From ff4ef37bd6529f26066ca8df8dd9b98fed71577a Mon Sep 17 00:00:00 2001 From: Marc Benz Date: Thu, 12 May 2022 15:46:25 +0200 Subject: first changes --- buch/papers/transfer/references.bib | 27 ++++++++++++++++++-- buch/papers/transfer/teil0.tex | 18 +++----------- buch/papers/transfer/teil1.tex | 2 +- buch/papers/transfer/teil2.tex | 38 ++++++---------------------- buch/papers/transfer/teil3.tex | 49 ++++++++++++++----------------------- 5 files changed, 56 insertions(+), 78 deletions(-) diff --git a/buch/papers/transfer/references.bib b/buch/papers/transfer/references.bib index 75f5d68..181682c 100644 --- a/buch/papers/transfer/references.bib +++ b/buch/papers/transfer/references.bib @@ -4,6 +4,30 @@ % (c) 2020 Autor, Hochschule Rapperswil % + + +@article{transfer:DBLP:journals/corr/abs-1909-07729, + author = {Abhisek Kundu and + Sudarshan Srinivasan and + Eric C. Qin and + Dhiraj D. Kalamkar and + Naveen K. Mellempudi and + Dipankar Das and + Kunal Banerjee and + Bharat Kaul and + Pradeep Dubey}, + title = {K-TanH: Hardware Efficient Activations For Deep Learning}, + journal = {CoRR}, + volume = {abs/1909.07729}, + year = {2019}, + url = {http://arxiv.org/abs/1909.07729}, + eprinttype = {arXiv}, + eprint = {1909.07729}, + timestamp = {Sat, 04 Apr 2020 17:18:32 +0200}, + biburl = {https://dblp.org/rec/journals/corr/abs-1909-07729.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} + @online{transfer:bibtex, title = {BibTeX}, url = {https://de.wikipedia.org/wiki/BibTeX}, @@ -31,5 +55,4 @@ volume = 47, pages = {607--627}, url = {https://doi.org/10.1016/j.acha.2017.11.004} -} - +} \ No newline at end of file diff --git a/buch/papers/transfer/teil0.tex b/buch/papers/transfer/teil0.tex index 19d4961..4bec5bd 100644 --- a/buch/papers/transfer/teil0.tex +++ b/buch/papers/transfer/teil0.tex @@ -3,20 +3,10 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 0\label{transfer:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{transfer:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. +\section{Einleitung\label{transfer:section:teil0}} +\rhead{Einleitung} + + -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. diff --git a/buch/papers/transfer/teil1.tex b/buch/papers/transfer/teil1.tex index c60f1ea..611e1ea 100644 --- a/buch/papers/transfer/teil1.tex +++ b/buch/papers/transfer/teil1.tex @@ -3,7 +3,7 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 1 +\section{Padé-Approximation \label{transfer:section:teil1}} \rhead{Problemstellung} Sed ut perspiciatis unde omnis iste natus error sit voluptatem diff --git a/buch/papers/transfer/teil2.tex b/buch/papers/transfer/teil2.tex index ce8f798..d79d80c 100644 --- a/buch/papers/transfer/teil2.tex +++ b/buch/papers/transfer/teil2.tex @@ -3,38 +3,16 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 2 +\section{MiniMax-Polinom \label{transfer:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? +\rhead{MiniMax-Polinom} -\subsection{De finibus bonorum et malorum + + +\subsection{Problemstellung \label{transfer:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +\[ +\max _{a \leq x \leq b}|\operatorname{TanH}(x)-P(x)| +\] diff --git a/buch/papers/transfer/teil3.tex b/buch/papers/transfer/teil3.tex index f707587..4464875 100644 --- a/buch/papers/transfer/teil3.tex +++ b/buch/papers/transfer/teil3.tex @@ -3,38 +3,25 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 3 +\section{K-Tanh \label{transfer:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? +\rhead{K-Tanh} -\subsection{De finibus bonorum et malorum -\label{transfer:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +\subsection{Algorithmus +\label{transfer:subsection:Ktanh-Algorithmus}} +\cite{transfer:DBLP:journals/corr/abs-1909-07729} +\subsubsection{Vereinfacht +\label{transfer:subsection:Ktanh-Algorithmus:Vereinfacht}} +Negative Werte werden nicht separat behandelt. Diese werden dank der Syymertrie um den Ursprung mit einem einfachen Vorzeichenwechsel aus den positiven berechnet. +Für $x < 0.25$ gilt $y = x$. +Ist $x > 3.75$ gitl $y = 1$. +Ist der Wert zwischen diesen Grenzen, werden über einen Lookuptable geeignete Werte gefunden um aus dem $x$ die Approximation des Tanh zu berechnen. +Dafür werden eine bestimmte Anzahl LSBs des Exponenten und MSBs der Mantisse zu einem Index $t$ zusammengestzt. Der dann die Stelle im Lookuptable zeigt. +Damit werden die richtigen Werte für $E_{t}, r_{t}, b_{t}$ aus der Tabelle, die im Vorhinein schon berechnet wurden, ausgelesen. +Damit hat man das $E$ bereits gefunden und mit der Formel +\[ + M_{o} \leftarrow\left(M_{i} \gg r\right)+b +\] +kann das neue $M$ berechnet werden. -- cgit v1.2.1 From 6fafc379ff7808606f7d7835f797955f4b58c56e Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Sat, 6 Aug 2022 16:29:24 +0200 Subject: M --- buch/SeminarSpezielleFunktionen.pdf | Bin 22225335 -> 22225339 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/buch/SeminarSpezielleFunktionen.pdf b/buch/SeminarSpezielleFunktionen.pdf index 0502c88..e6c5429 100644 Binary files a/buch/SeminarSpezielleFunktionen.pdf and b/buch/SeminarSpezielleFunktionen.pdf differ -- cgit v1.2.1 From 299310434e22f22ab43cfb423f91cb164cf2bab7 Mon Sep 17 00:00:00 2001 From: Alain Date: Sun, 7 Aug 2022 12:39:33 +0200 Subject: verbesserungen --- buch/papers/parzyl/main.tex | 2 +- buch/papers/parzyl/teil0.tex | 19 +++++++++---------- buch/papers/parzyl/teil1.tex | 5 ++++- 3 files changed, 14 insertions(+), 12 deletions(-) diff --git a/buch/papers/parzyl/main.tex b/buch/papers/parzyl/main.tex index 528a2e2..14c85ff 100644 --- a/buch/papers/parzyl/main.tex +++ b/buch/papers/parzyl/main.tex @@ -6,7 +6,7 @@ \chapter{Parabolische Zylinderfunktionen\label{chapter:parzyl}} \lhead{Parabolische Zylinderfunktionen} \begin{refsection} -\chapterauthor{Thierry Schwaller, Alain Keller} +\chapterauthor{Alain Keller und Thierry Schwaller} diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 4b251db..119f805 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -19,16 +19,16 @@ Sie ist eine spezielle Form der Poisson-Gleichung \begin{equation} \Delta f = g \end{equation} -mit g als beliebige Funktion. -In der Physik hat die Laplace-Gleichung in verschieden Gebieten +mit $g$ als beliebiger Funktion. +In der Physik hat die Laplace-Gleichung in verschiedenen Gebieten verwendet, zum Beispiel im Elektromagnetismus. Das Gaussche Gesetz in den Maxwellgleichungen \begin{equation} \nabla \cdot E = \frac{\varrho}{\epsilon_0} \label{parzyl:eq:max1} \end{equation} -besagt das die Divergenz eines Elektrischen Feldes an einem -Punkt gleich der Ladung an diesem Punkt ist. +besagt, dass die Divergenz eines elektrischen Feldes an einem +Punkt gleich der Ladungsdichte an diesem Punkt ist. Das elektrische Feld ist hierbei der Gradient des elektrischen Potentials \begin{equation} @@ -38,8 +38,8 @@ Eingesetzt in \eqref{parzyl:eq:max1} resultiert \begin{equation} \nabla \cdot \nabla \phi = \Delta \phi = \frac{\varrho}{\epsilon_0}, \end{equation} -was eine Possion-Gleichung ist. -An Ladungsfreien Stellen, ist der rechte Teil der Gleichung $0$. +was eine Poisson-Gleichung ist. +An ladungsfreien Stellen ist der rechte Teil der Gleichung $0$. \subsection{Parabolische Zylinderkoordinaten \label{parzyl:subsection:finibus}} Im parabolischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. @@ -51,7 +51,7 @@ Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt z & = z. \label{parzyl:coordRelationse} \end{align} -Wird $\tau$ oder $\sigma$ konstant gesetzt resultieren die Parabeln +Wird $\tau$ oder $\sigma$ konstant gesetzt, resultieren die Parabeln \begin{equation} y = \frac{1}{2} \left( \frac{x^2}{\sigma^2} - \sigma^2 \right) \end{equation} @@ -67,7 +67,6 @@ und konstantes $\sigma$ und die grünen ein konstantes $\tau$.} \label{parzyl:fig:cordinates} \end{figure} - Abbildung \ref{parzyl:fig:cordinates} zeigt das Parabolische Koordinatensystem. Das parabolische Zylinderkoordinatensystem entsteht wenn die Parabeln aus der Ebene gezogen werden. @@ -106,7 +105,7 @@ von \eqref{parzyl:coordRelationsa} - \eqref{parzyl:coordRelationse} als dz &= \frac{\partial \tilde{z} }{\partial \sigma} d\sigma + \frac{\partial \tilde{z} }{\partial \tau} d\tau + \frac{\partial \tilde{z} }{\partial \tilde{z}} d \tilde{z} - = d \tilde{z} \\ + = d \tilde{z} \end{align} substituiert. Wird diese Gleichung in der Form von \eqref{parzyl:eq:dspara} @@ -120,7 +119,7 @@ geschrieben, resultiert Daraus ergeben sich die Skalierungsfaktoren \begin{align} h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ - h_{\sigma} &= \sqrt{\sigma^2 + \tau^2}\\ + h_{\tau} &= \sqrt{\sigma^2 + \tau^2}\\ h_{z} &= 1. \end{align} \subsection{Differentialgleichung} diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index f297189..239f8c7 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -13,7 +13,10 @@ in die Whittaker Gleichung gelöst werden. \begin{equation*} W_{k,m}(z) = e^{-z/2} z^{m+1/2} \, - {}_{1} F_{1}(\frac{1}{2} + m - k, 1 + 2m; z) + {}_{1} F_{1} + ( + {\textstyle \frac{1}{2}} + + m - k, 1 + 2m; z) \end{equation*} heisst Whittaker Funktion und ist eine Lösung von -- cgit v1.2.1 From f4aa64f6ea1810774621af11329c369924351f40 Mon Sep 17 00:00:00 2001 From: Alain Date: Mon, 8 Aug 2022 17:36:16 +0200 Subject: Chlini Schritt --- buch/papers/parzyl/teil1.tex | 32 +++++++++++++++++++++++++------- 1 file changed, 25 insertions(+), 7 deletions(-) diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 239f8c7..02ce0f2 