a_k$
+    \begin{equation*}
+    a_{k-2} = -\frac{(k+2)(k+1)}{(k-n)(k+n+1)}a_k
+    \end{equation*}
+    Now the game is to find a pattern, as before. Remember that $n$ is a fixed parameter of Eq.\eqref{eq:legendre}.  
+    \begin{align*}
+    a_{n-2} &= -\frac{n(n-1)}{2(2n-1)}a_n, \\
+    a_{n-4} &= -\frac{(n-2)(n-3)}{4(2n-3)}a_{n-2} \\
+    &= -\frac{(n-2)(n-3)}{4(2n-3)}-\frac{n(n-1)}{2(2n-1)}a_n.
+    \end{align*}
+    In general 
+    \begin{equation}\label{eq:general_recursion}
+    a_{n-2k} = (-1)^k \frac{n(n-1)(n-2)(n-3) \hdots (n-2k+1)}{2\cdot4\hdots 2k(2n-1)(2n-3)\hdots(2n-2k+1)}a_n
+    \end{equation}
+    The whole solution can now be written as
+    \begin{align}
+    y(x) &= a_n x^n + a_{n-2} x^{n-2} + a_{n-4} x^{n-4} + a_{n-6} x^{n-6} + \hdots + \begin{cases} 
+    a_1 x, \quad &\text{if } n \text{ odd} \\ 
+    a_0, \quad  &\text{if } n \text{ even} 
+    \end{cases} \nonumber \\
+    &= \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} a_{n-2k}x^{n-2k} \label{eq:solution_2}
+    \end{align}
+    By considering
+    \begin{align}
+    (2n-1)(2n-3)\hdots (2n-2k+1)&=\frac{2n(2n-1)(2n-2)(2n-3)\hdots(2n-2k+1)}
+    {2n(2n-2)(2n-4)(2n-6)\hdots(2n-2k+2)} \nonumber \\ 
+    &=\frac{\frac{(2n)!}{(2n-2k)!}}
+    {2^kn(n-1)(n-2)(n-3)\hdots(n-k+1)} \nonumber \\
+    &=\frac{\frac{(2n)!}{(2n-2k)!}}
+    {2^k\frac{n!}{(n-k)!}}=\frac{(n-k)!(2n)!}{n!(2n-2k)!2^k} \label{eq:1_sub_recursion}, \\
+    2 \cdot 4  \hdots 2k &= 2^r 1\cdot2 \hdots r = 2^r r!\label{eq:2_sub_recursion}, \\
+    n(n-1)(n-2)(n-3) \hdots (n-2k+1) &= \frac{n!}{(n-2k)!}\label{eq:3_sub_recursion}.
+    \end{align}
+    Eq.\eqref{eq:solution_2} can be rewritten as
+    \begin{equation}\label{eq:solution_3}
+    y(x)=a_n \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{n!^2(2n-2k)!}{k!(n-2k)!(n-k)!(2n)!}  x^{n-2k}.
+    \end{equation}
+    Eq.\eqref{eq:solution_3} is defined for any $a_n$. By letting $a_n$ be declared as
+    \begin{equation*}
+    a_{n} := \frac{(2n)!}{2^n n!^2},
+    \end{equation*}
+    the so called \emph{Legendre polynomial} emerges
+    \begin{equation}\label{eq:leg_poly}
+    P_n(x):=\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k} 
+    \end{equation}
+\end{proof}
+As can be seen, the solution is a $n$-dependent power series, traditionally denoted as $P_n(x)$. This set of polynomials are called \emph{Legendre Polynomials}, because precisely they are polynomials satisfying the Legendre equation.\newline
+Now that we have a solution to Eq.\eqref{kugel:eq:leg_eq}, we can then extend Eq.\eqref{kugel:eq:sol_leg}, as stated in Lemma \ref{kugel:lemma_1}. We will then have
+\begin{align*}
+y_{m,n}(x) &= (1-x^2)^{\frac{m}{2}}\frac{d^m}{dx^m}P_n(x) \\
+&= \frac{1}{n!2^n}(1-x^2)^{\frac{m}{2}}\frac{d^{m+n}}{dx^{m+n}}(1-x^2)^n 
+\end{align*}
+This set of functions are defined as \emph{Associated Legendre functions}, because similarly to before, they solve the Associated Legendre equation, defined in Eq.\eqref{kugel:eq:eq_leg}.