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -6,8 +6,8 @@ \section{Lösung \label{parzyl:section:teil1}} \rhead{Problemstellung} -Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} können mit einer Substitution -in die Whittaker Gleichung gelöst werden. +Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} können mit +Hilfe der Whittaker Gleichung gelöst werden. \begin{definition} Die Funktion \begin{equation*} @@ -19,13 +19,31 @@ in die Whittaker Gleichung gelöst werden. + m - k, 1 + 2m; z) \end{equation*} heisst Whittaker Funktion und ist eine Lösung - von + von der Whittaker Differentialgleichung \begin{equation} \frac{d^2W}{d z^2} + \left(-\frac{1}{4} + \frac{k}{z} + \frac{\frac{1}{4} - m^2}{z^2} \right) W = 0. + \label{parzyl:eq:whitDiffEq} \end{equation} \end{definition} - -Lösung Folgt\dots - - +Es wird nun die Differentialgleichung bestimmt, welche +\begin{equation} + w = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right) +\end{equation} +als Lösung hat. +Dafür wird $w$ in \eqref{parzyl:eq:whitDiffEq} eingesetzt woraus +\begin{equation} + \frac{d^2 w}{dz^2} - \left(\frac{1}{4} z^2 - 2k\right) w = 0 +\label{parzyl:eq:weberDiffEq} +\end{equation} +resultiert. DIese Differentialgleichung ist dieselbe wie +\eqref{parzyl:sep_dgl_2} und \eqref{parzyl:sep_dgl_2}, welche somit +$w$ als Lösung haben. +Da es sich um eine Differentialgleichung zweiter Ordnung handelt, hat sie nicht nur +eine sondern zwei Lösungen. +Die zweite Lösung der Whittaker-Gleichung ist $W_{k,-m} (z)$. +Somit ist +\begin{equation} + w = z^{-1/2} W_{k,1/4} \left({\textstyle \frac{1}{2}} z^2\right) +\end{equation} +eine weiter Lösung von \eqref{parzyl:eq:weberDiffEq}. -- cgit v1.2.1 From fffae23e55eae8484953d699b22f19406b1b408c Mon Sep 17 00:00:00 2001 From: Alain Date: Wed, 10 Aug 2022 23:05:30 +0200 Subject: mikroschritt --- buch/papers/parzyl/teil1.tex | 24 +++++++++++++++++++----- 1 file changed, 19 insertions(+), 5 deletions(-) diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 02ce0f2..a3e9626 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -42,8 +42,22 @@ $w$ als Lösung haben. Da es sich um eine Differentialgleichung zweiter Ordnung handelt, hat sie nicht nur eine sondern zwei Lösungen. Die zweite Lösung der Whittaker-Gleichung ist $W_{k,-m} (z)$. -Somit ist -\begin{equation} - w = z^{-1/2} W_{k,1/4} \left({\textstyle \frac{1}{2}} z^2\right) -\end{equation} -eine weiter Lösung von \eqref{parzyl:eq:weberDiffEq}. +Somit hat \eqref{parzyl:eq:weberDiffEq} +\begin{align} + w_1 & = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right)\\ + w_2 & = z^{-1/2} W_{k,1/4} \left({\textstyle \frac{1}{2}} z^2\right) +\end{align} +als Lösungen. + +Ausgeschrieben ergeben sich als Lösungen +\begin{align} + w_1 &= e^{-z^2/4} \, + {}_{1} F_{1} + ( + {\textstyle \frac{1}{4}} + - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) \\ + w_2 & = z e^{-z^2/4} \, + {}_{1} F_{1} + ({\textstyle \frac{3}{4}} + - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) +\end{align} \ No newline at end of file -- cgit v1.2.1 From 8664c5cb874029c45314c18d1d1b0d2be4bb5a9c Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Sat, 13 Aug 2022 14:22:36 +0200 Subject: Added Part 3 --- buch/SeminarSpezielleFunktionen.pdf | Bin 22225339 -> 22768070 bytes buch/papers/parzyl/main.tex | 2 +- buch/papers/parzyl/teil0.tex | 2 +- buch/papers/parzyl/teil1.tex | 3 +- buch/papers/parzyl/teil2.tex | 31 +++++++++----- buch/papers/parzyl/teil3.tex | 78 +++++++++++++++++++++++++++++++++++- 6 files changed, 100 insertions(+), 16 deletions(-) diff --git a/buch/SeminarSpezielleFunktionen.pdf b/buch/SeminarSpezielleFunktionen.pdf index e6c5429..6091e14 100644 Binary files a/buch/SeminarSpezielleFunktionen.pdf and b/buch/SeminarSpezielleFunktionen.pdf differ diff --git a/buch/papers/parzyl/main.tex b/buch/papers/parzyl/main.tex index 14c85ff..fd2aea7 100644 --- a/buch/papers/parzyl/main.tex +++ b/buch/papers/parzyl/main.tex @@ -13,6 +13,6 @@ \input{papers/parzyl/teil0.tex} \input{papers/parzyl/teil1.tex} \input{papers/parzyl/teil2.tex} - +\input{papers/parzyl/teil3.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 119f805..1f23d6e 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -220,7 +220,7 @@ und 0 \end{equation} führt. -Wobei die Lösung von \eqref{parzyl:sep_dgl_3} +Die Lösung von \eqref{parzyl:sep_dgl_3} \begin{equation} i(z) = diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index a3e9626..e140796 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -51,6 +51,7 @@ als Lösungen. Ausgeschrieben ergeben sich als Lösungen \begin{align} + \label{parzyl:eq:solution_dgl} w_1 &= e^{-z^2/4} \, {}_{1} F_{1} ( @@ -60,4 +61,4 @@ Ausgeschrieben ergeben sich als Lösungen {}_{1} F_{1} ({\textstyle \frac{3}{4}} - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) -\end{align} \ No newline at end of file +\end{align} diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index 3f890d0..aaea42b 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -11,10 +11,10 @@ \subsection{Elektrisches Feld einer semi-infiniten Platte \label{parzyl:subsection:bonorum}} Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte finden will. -Das dies so ist kann im zwei Dimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Wobei die Platte dann nur eine Linie ist. +Das dies so ist kann im zwei Dimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Linie, was man in Abbildung TODO sieht. Jede komplexe Funktion $F(z)$ kann geschrieben werden als \begin{equation} - F(z) = U(x,y) + iV(x,y) \qquad z \in \mathbb{C}; x,y \in \mathbb{R}. + F(s) = U(x,y) + iV(x,y) \qquad s \in \mathbb{C}; x,y \in \mathbb{R}. \end{equation} Dabei muss gelten, falls die Funktion differenzierbar ist, dass \begin{equation} @@ -35,7 +35,7 @@ Aus dieser Bedingung folgt \frac{\partial^2 U(x,y)}{\partial y^2} = 0 - }_{\nabla^2U(x,y)=0} + }_{\displaystyle{\nabla^2U(x,y)=0}} \qquad \underbrace{ \frac{\partial^2 V(x,y)}{\partial x^2} @@ -43,26 +43,35 @@ Aus dieser Bedingung folgt \frac{\partial^2 V(x,y)}{\partial y^2} = 0 - }_{\nabla^2V(x,y) = 0}. + }_{\displaystyle{\nabla^2V(x,y) = 0}}. \end{equation} -Zusätzlich zeigen diese Bedingungen auch, dass die zwei Funktionen $U(x,y)$ und $V(x,y)$ orthogonal zueinander sind. +Zusätzlich kann auch gezeigt werden, dass die Funktion $F(z)$ eine winkeltreue Abbildung ist. Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem quellenfreien Punkt gegeben ist als \begin{equation} \nabla^2\phi(x,y) = 0. \end{equation} -Da dies bei komplexen differenzierbaren Funktionen gilt, wie Gleichung \ref{parzyl_e_feld_zweite_ab} zeigt, kann entweder $U(x,y)$ oder $V(x,y)$ von einer solchen Funktion als das Potential angesehen werden. Im weiteren wird für das Potential $U(x,y)$ verwendet. -Da die Funktion, welche nicht das Potential beschreibt, in weiteren angenommen als $V(x,y)$, orthogonal zum Potential ist, zeigt dies das Verhalten des elektrischen Feldes. -Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete komplexe Funktion $F(z)$ gefunden werden, welche eine semi-infinite Platte beschreiben kann. Man könnte natürlich auch nach anderen Funktionen suchen, welche andere Bedingungen erfüllen und würde dann auf andere Koordinatensysteme stossen. Die gesuchte Funktion in diesem Fall ist +Dies ist eine Bedingung welche differenzierbare Funktionen, wie in Gleichung \ref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. +Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden \begin{equation} - F(z) + \phi(x,y) = U(x,y). +\end{equation} +Orthogonal zum Potential ist das elektrische Feld +\begin{equation} + E(x,y) = V(x,y). +\end{equation} +Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete komplexe Funktion $F(s)$ gefunden werden, +welche eine semi-infinite Platte beschreiben kann. +Die gesuchte Funktion in diesem Fall ist +\begin{equation} + F(s) = - \sqrt{z} + \sqrt{s} = \sqrt{x + iy}. \end{equation} Dies kann umgeformt werden zu \begin{equation} - F(z) + F(s) = \underbrace{\sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}}_{U(x,y)} + diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 4e44bd6..12b7519 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -3,6 +3,80 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 3 -\label{parzyl:section:teil3}} +\section{Eigenschaften +\label{parzyl:section:Eigenschaften}} \rhead{Teil 3} +\subsection{Potenzreihenentwicklung + \label{parzyl:potenz}} +Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, können auch als Potenzreihen geschrieben werden +\begin{align} + w_1(k,z) + &= + e^{-z^2/4} \, + {}_{1} F_{1} + ( + {\textstyle \frac{1}{4}} + - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) + = + e^{-\frac{z^2}{4}} + \sum^{\infty}_{n=0} + \frac{\left ( \frac{1}{4} - k \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} + \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ + &= + e^{-\frac{z^2}{4}} + \left ( + 1 + + + \left ( \frac{1}{2} - 2k \right )\frac{z^2}{2!} + + + \left ( \frac{1}{2} - 2k \right )\left ( \frac{5}{2} - 2k \right )\frac{z^4}{4!} + + + \dots + \right ) +\end{align} +und +\begin{align} + w_2(k,z) + &= + ze^{-z^2/4} \, + {}_{1} F_{1} + ( + {\textstyle \frac{3}{4}} + - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) + = + ze^{-\frac{z^2}{4}} + \sum^{\infty}_{n=0} + \frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} + \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ + &= + e^{-\frac{z^2}{4}} + \left ( + z + + + \left ( \frac{3}{2} - 2k \right )\frac{z^3}{3!} + + + \left ( \frac{3}{2} - 2k \right )\left ( \frac{7}{2} - 2k \right )\frac{z^5}{5!} + + + \dots + \right ). +\end{align} +Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. Es gibt allerdings die Möglichkeit für bestimmte k das die Terme in der Klammer gleich null werden und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(k,z)$ falls +\begin{equation} + k = \frac{1}{4} + n \qquad n \in \mathbb{N}_0 +\end{equation} +und bei $w_2(k,z)$ falls +\begin{equation} + k = \frac{3}{4} + n \qquad n \in \mathbb{N}_0. +\end{equation} + +\subsection{Ableitung} +Es kann gezeigt werden, dass die Ableitungen $\frac{\partial w_1(z,k)}{\partial z}$ und $\frac{\partial w_2(z,k)}{\partial z}$ einen Zusammenhang zwischen $w_1(z,k)$ und $w_2(z,k)$ zeigen. Die Ableitung von $w_1(z,k)$ nach $z$ kann über die Produktregel berechnet werden und ist gegeben als +\begin{equation} + \frac{\partial w_1(z,k)}{\partial z} = \left (\frac{1}{2} - 2k \right ) w_2(z, k -\frac{1}{2}) - \frac{1}{2} z w_1(z,k), +\end{equation} +und die Ableitung von $w_2(z,k)$ als +\begin{equation} + \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k). +\end{equation} +Über diese Eigenschaft können einfach weitere Ableitungen berechnet werden. + -- cgit v1.2.1 From 84e6c11fada0cb616111c3001acbe1abc585b213 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 16 Aug 2022 13:14:16 +0200 Subject: tscheby kapitel Randbedingungen --- buch/chapters/010-potenzen/tschebyscheff.tex | 3 ++- .../sturmliouville/tschebyscheff_beispiel.tex | 23 ++++++++++++++++++---- 2 files changed, 21 insertions(+), 5 deletions(-) diff --git a/buch/chapters/010-potenzen/tschebyscheff.tex b/buch/chapters/010-potenzen/tschebyscheff.tex index ccc2e97..6d21a68 100644 --- a/buch/chapters/010-potenzen/tschebyscheff.tex +++ b/buch/chapters/010-potenzen/tschebyscheff.tex @@ -102,7 +102,7 @@ die Sütztstellen so zu wählen, dass $l(x)$ kleine Funktionswerte hat. Stützstellen in gleichen Abständen erweisen sich dafür als ungeeignet, da $l(x)$ nahe $x_0$ und $x_n$ sehr stark oszilliert. -\subsection{Definition der Tschebyscheff-Polynome} +\subsection{Definition der Tschebyscheff-Polynome \label{sub:definiton_der_tschebyscheff-Polynome}} \begin{figure} \centering \includegraphics[width=\textwidth]{chapters/010-potenzen/images/lissajous.pdf} @@ -199,6 +199,7 @@ T_0(x)=1. \end{equation} Damit können die Tschebyscheff-Polynome sehr effizient berechnet werden: \begin{equation} +\label{eq:tschebyscheff-polynome} \begin{aligned} T_0(x) &=1 diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index 391841a..d441795 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -27,7 +27,7 @@ Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: T_n(x) = \left\{\begin{array}{ll} \cosh (n \arccos x), & x > 1\\ (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. \end{equation}, -jedoch ist die Orthogonalität nur auf dem Intervall $\[ -1, 1\]$ sichergestellt. +jedoch ist die Orthogonalität nur auf dem Intervall $[\-1, 1 ]\ $ sichergestellt. Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^-1$ und $w(x)>0$ sein müssen. Die Funktion \begin{equation*} @@ -36,14 +36,29 @@ Die Funktion ist die gleiche wie $w(x)$. Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. -Da sich die Polynome nur auf dem Intervall $\[ -1,1 \]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. +Da sich die Polynome nur auf dem Intervall $[\-1, 1 ]\ $ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man \begin{equation} \begin{aligned} - k_a y(-1) + h_a y'(-1) &= h_a + k_a y(-1) + h_a y'(-1) &= 0 + k_b y(-1) + h_b y'(-1) &= 0 \end{aligned} -\end{equation} +\end{equation}. +Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}). +Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$. +Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}). +Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$. +Somit erhält man +\begin{equation} + \begin{aligned} + k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\ + k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0 +\end{aligned} +\end{equation}. +Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. +Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. + -- cgit v1.2.1 From 787bb84a7cf4f176472bdea001e59eda92469fb3 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Tue, 16 Aug 2022 13:59:51 +0200 Subject: Update tschebyscheff_beispiel.tex --- buch/papers/sturmliouville/tschebyscheff_beispiel.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index d441795..fb0194b 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -56,8 +56,8 @@ Somit erhält man \end{aligned} \end{equation}. Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. - Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. + -- cgit v1.2.1 From b31c40a22e885205373ff1a3284935d544c99889 Mon Sep 17 00:00:00 2001 From: canuel Date: Tue, 16 Aug 2022 14:32:49 +0200 Subject: started the chapter about spherical harmonics (more specific about the derivation of them) --- buch/papers/kugel/packages.tex | 2 +- buch/papers/kugel/spherical-harmonics.tex | 387 +++++++++++++++++++++++++++++- 2 files changed, 387 insertions(+), 2 deletions(-) diff --git a/buch/papers/kugel/packages.tex b/buch/papers/kugel/packages.tex index 61f91ad..1c4f3e0 100644 --- a/buch/papers/kugel/packages.tex +++ b/buch/papers/kugel/packages.tex @@ -7,4 +7,4 @@ % if your paper needs special packages, add package commands as in the % following example %\usepackage{packagename} - +\usepackage{cases} diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex index 6b23ce5..c76e757 100644 --- a/buch/papers/kugel/spherical-harmonics.tex +++ b/buch/papers/kugel/spherical-harmonics.tex @@ -1,9 +1,394 @@ % vim:ts=2 sw=2 et spell: \section{Spherical Harmonics} +We finally arrived at the main section, which gives our chapter its name. The idea is to discuss spherical harmonics, their mathematical derivation and some of their properties and applications.\newline +The subsection \ref{} will be devoted to the Eigenvalue problem of the Laplace operator. Through the latter, we will derive the set of Eigenfunctions that obey the equation presented in \ref{}[TODO: reference to eigenvalue equation], which will be defined as \emph{Spherical Harmonics}. In fact, this subsection will present their mathematical derivation.\newline +In the subsection \ref{}, on the other hand, some interesting properties related to them will be discussed. Some of these will come back to help us understand in more detail why they are useful in various real-world applications, which will be presented in the section \ref{}.\newline +One specific property will be studied in more detail in the subsection \ref{}, namely the recursive property. +The last subsection is devoted to one of the most beautiful applications (In our humble opinion), namely the derivation of a Fourier-style series expansion but defined on the sphere instead of a plane.\newline +More importantly, this subsection will allow us to connect all the dots we have created with the previous sections, concluding that Fourier is just a specific case of the application of the concept of orthogonality.\newline +Our hope is that after reading this section you will appreciate the beauty and power of generalization that mathematics offers us. -\subsection{Eigenvalue Problem in Spherical Coordinates} +\subsection{Eigenvalue Problem on the Spherical surface} +\subsubsection{Unormalized Spherical Harmonics} +From the chapter \ref{}, we know that the spherical Laplacian is defined as. \begin{equation*} + \nabla^2_S := \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2} + \left[ + \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial}{\partial\vartheta} \right) + + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2} + \right] +\end{equation*} +But we do not want to consider this algebraic monster entirely, since this includes the whole set $\mathbb{R}^3$; rather, we want to focus only on the spherical surface (as the title suggests). We can then further concretise our calculations by selecting any number for the variable $r$, so that we have a sphere and, more importantly, a spherical surface on which we can ``play''.\newline +Surely you have already heard of the unit circle, a geometric entity used extensively in many mathematical contexts. The most famous and basic among them is surely trigonometry.\newline +Extending this concept into three dimensions, we will talk about the unit sphere. This is a very famous sphere, as is the unit circle. So since we need a sphere why not use the most famous one? Thus imposing $r=1$.\newline +Now, since the variable $r$ became a constant, we can leave out all derivatives with respect to $r$, setting them to zero. Then substituting the value of $r$ for 1, we will obtain the operator we will refer to as \emph{Spherical Surface Operator}: +\begin{equation*} + \nabla^2_{\partial S} := \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial}{\partial\vartheta} \right) + + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2}. +\end{equation*} +As can be seen, for this definition, the subscript ``$\partial S$'' was used to emphasize the fact that we are on the spherical surface, which can be understood as a boundary of the sphere.