+\begin{definition}{Associated Legendre Functions}
+\begin{equation}\label{kugel:eq:associated_leg_func}
+P_{m,n}(x) := \frac{1}{n!2^n}(1-x^2)^{\frac{m}{2}}\frac{d^{m+n}}{dx^{m+n}}(1-x^2)^n 
+\end{equation}
+\end{definition}
+As you may recall, previously we performed the substitution $x=\cos \vartheta$. Now we need to return to the old domain, which can be done straightforwardly:
+\begin{equation*}
+    \Theta(\vartheta) = P_{m,n}(\cos \vartheta),
+\end{equation*}
+obtaining the much sought function $\Theta(\vartheta)$. \newline
+So we finally reached the end of this tortuous path. Now we just need to put together all the information we have to construct $f(\vartheta, \varphi)$ in the following way:
+\begin{equation}\label{kugel:eq:sph_harm_0}
+    f(\vartheta, \varphi) = \Theta(\vartheta)\Phi(\varphi) = P_{m,n}(\cos \vartheta)e^{jm\varphi}, \quad |m|\leq n.
+\end{equation}
+The constraint $|m|<n$, can be justified by considering Eq.\eqref{kugel:eq:associated_leg_func}, in which the derivative of degree $m+n$ is present. A derivative to be well defined must have an order that is greater than zero. Furthermore, it can be seen that this derivative is applied on a polynomial of degree $2n$. As is known from Calculus 1, if you derive a polynomial of degree $2n$ more than $2n$ times, you get zero, which is a trivial solution in which we are not interested.\newline
+We can thus summarize these two conditions by writing:
+\begin{equation*}
+    \begin{rcases}
+        m+n \leq 2n &\implies m \leq n \\
+        m+n \geq 0  &\implies  m \geq -n
+    \end{rcases} |m| \leq n.
+\end{equation*}
+The set of functions in Eq.\eqref{kugel:eq:sph_harm_0} is named \emph{Spherical Harmonics}, which are the eigenfunctions of the Laplace operator on the \emph{spherical surface domain}, which is exactly what we were looking for at the beginning of this section.
+\begin{definition}{Spherical Harmonics}
+    \begin{equation}\label{kugel:eq:sph_harm_1}
+    \tilde{Y}_{m,n}(\vartheta, \varphi) := P_{m,n}(\cos \vartheta)e^{jm\varphi}, \quad |m|\leq n.
+    \end{equation}
+\end{definition}
 
+\subsection{Normalization}
+As explained in the chapter \ref{}, the concept of orthogonality is very important and at the practical level it is very useful, because it allows us to develop very powerful techniques at the mathematical level.\newline 
+Throughout this book we have been confronted with the Sturm-Liouville theory (see chapter \ref{}). The latter, among other things, carries with it the concept of orthogonality. Indeed, if we consider the solutions of the Sturm-Liouville equation, which can be expressed in this form
+\begin{equation}\label{kugel:eq:sturm_liouville}
+    \mathcal{S}f := \frac{d}{dx}\left[p(x)\frac{df}{dx}\right]+q(x)f(x)
+\end{equation}
+possiamo dire che formano una base ortogonale.\newline
+Adesso possiamo dare un occhiata alle due equazioni che abbiamo ottenuto tramite la Separation Ansatz (Eqs.\eqref{kugel:eq:associated_leg_eq}\eqref{kugel:eq:ODE_1}), le quali possono essere riscritte come:
+\begin{align*}
+    \frac{d}{dx} \left[ (1-x^2) \cdot \frac{dP_{m,n}}{dx} \right] &+ \left(n(n+1)-\frac{m}{1-x^2} \right) \cdot P_{m,n}(x) = 0, \\
+    \frac{d}{d\varphi} \left[ 1 \cdot \frac{ d\Phi }{d\varphi} \right] &+ 1 \cdot \Phi(\varphi) = 0. 
+\end{align*}
+Si può concludere in modo diretto che sono due casi dell'equazione di Sturm-Liouville. Questo significa che le loro soluzioni sono ortogonali sotto l'inner product con weight function $w(x)=1$, dunque:
+\begin{align}
+\int_{0}^{2\pi} \Phi_m(\varphi)\Phi_m'(\varphi) d\varphi &= \delta_{m'm}, \nonumber \\
+\int_{-1}^1 P_{m,m'}(x)P_{n,n'}(x) dx &= \delta_{m'm}\delta_{n'n}. \label{kugel:eq:orthogonality_associated_func}
+\end{align}
+Inoltre, possiamo provare l'ortogonalità di $\Theta(\vartheta)$ utilizzando \eqref{kugel:eq:orthogonality_associated_func}:
+\begin{align}
+    x
+\end{align}
+Ora, visto che la soluzione dell'eigenfunction problem è formata dalla moltiplicazione di $\Phi_m(\varphi)$ e $P_{m,n}(x)$
+\begin{lemma}
+
+\end{lemma}
 \subsection{Properties}
 
 \subsection{Recurrence Relations}
-- 
cgit v1.2.1