\newline +Now that we have defined an operator, we can go on to calculate its eigenfunctions. As mentioned earlier, we can translate this problem at first abstract into a much more concrete problem, which has to do with the field of \emph{Partial Differential Equaitons} (PDEs). The functions we want to find are simply functions that respect the following expression: +\begin{equation}\label{kugel:eq:sph_srfc_laplace} + \nabla^2_{\partial S} f = \lambda f +\end{equation} +Which is traditionally written as follows: +\begin{equation*} + \nabla^2_{\partial S} f = -\lambda f +\end{equation*} +Perhaps the fact that we are dealing with a PDE may not be obvious at first glance, but if we extend the operator $\nabla^2_{\partial S}$ according to Eq.(\ref{kugel:eq:sph_srfc_laplace}), we will get: +\begin{equation}\label{kugel:eq:PDE_sph} + \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial f}{\partial\vartheta} \right) + + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 f}{\partial\varphi^2} + \lambda f = 0, +\end{equation} +making it emerge.\newline +All functions satisfying Eq.(\ref{kugel:eq:PDE_sph}), are called eigenfunctions. Our new goal is therefore to solve this PDE. The task seems very difficult but we can simplify it with a well-known technique, namely the \emph{separation Ansatz}. The latter consists in assuming that the function $f(\vartheta, \varphi)$ we are looking for can be factorized in the following form +\begin{equation}\label{kugel:eq:sep_ansatz_0} + f(\vartheta, \varphi) = \Theta(\vartheta)\Phi(\varphi). +\end{equation} +In short, we are saying that the effect of the two independent variables can be described using the multiplication of two functions that describe their effect separately. If we include this assumption in Eq.(\ref{kugel:eq:PDE_sph}), we have: +\begin{equation} + \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial \Theta(\vartheta)}{\partial\vartheta} \right)\Phi(\varphi) + + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 \Phi(\varphi)}{\partial\varphi^2} \Theta(\vartheta) + \lambda \Theta(\vartheta)\Phi(\varphi) = 0. \label{kugel:eq:sep_ansatz_1} +\end{equation} +Dividing Eq.(\ref{kugel:eq:sep_ansatz_1}) by $\Theta(\vartheta)\Phi(\varphi)$ and inserting an auxiliary variable $m$, which we will call the separating constant, we will have: +\begin{equation*} +\frac{1}{\Theta(\vartheta)}\sin \vartheta \frac{d}{d \vartheta} \left( \sin \vartheta \frac{d \Theta}{d \vartheta} \right) + \lambda \sin^2 \vartheta = -\frac{1}{\Phi(\varphi)} \frac{d^2\Phi(\varphi)}{d\varphi^2} = m, +\end{equation*} +which is equivalent to the following system of two \emph{Ordinary Differential Equations} (ODEs) +\begin{align} + \frac{d^2\Phi(\varphi)}{d\varphi^2} &= -m \Phi(\varphi) \label{kugel:eq:ODE_1} \\ + \sin \vartheta \frac{d}{d \vartheta} \left( \sin \vartheta \frac{d \Theta}{d \vartheta} \right) + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right)\Theta(\vartheta) &= 0 \label{kugel:eq:ODE_2} +\end{align} +The solution of Eq.(\ref{kugel:eq:ODE_1}) is quite trivial. The complex exponential is obviously the function we are looking for, so we can write +\begin{equation*} + \Phi_m(\varphi) = e^{j m \varphi}, \quad m \in \mathbb{Z}. +\end{equation*} +The restriction for the separation constant $m$ arises from the fact that we require the following periodic constraint $\Phi_m(\varphi + 2\pi) = \Phi_m(\varphi)$.\newline +As for Eq.(\ref{kugel:eq:ODE_2}), the resolution will not be so straightforward. We can begin by considering the substitution $x = \cos \vartheta$. The operator $\frac{d}{d \vartheta}$ will be: +\begin{align*} + \frac{d}{d \vartheta} = \frac{dx}{d \vartheta}\frac{d}{dx} &= -\sin \vartheta \frac{d}{dx} \\ + &= -\sqrt{1-x^2} \frac{d}{dx}. +\end{align*} +Eq.(\ref{kugel:eq:ODE_2}) will then become. +\begin{align*} + \frac{-\sqrt{1-x^2}}{\sqrt{1-x^2}} \frac{d}{dx} \left( \left(\sqrt{1-x^2}\right) \left(-\sqrt{1-x^2}\right) \frac{d \Theta}{dx} \right) + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right)\Theta(\vartheta) &= 0 \\ + \frac{d}{dx} \left( (1-x^2) \frac{d \Theta}{dx} \right) + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right)\Theta(\vartheta) &= 0 \\ + (1-x^2)\frac{d^2 \Theta}{dx} - 2x\frac{d \Theta}{dx} + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right)\Theta(\vartheta) &= 0 \\ + (1-x^2)\frac{d^2 \Theta}{dx} - 2x\frac{d \Theta}{dx} + \left( \lambda - \frac{m}{1-x^2} \right)\Theta(\vartheta) &= 0 +\end{align*} +By making two final cosmetic substitutions, namely $\Theta(\vartheta)=\Theta(\cos^{-1}x):=y(x)$ and $\lambda=n(n+1)$, we will be able to define the \emph{Associated Legendre Equation} in its standard and most familiar form +\begin{definition}{Associated Legendre Equation} + \begin{equation}\label{kugel:eq:associated_leg_eq} + (1-x^2)\frac{d^2 y}{dx} - 2x\frac{d y}{dx} + \left( n(n+1) - \frac{m}{1-x^2} \right)y(x) = 0. + \end{equation} +\end{definition} +Our new goal then became solving Eq.(\ref{kugel:eq:asssociated_leg_eq}). After that we can fit the solution into Eq.(\ref{kugel:eq:sep_ansatz_0}), obtaining $f(\vartheta, \varphi)$, the solution of the eigenvalue problem. \newline +We simplified the problem somewhat but the task still remains very difficult. We can rely on a lemma to continue but first we need to define an additional equation, namely the \emph{Legendre Equation} +\begin{definition}{Legendre equation}\newline + Setting $m=0$ in Eq.(\ref{kugel:eq:asssociated_leg_eq}), we get + \begin{equation}\label{kugel:eq:leg_eq} + (1-x^2)\frac{d^2 y}{dx} - 2x\frac{d y}{dx} + n(n+1)y(x) = 0, + \end{equation} + also known as \emph{Legendre Equation}. +\end{definition} +Now we can continue with the lemma +\begin{lemma}\label{kugel:lemma_1} + If $y_n(x)$ is a solution of Eq.(\ref{kugel:eq:leg_eq}), then the function + \begin{equation*} + y_{m,n}(x) = (1-x^2)^{\frac{m}{2}}\frac{d^m}{dx^m}y_n(x) + \end{equation*} + satisfies Eq.(\ref{kugel:eq:associated_leg_eq}) +\end{lemma} +\begin{proof} [TODO: modificare la $m$ (è già usata come costante di separazione) o forse è giusta (?)] + To begin, we can start by differentiating $m$ times Eq.\eqref{kugel:eq:leg_eq} (which is staisfied by $y(x)$), obtaining + \begin{equation}\label{eq:lagrange_mderiv} + \frac{d^m}{dx^m}\left[ (1-x^2)\frac{d^2y}{dx^2} \right] -2 \frac{d^m}{dx^m}\left[ x\frac{dy}{dx} \right] + n(n+1)\frac{d^m}{dx^m}y=0. + \end{equation} + \emph{Leibniz's theorem} says, that if we want to differentiate $m$ times a multiplication of two functions, we can use the binomial coefficients to build up a sum. This allows us to be more compact, obtaining + \begin{equation}\label{eq:leibniz} + \frac{d^m}{dx^m}[u(x)v(x)] = \sum_{i=0}^m \binom{n}{i} \frac{d^{m-i}u}{dx^{m-1}} \frac{d^{i}v}{dx^i}. + \end{equation} + Using Eq.\eqref{eq:leibniz} in Eq.\eqref{eq:lagrange_mderiv}, we have + \begin{align} + (1-x^2)\frac{d^{m+2}y}{dx^{m+2}} &+ m \frac{d}{dx}(1-x^2)\frac{d^{m+1}y}{dx^{m+1}} + \frac{m(m-1)}{2}\frac{d^{2}}{dx^{2}}(1-x^2)\frac{d^{m}y}{dx^{m}} + n(n+1)\frac{d^m{}y}{dx^{m}} \nonumber \\ + &-2\left(x\frac{d^{m+1}y}{dx^{m+1}} + m\frac{d}{dx}x\frac{d^{m}y}{dx^{m}} \right) \nonumber \\ + &= (1-x^2)\frac{d^{m+2}y}{dx^{m+2}} -2x(m+1)\frac{d^{m+1}y}{dx^{m+1}}+(n(n+1)-m(m-1)-2m)\frac{d^{m}y}{dx^{m}}=0. \label{eq:aux_3} + \end{align} + To make the notation easier to follow, a new function can be defined + \begin{equation*} + \frac{d^{m}y}{dx^{m}} := y_m. + \end{equation*} + Eq.\eqref{eq:aux_3} now becomes + \begin{equation}\label{eq:1st_subs} + (1-x^2)\frac{d^{2}y_m}{dx^{2}} -2x(m+1)\frac{dy_m}{dx}+(n(n+1)-m(m+1))y_m=0 + \end{equation} + A second function can be further defined as + \begin{equation*} + (1-x^2)^{\frac{m}{2}}\frac{d^{m}y}{dx^{m}} = (1-x^2)^{\frac{m}{2}}y_m := \hat{y}_m, + \end{equation*} + allowing to write Eq.\eqref{eq:1st_subs} as + \begin{equation}\label{eq:2st_subs} + (1-x^2)\frac{d^2}{dx^2}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] -2(m+1)x\frac{d}{dx}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] + (n(n+1)-m(m+1))\hat{y}_m(1-x^2)^{-\frac{m}{2}}=0. + \end{equation} + The goal now is to compute the two terms + \begin{align*} + \frac{d^2}{dx^2}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] &= \frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} + \frac{d\hat{y}_m}{dx}\frac{m}{2}(1-x^2)^{-\frac{m}{2}-1}2x \\ + &+ m\left( \frac{d\hat{y}_m}{dx} x (1-x^2)^{-\frac{m}{2}-1} + \hat{y}_m (1-x^2)^{-\frac{m}{2}-1} - \hat{y}_m x (-\frac{m}{2}-1)(1-x^2)^{-\frac{m}{2}} 2x\right) \\ + &= \frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} + \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-\frac{m}{2}-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-\frac{m}{2}-1}\\ + &+ m\hat{y}_m (1-x^2)^{-\frac{m}{2}-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-\frac{m}{2}-2} + \end{align*} + and + \begin{align*} + \frac{d}{dx}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] &= \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_m\frac{m}{2}(1-x^2)^{-\frac{m}{2}-1}2x \\ + &= \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_mm(1-x^2)^{-\frac{m}{2}-1}x, + \end{align*} + to use them in Eq.\eqref{eq:2st_subs}, obtaining + \begin{align*} + (1-x^2)\biggl[\frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} &+ \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-\frac{m}{2}-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-\frac{m}{2}-1} \\ + &+ m\hat{y}_m (1-x^2)^{-\frac{m}{2}-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-\frac{m}{2}-2}\biggr] \\ + &-2(m+1)x\left[ \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_mm(1-x^2)^{-\frac{m}{2}-1}x \right] \\ + &+ (n(n+1)-m(m+1))\hat{y}_m(1-x^2)^{-\frac{m}{2}}=0.\\ + \end{align*} + We can now divide by $(1-x^2)^{-\frac{m}{2}}$, obtaining + \begin{align*} + (1-x^2)\biggl[\frac{d^2\hat{y}_m}{dx^2} &+ \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-1} + m\hat{y}_m (1-x^2)^{-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-2}\biggr] \\ + &-2(m+1)x\left[ \frac{d\hat{y}_m}{dx} + \hat{y}_mm(1-x^2)^{-1}x \right] + (n(n+1)-m(m+1))\hat{y}_m\\ + &= \frac{d^2\hat{y}_m}{dx^2} + \frac{d\hat{y}_m}{dx}mx + m\frac{d\hat{y}_m}{dx}x + m\hat{y}_m + m\hat{y}_m x^2(m+2)(1-x^2)^{-1} \\ + &-2(m+1)x\left[ \frac{d\hat{y}_m}{dx} + \hat{y}_mm(1-x^2)^{-1}x \right] + (n(n+1)-m(m+1))\hat{y}_m\\ + \end{align*} + and collecting some terms + \begin{equation*} + (1-x^2)\frac{d^2\hat{y}_m}{dx^2} - 2x\frac{d\hat{y}_m}{dx} + \left( -x^2 \frac{m^2}{1-x^2} + m+n(n+1)-m(m+1)\right)\hat{y}_m=0. + \end{equation*} + Showing that + \begin{align*} + -x^2 \frac{m^2}{1-x^2} + m+n(n+1)-m(m+1) &= n(n+1)- m^2 -x^2 \frac{m^2}{1-x^2} \\ + &= n(n+1)- \frac{m}{1-x^2} + \end{align*} + implies $\hat{y}_m(x)$ being a solution of Eq.\eqref{kugel:eq:associated_leg_eq} +\end{proof} +In simpler words, if we find a solution to Eq.\eqref{kugel:eq:leg_eq}, we can extend the latter according to the Lemma \ref{kugel:lemma_1} obtaining the solution of Eq.\eqref{kugel:eq:associated_leg_eq}.\newline +We can say that we are going in the right direction, as the problem to be solved is decreasing in difficulty. We moved from having to find a solution to Eq.\eqref{kugel:eq:associated_leg_eq} to finding a solution to Eq.\eqref{kugel:eq:leg_eq}, which is much more approachable as a problem. Luckily for us, the lemma we will present below will help us extensively, which is something of an euphemism, since it will give us the solution directly. +\begin{lemma} + The polynomial function + \begin{align*} + y_n(x)&=\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k}\\ + &= \frac{1}{n!2^n}\frac{d^n}{dx^n}(1-x^2)^n =: P_n(x), + \end{align*} + is a solution to the second order differential equation + \begin{equation}\label{kugel:eq:sol_leg} + (1-x^2)\frac{d^2y}{dx^2}-2x\frac{dy}{dx} + n(n+1)y=0, \quad \forall n>0. + \end{equation} +\end{lemma} +\begin{proof} + In order to find a solution to Eq.\eqref{eq:legendre}, the following Ansatz can be performed: + \begin{equation}\label{eq:ansatz} + y(x) = \sum_{k=0}^\infty a_k x^k. + \end{equation} + Given Eq.\eqref{eq:ansatz}, then + \begin{align*} + \frac{dy}{dx} &= \sum_{k=0}^\infty k a_k x^{k-1}, \\ + \frac{d^2y}{dx^2} &= \sum_{k=0}^\infty k (k-1) a_k x^{k-2}. + \end{align*} + Eq.\eqref{eq:legendre} can be therefore written as + \begin{align} + &(1-x^2)\sum_{k=0}^\infty k (k-1) a_k x^{k-2} - 2x\sum_{k=0}^\infty k a_k x^{k-1} + n(n+1)\sum_{k=0}^\infty a_k x^k=0 \label{eq:ansatz_in_legendre} \\ + &=\sum_{k=0}^\infty k (k-1) a_k x^{k-2} - \sum_{k=0}^\infty k (k-1) a_k x^{k} - 2x\sum_{k=0}^\infty k a_k x^{k-1} + n(n+1)\sum_{k=0}^\infty a_k x^k=0. \nonumber + \end{align} + If one consider the term + \begin{equation}\label{eq:term} + \sum_{k=0}^\infty k (k-1) a_k x^{k-2}, + \end{equation} + the substitution $\tilde{k}=k-2$ yields Eq.\eqref{eq:term} to + \begin{equation*} + \sum_{\tilde{k}=-2}^\infty (\tilde{k}+2) (\tilde{k}+1) a_{\tilde{k}+2} x^{\tilde{k}}=\sum_{\tilde{k}=0}^\infty (\tilde{k}+2) (\tilde{k}+1) a_{\tilde{k}} x^{\tilde{k}}. + \end{equation*} + This means that Eq.\eqref{eq:ansatz_in_legendre} becomes + \begin{align} + &\sum_{k=0}^\infty (k+1)(k+2) a_{k+2} x^{k} - \sum_{k=0}^\infty k (k-1) a_k x^{k} - 2\sum_{k=0}^\infty k a_k x^k + n(n+1)\sum_{k=0}^\infty a_k x^k \nonumber \\ + = &\sum_{k=0}^\infty \big[ (k+1)(k+2) a_{k+2} - k (k-1) a_k - 2 k a_k + n(n+1) a_k \big] x^k \stackrel{!}{=} 0. \label{eq:condition} + \end{align} + The condition in Eq.\eqref{eq:condition} is equivalent to + \begin{equation}\label{eq:condition_2} + (k+1)(k+2) a_{k+2} - k (k-1) a_k - 2 k a_k + n(n+1) a_k = 0. + \end{equation} + We can derive a recursion formula for $a_{k+2}$ from Eq.\eqref{eq:condition_2}, which can be expressed as + \begin{equation}\label{eq:recursion} + a_{k+2}= \frac{k (k-1) - 2 k + n(n+1)}{(k+1)(k+2)}a_k = \frac{(k-n)(k+n+1)}{(k+2)(k+1)}a_k. + \end{equation} + All coefficients can be calculated using the latter. + + Following Eq.\eqref{eq:recursion}, if we want to compute $a_6$ we would have + \begin{align*} + a_{6}= -\frac{(n-4)(n+5)}{6\cdot 5}a_4 &= -\frac{(n-4)(5+n)}{6 \cdot 5} -\frac{(n-2)(n+3)}{4 \cdot 3} a_2 \\ + &= -\frac{(n-4)(n+5)}{6 \cdot 5} -\frac{(n-2)(n+3)}{4 \cdot 3} -\frac{n(n+1)}{2 \cdot 1} a_0 \\ + &= -\frac{(n+5)(n+3)(n+1)n(n-2)(n-4)}{6!} a_0. + \end{align*} + One can generalize this relation for the $i^\text{th}$ even coefficient as + \begin{equation*} + a_{2k} = (-1)^k \frac{(n+(2k-1))(n+(2k-1)-2)\hdots (n-(2k-2)+2)(n-(2k-2))}{(2k)!}a_0 + \end{equation*} + where $i=2k$. + + A similar expression can be written for the odd coefficients $a_{2k-1}$. In this case, the equation starts from $a_1$ and to find the pattern we can write the recursion for an odd coefficient, $a_7$ for example + \begin{align*} + a_{7}= -\frac{(n-5)(n+6)}{7\cdot 6}a_5 &= - \frac{(n-5)(n+6)}{7\cdot 6} -\frac{(n-3)(n+4)}{5 \cdot 4} a_3 \\ + &= - \frac{(n-5)(n+6)}{7\cdot 6} -\frac{(n-3)(n+4)}{5 \cdot 4} -\frac{(n-1)(n+2)}{3 \cdot 2} a_1 \\ + &= -\frac{(n+6)(n+4)(n+2)(n-1)(n-3)(n-5)}{7!} a_1. + \end{align*} + As before, we can generalize this equation for the $i^\text{th}$ odd coefficient + \begin{equation*} + a_{2k+1} = (-1)^k \frac{(n + 2k)(n+2k-2)\hdots(n-(2k-1)+2)(n-(2k-1))}{(2k+1)!}a_1 + \end{equation*} + where $i=2k+1$. + + Let be + \begin{align*} + y_\text{e}^K(x) &:= \sum_{k=0}^K(-1)^k \frac{(n+(2k-1))(n+(2k-1)-2)\hdots \color{red}(n-(2k-2)+2)(n-(2k-2))}{(2k)!} x^{2k}, \\ + y_\text{o}^K(x) &:= \sum_{k=0}^K(-1)^k \frac{(n + 2k)(n+2k-2)\hdots \color{blue} (n-(2k-1)+2)(n-(2k-1))}{(2k+1)!} x^{2k+1}. + \end{align*} + The solution to the Eq.\eqref{eq:legendre} can be written as + \begin{equation}\label{eq:solution} + y(x) = \lim_{K \to \infty} \left[ a_0 y_\text{e}^K(x) + a_1 y_\text{o}^K(x) \right]. + \end{equation} + + The colored parts can be analyzed separately: + \begin{itemize} + \item[\textcolor{red}{\textbullet}] Suppose that $n=n_0$ is an even number. Then the red part, for a specific value of $k=k_0$, will follow the following relation: + \begin{equation*} + n_0-(2k_0-2)=0. + \end{equation*} + From that point on, given the recursive nature of Eq.\eqref{eq:recursion}, all the subsequent coefficients will also be 0, making the sum finite. + \begin{equation*} + a_{2k}=0 \iff y_{\text{o}}^{2k}(x)=y_{\text{o}}^{2k_0}(x), \quad \forall k>k_0 + \end{equation*} + \item[\textcolor{blue}{\textbullet}] Suppose that $n=n_0$ is an odd number. Then the blue part, for a specific value of $k=k_0$, will follow the following relation + \begin{equation*} + n_0-(2k_0-1)=0. + \end{equation*} + From that point on, for the same reason as before, all the subsequent coefficients will also be 0, making the sum finite. + \begin{equation*} + a_{2k+1}=0 \iff y_{\text{o}}^{2k+1}(x)=y_{\text{o}}^{2k_0+1}(x), \quad \forall k>k_0 + \end{equation*} + \end{itemize} + + There is the possibility of expressing the solution in Eq.\eqref{eq:solution} in a more compact form, combining the two solutions $y_\text{o}^K(x)$ and $y_\text{e}^K(x)$. They are both a polynomial of maximum degree $n$, assuming $n \in \mathbb{N}$. In the case where $n$ is even, the polynomial solution + \begin{equation*} + \lim_{K\to \infty} y_\text{e}^K(x) + \end{equation*} + will be a finite sum. If instead $n$ is odd, will be + \begin{equation*} + \lim_{K\to \infty} y_\text{o}^K(x) + \end{equation*} + to be a finite sum. + + Depending on the coefficient we start with, $a_1$ or $a_0$, we will obtain the odd or even polynomial respectively. Starting with the last coefficient $a_n$ and, recursively, calculating all the others in descending order, we can express the two parts $y_\text{o}^K(x)$ and $y_\text{e}^K(x)$ with a single sum. Hence, because we start with the last coefficient, the choice concerning $a_1$ and $a_0$ will be at the end of the sum, and not at the beginning. To compact Eq.\eqref{eq:solution}, Eq.\eqref{eq:recursion} can be reconsidered to calculate the coefficient $a_{k-2}$, using $a_k$ + \begin{equation*} + a_{k-2} = -\frac{(k+2)(k+1)}{(k-n)(k+n+1)}a_k + \end{equation*} + Now the game is to find a pattern, as before. Remember that $n$ is a fixed parameter of Eq.\eqref{eq:legendre}. + \begin{align*} + a_{n-2} &= -\frac{n(n-1)}{2(2n-1)}a_n, \\ + a_{n-4} &= -\frac{(n-2)(n-3)}{4(2n-3)}a_{n-2} \\ + &= -\frac{(n-2)(n-3)}{4(2n-3)}-\frac{n(n-1)}{2(2n-1)}a_n. + \end{align*} + In general + \begin{equation}\label{eq:general_recursion} + a_{n-2k} = (-1)^k \frac{n(n-1)(n-2)(n-3) \hdots (n-2k+1)}{2\cdot4\hdots 2k(2n-1)(2n-3)\hdots(2n-2k+1)}a_n + \end{equation} + The whole solution can now be written as + \begin{align} + y(x) &= a_n x^n + a_{n-2} x^{n-2} + a_{n-4} x^{n-4} + a_{n-6} x^{n-6} + \hdots + \begin{cases} + a_1 x, \quad &\text{if } n \text{ odd} \\ + a_0, \quad &\text{if } n \text{ even} + \end{cases} \nonumber \\ + &= \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} a_{n-2k}x^{n-2k} \label{eq:solution_2} + \end{align} + By considering + \begin{align} + (2n-1)(2n-3)\hdots (2n-2k+1)&=\frac{2n(2n-1)(2n-2)(2n-3)\hdots(2n-2k+1)} + {2n(2n-2)(2n-4)(2n-6)\hdots(2n-2k+2)} \nonumber \\ + &=\frac{\frac{(2n)!}{(2n-2k)!}} + {2^kn(n-1)(n-2)(n-3)\hdots(n-k+1)} \nonumber \\ + &=\frac{\frac{(2n)!}{(2n-2k)!}} + {2^k\frac{n!}{(n-k)!}}=\frac{(n-k)!(2n)!}{n!(2n-2k)!2^k} \label{eq:1_sub_recursion}, \\ + 2 \cdot 4 \hdots 2k &= 2^r 1\cdot2 \hdots r = 2^r r!\label{eq:2_sub_recursion}, \\ + n(n-1)(n-2)(n-3) \hdots (n-2k+1) &= \frac{n!}{(n-2k)!}\label{eq:3_sub_recursion}. + \end{align} + Eq.\eqref{eq:solution_2} can be rewritten as + \begin{equation}\label{eq:solution_3} + y(x)=a_n \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{n!^2(2n-2k)!}{k!(n-2k)!(n-k)!(2n)!} x^{n-2k}. + \end{equation} + Eq.\eqref{eq:solution_3} is defined for any $a_n$. By letting $a_n$ be declared as + \begin{equation*} + a_{n} := \frac{(2n)!}{2^n n!^2}, + \end{equation*} + the so called \emph{Legendre polynomial} emerges + \begin{equation}\label{eq:leg_poly} + P_n(x):=\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k} + \end{equation} +\end{proof} +As can be seen, the solution is a $n$-dependent power series, traditionally denoted as $P_n(x)$. This set of polynomials are called \emph{Legendre Polynomials}, because precisely they are polynomials satisfying the Legendre equation.\newline +Now that we have a solution to Eq.\eqref{kugel:eq:leg_eq}, we can then extend Eq.\eqref{kugel:eq:sol_leg}, as stated in Lemma \ref{kugel:lemma_1}. We will then have +\begin{align*} +y_{m,n}(x) &= (1-x^2)^{\frac{m}{2}}\frac{d^m}{dx^m}P_n(x) \\ +&= \frac{1}{n!2^n}(1-x^2)^{\frac{m}{2}}\frac{d^{m+n}}{dx^{m+n}}(1-x^2)^n +\end{align*} +This set of functions are defined as \emph{Associated Legendre functions}, because similarly to before, they solve the Associated Legendre equation, defined in Eq.\eqref{kugel:eq:eq_leg}. +\begin{definition}{Associated Legendre Functions} +\begin{equation}\label{kugel:eq:associated_leg_func} +P_{m,n}(x) := \frac{1}{n!2^n}(1-x^2)^{\frac{m}{2}}\frac{d^{m+n}}{dx^{m+n}}(1-x^2)^n +\end{equation} +\end{definition} +As you may recall, previously we performed the substitution $x=\cos \vartheta$. Now we need to return to the old domain, which can be done straightforwardly: +\begin{equation*} + \Theta(\vartheta) = P_{m,n}(\cos \vartheta), +\end{equation*} +obtaining the much sought function $\Theta(\vartheta)$. \newline +So we finally reached the end of this tortuous path. Now we just need to put together all the information we have to construct $f(\vartheta, \varphi)$ in the following way: +\begin{equation}\label{kugel:eq:sph_harm_0} + f(\vartheta, \varphi) = \Theta(\vartheta)\Phi(\varphi) = P_{m,n}(\cos \vartheta)e^{jm\varphi}, \quad |m|\leq n. +\end{equation} +The constraint $|m| Date: Tue, 16 Aug 2022 14:39:04 +0200 Subject: removed file. --- .../sturmliouville/tschebyscheff_beispiel.tex | 71 ---------------------- 1 file changed, 71 deletions(-) delete mode 100644 buch/papers/sturmliouville/tschebyscheff_beispiel.tex diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex deleted file mode 100644 index fb0194b..0000000 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ /dev/null @@ -1,71 +0,0 @@ -% -% tschebyscheff_beispiel.tex -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% - -\subsection{Tschebyscheff-Polynome\label{sub:tschebyscheff-polynome}} -Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen die man braucht schon aufgeliste, und zwar mit -\begin{align*} - w(x) &= \frac{1}{\sqrt{1-x^2}} \\ - p(x) &= \sqrt{1-x^2} \\ - q(x) &= 0 -\end{align*}. -Da die Sturm-Liouville-Gleichung -\begin{equation} - \label{eq:sturm-liouville-equation} - \frac{d}{dx}\lbrack \sqrt{1-x^2} \frac{dy}{dx} \rbrack + \lbrack 0 + \lambda \frac{1}{\sqrt{1-x^2}} \rbrack y = 0 -\end{equation} -nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. -Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein - und sie sind es auch. -Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen -\begin{equation} - T_n(x) = \cos n (\arccos x) -\end{equation}. -Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: -\begin{equation} - T_n(x) = \left\{\begin{array}{ll} \cosh (n \arccos x), & x > 1\\ - (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. -\end{equation}, -jedoch ist die Orthogonalität nur auf dem Intervall $[\-1, 1 ]\ $ sichergestellt. -Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^-1$ und $w(x)>0$ sein müssen. -Die Funktion -\begin{equation*} - p(x)^-1 = \frac{1}{\sqrt{1-x^2}} -\end{equation*} -ist die gleiche wie $w(x)$. - -Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. -Da sich die Polynome nur auf dem Intervall $[\-1, 1 ]\ $ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. -Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man -\begin{equation} -\begin{aligned} - k_a y(-1) + h_a y'(-1) &= 0 - k_b y(-1) + h_b y'(-1) &= 0 -\end{aligned} -\end{equation}. -Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}). -Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$. -Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}). -Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$. -Somit erhält man -\begin{equation} - \begin{aligned} - k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\ - k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0 -\end{aligned} -\end{equation}. -Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. -Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. - - - - - - - - - - - - -- cgit v1.2.1 From 1cd844f0459df9d264c5552047af320b378df8ba Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Tue, 16 Aug 2022 17:16:27 +0200 Subject: kugel: Reorganize figures directory, add tikz spherical coordinates and flux --- buch/papers/kugel/figures/flux.pdf | Bin 0 -> 345665 bytes buch/papers/kugel/figures/povray/Makefile | 30 +++ buch/papers/kugel/figures/povray/curvature.maxima | 6 + buch/papers/kugel/figures/povray/curvature.pov | 139 ++++++++++ buch/papers/kugel/figures/povray/curvgraph.m | 140 ++++++++++ buch/papers/kugel/figures/povray/spherecurve.cpp | 292 +++++++++++++++++++++ buch/papers/kugel/figures/povray/spherecurve.m | 160 +++++++++++ .../papers/kugel/figures/povray/spherecurve.maxima | 13 + buch/papers/kugel/figures/povray/spherecurve.pov | 73 ++++++ .../kugel/figures/tikz/spherical-coordinates.pdf | Bin 0 -> 5824 bytes .../kugel/figures/tikz/spherical-coordinates.tex | 99 +++++++ buch/papers/kugel/images/Makefile | 30 --- buch/papers/kugel/images/curvature.maxima | 6 - buch/papers/kugel/images/curvature.pov | 139 ---------- buch/papers/kugel/images/curvgraph.m | 140 ---------- buch/papers/kugel/images/spherecurve.cpp | 292 --------------------- buch/papers/kugel/images/spherecurve.m | 160 ----------- buch/papers/kugel/images/spherecurve.maxima | 13 - buch/papers/kugel/images/spherecurve.pov | 73 ------ 19 files changed, 952 insertions(+), 853 deletions(-) create mode 100644 buch/papers/kugel/figures/flux.pdf create mode 100644 buch/papers/kugel/figures/povray/Makefile create mode 100644 buch/papers/kugel/figures/povray/curvature.maxima create mode 100644 buch/papers/kugel/figures/povray/curvature.pov create mode 100644 buch/papers/kugel/figures/povray/curvgraph.m create mode 100644 buch/papers/kugel/figures/povray/spherecurve.cpp create mode 100644 buch/papers/kugel/figures/povray/spherecurve.m create mode 100644 buch/papers/kugel/figures/povray/spherecurve.maxima create mode 100644 buch/papers/kugel/figures/povray/spherecurve.pov create mode 100644 buch/papers/kugel/figures/tikz/spherical-coordinates.pdf create mode 100644 buch/papers/kugel/figures/tikz/spherical-coordinates.tex delete mode 100644 buch/papers/kugel/images/Makefile delete mode 100644 buch/papers/kugel/images/curvature.maxima delete mode 100644 buch/papers/kugel/images/curvature.pov delete mode 100644 buch/papers/kugel/images/curvgraph.m delete mode 100644 buch/papers/kugel/images/spherecurve.cpp delete mode 100644 buch/papers/kugel/images/spherecurve.m delete mode 100644 buch/papers/kugel/images/spherecurve.maxima delete mode 100644 buch/papers/kugel/images/spherecurve.pov diff --git a/buch/papers/kugel/figures/flux.pdf b/buch/papers/kugel/figures/flux.pdf new file mode 100644 index 0000000..6a87288 Binary files /dev/null and b/buch/papers/kugel/figures/flux.pdf differ diff --git a/buch/papers/kugel/figures/povray/Makefile b/buch/papers/kugel/figures/povray/Makefile new file mode 100644 index 0000000..4226dab --- /dev/null +++ b/buch/papers/kugel/figures/povray/Makefile @@ -0,0 +1,30 @@ +# +# Makefile -- build images +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +all: curvature.jpg spherecurve.jpg + +curvature.inc: curvgraph.m + octave curvgraph.m + +curvature.png: curvature.pov curvature.inc + povray +A0.1 +W1920 +H1080 +Ocurvature.png curvature.pov + +curvature.jpg: curvature.png + convert curvature.png -density 300 -units PixelsPerInch curvature.jpg + +spherecurve2.inc: spherecurve.m + octave spherecurve.m + +spherecurve.png: spherecurve.pov spherecurve.inc + povray +A0.1 +W1080 +H1080 +Ospherecurve.png spherecurve.pov + +spherecurve.jpg: spherecurve.png + convert spherecurve.png -density 300 -units PixelsPerInch spherecurve.jpg + +spherecurve: spherecurve.cpp + g++ -o spherecurve -g -Wall -O spherecurve.cpp + +spherecurve.inc: spherecurve + ./spherecurve diff --git a/buch/papers/kugel/figures/povray/curvature.maxima b/buch/papers/kugel/figures/povray/curvature.maxima new file mode 100644 index 0000000..6313642 --- /dev/null +++ b/buch/papers/kugel/figures/povray/curvature.maxima @@ -0,0 +1,6 @@ + +f: exp(-r^2/sigma^2)/sigma; +laplacef: ratsimp(diff(r * diff(f,r), r) / r); +f: exp(-r^2/(2*sigma^2))/(sqrt(2)*sigma); +laplacef: ratsimp(diff(r * diff(f,r), r) / r); + diff --git a/buch/papers/kugel/figures/povray/curvature.pov b/buch/papers/kugel/figures/povray/curvature.pov new file mode 100644 index 0000000..3b15d77 --- /dev/null +++ b/buch/papers/kugel/figures/povray/curvature.pov @@ -0,0 +1,139 @@ +// +// curvature.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// + +#version 3.7; +#include "colors.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.09; + +camera { + location <10, 10, -40> + look_at <0, 0, 0> + right 16/9 * x * imagescale + up y * imagescale +} + +light_source { + <-10, 10, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + +// +// draw an arrow from to with thickness with +// color +// +#macro arrow(from, to, arrowthickness, c) +#declare arrowdirection = vnormalize(to - from); +#declare arrowlength = vlength(to - from); +union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } +} +#end + +arrow(<-3.1,0,0>, <3.1,0,0>, 0.01, White) +arrow(<0,-1,0>, <0,1,0>, 0.01, White) +arrow(<0,0,-2.1>, <0,0,2.1>, 0.01, White) + +#include "curvature.inc" + +#declare sigma = 1; +#declare s = 1.4; +#declare N0 = 0.4; +#declare funktion = function(r) { + (exp(-r*r/(sigma*sigma)) / sigma + - + exp(-r*r/(2*sigma*sigma)) / (sqrt(2)*sigma)) / N0 +}; +#declare hypot = function(xx, yy) { sqrt(xx*xx+yy*yy) }; + +#declare Funktion = function(x,y) { funktion(hypot(x+s,y)) - funktion(hypot(x-s,y)) }; +#macro punkt(xx,yy) + +#end + +#declare griddiameter = 0.006; +union { + #declare xmin = -3; + #declare xmax = 3; + #declare ymin = -2; + #declare ymax = 2; + + + #declare xstep = 0.2; + #declare ystep = 0.02; + #declare xx = xmin; + #while (xx < xmax + xstep/2) + #declare yy = ymin; + #declare P = punkt(xx, yy); + #while (yy < ymax - ystep/2) + #declare yy = yy + ystep; + #declare Q = punkt(xx, yy); + sphere { P, griddiameter } + cylinder { P, Q, griddiameter } + #declare P = Q; + #end + sphere { P, griddiameter } + #declare xx = xx + xstep; + #end + + #declare xstep = 0.02; + #declare ystep = 0.2; + #declare yy = ymin; + #while (yy < ymax + ystep/2) + #declare xx = xmin; + #declare P = punkt(xx, yy); + #while (xx < xmax - xstep/2) + #declare xx = xx + xstep; + #declare Q = punkt(xx, yy); + sphere { P, griddiameter } + cylinder { P, Q, griddiameter } + #declare P = Q; + #end + sphere { P, griddiameter } + #declare yy = yy + ystep; + #end + + pigment { + color rgb<0.8,0.8,0.8> + } + finish { + metallic + specular 0.8 + } +} + diff --git a/buch/papers/kugel/figures/povray/curvgraph.m b/buch/papers/kugel/figures/povray/curvgraph.m new file mode 100644 index 0000000..75effd6 --- /dev/null +++ b/buch/papers/kugel/figures/povray/curvgraph.m @@ -0,0 +1,140 @@ +# +# curvature.m +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# + +global N; +N = 10; + +global sigma2; +sigma2 = 1; + +global s; +s = 1.4; + +global cmax; +cmax = 0.9; +global cmin; +cmin = -0.9; + +global Cmax; +global Cmin; +Cmax = 0; +Cmin = 0; + +xmin = -3; +xmax = 3; +xsteps = 200; +hx = (xmax - xmin) / xsteps; + +ymin = -2; +ymax = 2; +ysteps = 200; +hy = (ymax - ymin) / ysteps; + +function retval = f0(r) + global sigma2; + retval = exp(-r^2/sigma2)/sqrt(sigma2) - exp(-r^2/(2*sigma2))/(sqrt(2*sigma2)); +end + +global N0; +N0 = f0(0) +N0 = 0.4; + +function retval = f1(x,y) + global N0; + retval = f0(hypot(x, y)) / N0; +endfunction + +function retval = f(x, y) + global s; + retval = f1(x+s, y) - f1(x-s, y); +endfunction + +function retval = curvature0(r) + global sigma2; + retval = ( + -4*(sigma2-r^2)*exp(-r^2/sigma2) + + + (2*sigma2-r^2)*exp(-r^2/(2*sigma2)) + ) / (sigma2^(5/2)); +endfunction + +function retval = curvature1(x, y) + retval = curvature0(hypot(x, y)); +endfunction + +function retval = curvature(x, y) + global s; + retval = curvature1(x+s, y) - curvature1(x-s, y); +endfunction + +function retval = farbe(x, y) + global Cmax; + global Cmin; + global cmax; + global cmin; + c = curvature(x, y); + if (c < Cmin) + Cmin = c + endif + if (c > Cmax) + Cmax = c + endif + u = (c - cmin) / (cmax - cmin); + if (u > 1) + u = 1; + endif + if (u < 0) + u = 0; + endif + color = [ u, 0.5, 1-u ]; + color = color/max(color); + color(1,4) = c/2; + retval = color; +endfunction + +function dreieck(fn, A, B, C) + fprintf(fn, "\ttriangle {\n"); + fprintf(fn, "\t <%.4f,%.4f,%.4f>,\n", A(1,1), A(1,3), A(1,2)); + fprintf(fn, "\t <%.4f,%.4f,%.4f>,\n", B(1,1), B(1,3), B(1,2)); + fprintf(fn, "\t <%.4f,%.4f,%.4f>\n", C(1,1), C(1,3), C(1,2)); + fprintf(fn, "\t}\n"); +endfunction + +function viereck(fn, punkte) + color = farbe(mean(punkte(:,1)), mean(punkte(:,2))); + fprintf(fn, " mesh {\n"); + dreieck(fn, punkte(1,:), punkte(2,:), punkte(3,:)); + dreieck(fn, punkte(2,:), punkte(3,:), punkte(4,:)); + fprintf(fn, "\tpigment { color rgb<%.4f,%.4f,%.4f> } // %.4f\n", + color(1,1), color(1,2), color(1,3), color(1,4)); + fprintf(fn, " }\n"); +endfunction + +fn = fopen("curvature.inc", "w"); +punkte = zeros(4,3); +for ix = (0:xsteps-1) + x = xmin + ix * hx; + punkte(1,1) = x; + punkte(2,1) = x; + punkte(3,1) = x + hx; + punkte(4,1) = x + hx; + for iy = (0:ysteps-1) + y = ymin + iy * hy; + punkte(1,2) = y; + punkte(2,2) = y + hy; + punkte(3,2) = y; + punkte(4,2) = y + hy; + for i = (1:4) + punkte(i,3) = f(punkte(i,1), punkte(i,2)); + endfor + viereck(fn, punkte); + end +end +#fprintf(fn, " finish { metallic specular 0.5 }\n"); +fclose(fn); + +printf("Cmax = %.4f\n", Cmax); +printf("Cmin = %.4f\n", Cmin); diff --git a/buch/papers/kugel/figures/povray/spherecurve.cpp b/buch/papers/kugel/figures/povray/spherecurve.cpp new file mode 100644 index 0000000..8ddf5e5 --- /dev/null +++ b/buch/papers/kugel/figures/povray/spherecurve.cpp @@ -0,0 +1,292 @@ +/* + * spherecurve.cpp + * + * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + */ +#include +#include +#include +#include +#include + +inline double sqr(double x) { return x * x; } + +/** + * \brief Class for 3d vectors (also used as colors) + */ +class vector { + double X[3]; +public: + vector() { X[0] = X[1] = X[2] = 0; } + vector(double a) { X[0] = X[1] = X[2] = a; } + vector(double x, double y, double z) { + X[0] = x; X[1] = y; X[2] = z; + } + vector(double theta, double phi) { + double s = sin(theta); + X[0] = cos(phi) * s; + X[1] = sin(phi) * s; + X[2] = cos(theta); + } + vector(const vector& other) { + for (int i = 0; i < 3; i++) { + X[i] = other.X[i]; + } + } + vector operator+(const vector& other) const { + return vector(X[0] + other.X[0], + X[1] + other.X[1], + X[2] + other.X[2]); + } + vector operator*(double l) const { + return vector(X[0] * l, X[1] * l, X[2] * l); + } + double operator*(const vector& other) const { + double s = 0; + for (int i = 0; i < 3; i++) { + s += X[i] * other.X[i]; + } + return s; + } + double norm() const { + double s = 0; + for (int i = 0; i < 3; i++) { + s += sqr(X[i]); + } + return sqrt(s); + } + vector normalize() const { + double l = norm(); + return vector(X[0]/l, X[1]/l, X[2]/l); + } + double max() const { + return std::max(X[0], std::max(X[1], X[2])); + } + double l0norm() const { + double l = 0; + for (int i = 0; i < 3; i++) { + if (fabs(X[i]) > l) { + l = fabs(X[i]); + } + } + return l; + } + vector l0normalize() const { + double l = l0norm(); + vector result(X[0]/l, X[1]/l, X[2]/l); + return result; + } + const double& operator[](int i) const { return X[i]; } + double& operator[](int i) { return X[i]; } +}; + +/** + * \brief Derived 3d vector class implementing color + * + * The constructor in this class converts a single value into a + * color on a suitable gradient. + */ +class color : public vector { +public: + static double utop; + static double ubottom; + static double green; +public: + color(double u) { + u = (u - ubottom) / (utop - ubottom); + if (u > 1) { + u = 1; + } + if (u < 0) { + u = 0; + } + u = pow(u,2); + (*this)[0] = u; + (*this)[1] = green * u * (1 - u); + (*this)[2] = 1-u; + double l = l0norm(); + for (int i = 0; i < 3; i++) { + (*this)[i] /= l; + } + } +}; + +double color::utop = 12; +double color::ubottom = -31; +double color::green = 0.5; + +/** + * \brief Surface model + * + * This class contains the definitions of the functions to plot + * and the parameters to + */ +class surfacefunction { + static vector axes[6]; + + double _a; + double _A; + + double _umin; + double _umax; +public: + double a() const { return _a; } + double A() const { return _A; } + + double umin() const { return _umin; } + double umax() const { return _umax; } + + surfacefunction(double a, double A) : _a(a), _A(A), _umin(0), _umax(0) { + } + + double f(double z) { + return A() * exp(a() * (sqr(z) - 1)); + } + + double g(double z) { + return -f(z) * 2*a() * ((2*a()*sqr(z) + (3-2*a()))*sqr(z) - 1); + } + + double F(const vector& v) { + double s = 0; + for (int i = 0; i < 6; i++) { + s += f(axes[i] * v); + } + return s / 6; + } + + double G(const vector& v) { + double s = 0; + for (int i = 0; i < 6; i++) { + s += g(axes[i] * v); + } + return s / 6; + } +protected: + color farbe(const vector& v) { + double u = G(v); + if (u < _umin) { + _umin = u; + } + if (u > _umax) { + _umax = u; + } + return color(u); + } +}; + +static double phi = (1 + sqrt(5)) / 2; +static double sl = sqrt(sqr(phi) + 1); +vector surfacefunction::axes[6] = { + vector( 0. , -1./sl, phi/sl ), + vector( 0. , 1./sl, phi/sl ), + vector( 1./sl, phi/sl, 0. ), + vector( -1./sl, phi/sl, 0. ), + vector( phi/sl, 0. , 1./sl ), + vector( -phi/sl, 0. , 1./sl ) +}; + +/** + * \brief Class to construct the plot + */ +class surface : public surfacefunction { + FILE *outfile; + + int _phisteps; + int _thetasteps; + double _hphi; + double _htheta; +public: + int phisteps() const { return _phisteps; } + int thetasteps() const { return _thetasteps; } + double hphi() const { return _hphi; } + double htheta() const { return _htheta; } + void phisteps(int s) { _phisteps = s; _hphi = 2 * M_PI / s; } + void thetasteps(int s) { _thetasteps = s; _htheta = M_PI / s; } + + surface(const std::string& filename, double a, double A) + : surfacefunction(a, A) { + outfile = fopen(filename.c_str(), "w"); + phisteps(400); + thetasteps(200); + } + + ~surface() { + fclose(outfile); + } + +private: + void triangle(const vector& v0, const vector& v1, const vector& v2) { + fprintf(outfile, " mesh {\n"); + vector c = (v0 + v1 + v2) * (1./3.); + vector color = farbe(c.normalize()); + vector V0 = v0 * (1 + F(v0)); + vector V1 = v1 * (1 + F(v1)); + vector V2 = v2 * (1 + F(v2)); + fprintf(outfile, "\ttriangle {\n"); + fprintf(outfile, "\t <%.6f,%.6f,%.6f>,\n", + V0[0], V0[2], V0[1]); + fprintf(outfile, "\t <%.6f,%.6f,%.6f>,\n", + V1[0], V1[2], V1[1]); + fprintf(outfile, "\t <%.6f,%.6f,%.6f>\n", + V2[0], V2[2], V2[1]); + fprintf(outfile, "\t}\n"); + fprintf(outfile, "\tpigment { color rgb<%.4f,%.4f,%.4f> }\n", + color[0], color[1], color[2]); + fprintf(outfile, "\tfinish { metallic specular 0.5 }\n"); + fprintf(outfile, " }\n"); + } + + void northcap() { + vector v0(0, 0, 1); + for (int i = 1; i <= phisteps(); i++) { + fprintf(outfile, " // northcap i = %d\n", i); + vector v1(htheta(), (i - 1) * hphi()); + vector v2(htheta(), i * hphi()); + triangle(v0, v1, v2); + } + } + + void southcap() { + vector v0(0, 0, -1); + for (int i = 1; i <= phisteps(); i++) { + fprintf(outfile, " // southcap i = %d\n", i); + vector v1(M_PI - htheta(), (i - 1) * hphi()); + vector v2(M_PI - htheta(), i * hphi()); + triangle(v0, v1, v2); + } + } + + void zone() { + for (int j = 1; j < thetasteps() - 1; j++) { + for (int i = 1; i <= phisteps(); i++) { + fprintf(outfile, " // zone j = %d, i = %d\n", + j, i); + vector v0( j * htheta(), (i-1) * hphi()); + vector v1((j+1) * htheta(), (i-1) * hphi()); + vector v2( j * htheta(), i * hphi()); + vector v3((j+1) * htheta(), i * hphi()); + triangle(v0, v1, v2); + triangle(v1, v2, v3); + } + } + } +public: + void draw() { + northcap(); + southcap(); + zone(); + } +}; + +/** + * \brief main function + */ +int main(int argc, char *argv[]) { + surface S("spherecurve.inc", 5, 10); + color::green = 1.0; + S.draw(); + std::cout << "umin: " << S.umin() << std::endl; + std::cout << "umax: " << S.umax() << std::endl; + return EXIT_SUCCESS; +} diff --git a/buch/papers/kugel/figures/povray/spherecurve.m b/buch/papers/kugel/figures/povray/spherecurve.m new file mode 100644 index 0000000..99d5c9a --- /dev/null +++ b/buch/papers/kugel/figures/povray/spherecurve.m @@ -0,0 +1,160 @@ +# +# spherecurve.m +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +global a; +a = 5; +global A; +A = 10; + +phisteps = 400; +hphi = 2 * pi / phisteps; +thetasteps = 200; +htheta = pi / thetasteps; + +function retval = f(z) + global a; + global A; + retval = A * exp(a * (z^2 - 1)); +endfunction + +function retval = g(z) + global a; + retval = -f(z) * 2 * a * (2 * a * z^4 + (3 - 2*a) * z^2 - 1); + # 2 + # - a 2 4 2 2 a z + #(%o6) - %e (4 a z + (6 a - 4 a ) z - 2 a) %e +endfunction + +phi = (1 + sqrt(5)) / 2; + +global axes; +axes = [ + 0, 0, 1, -1, phi, -phi; + 1, -1, phi, phi, 0, 0; + phi, phi, 0, 0, 1, 1; +]; +axes = axes / (sqrt(phi^2+1)); + +function retval = kugel(theta, phi) + retval = [ + cos(phi) * sin(theta); + sin(phi) * sin(theta); + cos(theta) + ]; +endfunction + +function retval = F(v) + global axes; + s = 0; + for i = (1:6) + z = axes(:,i)' * v; + s = s + f(z); + endfor + retval = s / 6; +endfunction + +function retval = F2(theta, phi) + v = kugel(theta, phi); + retval = F(v); +endfunction + +function retval = G(v) + global axes; + s = 0; + for i = (1:6) + s = s + g(axes(:,i)' * v); + endfor + retval = s / 6; +endfunction + +function retval = G2(theta, phi) + v = kugel(theta, phi); + retval = G(v); +endfunction + +function retval = cnormalize(u) + utop = 11; + ubottom = -30; + retval = (u - ubottom) / (utop - ubottom); + if (retval > 1) + retval = 1; + endif + if (retval < 0) + retval = 0; + endif +endfunction + +global umin; +umin = 0; +global umax; +umax = 0; + +function color = farbe(v) + global umin; + global umax; + u = G(v); + if (u < umin) + umin = u; + endif + if (u > umax) + umax = u; + endif + u = cnormalize(u); + color = [ u, 0.5, 1-u ]; + color = color/max(color); +endfunction + +function dreieck(fn, v0, v1, v2) + fprintf(fn, " mesh {\n"); + c = (v0 + v1 + v2) / 3; + c = c / norm(c); + color = farbe(c); + v0 = v0 * (1 + F(v0)); + v1 = v1 * (1 + F(v1)); + v2 = v2 * (1 + F(v2)); + fprintf(fn, "\ttriangle {\n"); + fprintf(fn, "\t <%.6f,%.6f,%.6f>,\n", v0(1,1), v0(3,1), v0(2,1)); + fprintf(fn, "\t <%.6f,%.6f,%.6f>,\n", v1(1,1), v1(3,1), v1(2,1)); + fprintf(fn, "\t <%.6f,%.6f,%.6f>\n", v2(1,1), v2(3,1), v2(2,1)); + fprintf(fn, "\t}\n"); + fprintf(fn, "\tpigment { color rgb<%.4f,%.4f,%.4f> }\n", + color(1,1), color(1,2), color(1,3)); + fprintf(fn, "\tfinish { metallic specular 0.5 }\n"); + fprintf(fn, " }\n"); +endfunction + +fn = fopen("spherecurve2.inc", "w"); + + for i = (1:phisteps) + # Polkappe nord + v0 = [ 0; 0; 1 ]; + v1 = kugel(htheta, (i-1) * hphi); + v2 = kugel(htheta, i * hphi); + fprintf(fn, " // i = %d\n", i); + dreieck(fn, v0, v1, v2); + + # Polkappe sued + v0 = [ 0; 0; -1 ]; + v1 = kugel(pi-htheta, (i-1) * hphi); + v2 = kugel(pi-htheta, i * hphi); + dreieck(fn, v0, v1, v2); + endfor + + for j = (1:thetasteps-2) + for i = (1:phisteps) + v0 = kugel( j * htheta, (i-1) * hphi); + v1 = kugel((j+1) * htheta, (i-1) * hphi); + v2 = kugel( j * htheta, i * hphi); + v3 = kugel((j+1) * htheta, i * hphi); + fprintf(fn, " // i = %d, j = %d\n", i, j); + dreieck(fn, v0, v1, v2); + dreieck(fn, v1, v2, v3); + endfor + endfor + +fclose(fn); + +umin +umax diff --git a/buch/papers/kugel/figures/povray/spherecurve.maxima b/buch/papers/kugel/figures/povray/spherecurve.maxima new file mode 100644 index 0000000..1e9077c --- /dev/null +++ b/buch/papers/kugel/figures/povray/spherecurve.maxima @@ -0,0 +1,13 @@ +/* + * spherecurv.maxima + * + * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + */ +f: exp(-a * sin(theta)^2); + +g: ratsimp(diff(sin(theta) * diff(f, theta), theta)/sin(theta)); +g: subst(z, cos(theta), g); +g: subst(sqrt(1-z^2), sin(theta), g); +ratsimp(g); + +f: ratsimp(subst(sqrt(1-z^2), sin(theta), f)); diff --git a/buch/papers/kugel/figures/povray/spherecurve.pov b/buch/papers/kugel/figures/povray/spherecurve.pov new file mode 100644 index 0000000..b1bf4b8 --- /dev/null +++ b/buch/papers/kugel/figures/povray/spherecurve.pov @@ -0,0 +1,73 @@ +// +// curvature.pov +// +// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// + +#version 3.7; +#include "colors.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.13; + +camera { + location <10, 10, -40> + look_at <0, 0, 0> + right x * imagescale + up y * imagescale +} + +light_source { + <-10, 10, -40> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + +// +// draw an arrow from to with thickness with +// color +// +#macro arrow(from, to, arrowthickness, c) +#declare arrowdirection = vnormalize(to - from); +#declare arrowlength = vlength(to - from); +union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } +} +#end + +arrow(<-2.7,0,0>, <2.7,0,0>, 0.03, White) +arrow(<0,-2.7,0>, <0,2.7,0>, 0.03, White) +arrow(<0,0,-2.7>, <0,0,2.7>, 0.03, White) + +#include "spherecurve.inc" + diff --git a/buch/papers/kugel/figures/tikz/spherical-coordinates.pdf b/buch/papers/kugel/figures/tikz/spherical-coordinates.pdf new file mode 100644 index 0000000..28f242e Binary files /dev/null and b/buch/papers/kugel/figures/tikz/spherical-coordinates.pdf differ diff --git a/buch/papers/kugel/figures/tikz/spherical-coordinates.tex b/buch/papers/kugel/figures/tikz/spherical-coordinates.tex new file mode 100644 index 0000000..3a45385 --- /dev/null +++ b/buch/papers/kugel/figures/tikz/spherical-coordinates.tex @@ -0,0 +1,99 @@ +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{bm} +\usepackage{lmodern} +\usepackage{tikz-3dplot} + +\usetikzlibrary{arrows} +\usetikzlibrary{intersections} +\usetikzlibrary{math} +\usetikzlibrary{positioning} +\usetikzlibrary{arrows.meta} +\usetikzlibrary{shapes.misc} +\usetikzlibrary{calc} + +\begin{document} + +\tdplotsetmaincoords{60}{130} +\pgfmathsetmacro{\l}{2} + +\begin{tikzpicture}[ + >=latex, + tdplot_main_coords, + dot/.style = { + black, fill = black, circle, + outer sep = 0, inner sep = 0, + minimum size = .8mm + }, + round/.style = { + draw = orange, thick, circle, + minimum size = 1mm, + inner sep = 0pt, outer sep = 0pt, + }, + cross/.style = { + cross out, draw = magenta, thick, + minimum size = 1mm, + inner sep = 0pt, outer sep = 0pt + }, + ] + + % origin + \coordinate (O) at (0,0,0); + + % poles + \coordinate (NP) at (0,0,\l); + \coordinate (SP) at (0,0,-\l); + + % \draw (SP) node[dot, gray] {}; + % \draw (NP) node[dot, gray] {}; + + % gray unit circle + \tdplotdrawarc[gray]{(O)}{\l}{0}{360}{}{}; + \draw[gray, dashed] (-\l, 0, 0) to (\l, 0, 0); + \draw[gray, dashed] (0, -\l, 0) to (0, \l, 0); + + % axis + \draw[->] (O) -- ++(1.25*\l,0,0) node[left] {\(\mathbf{\hat{x}}\)}; + \draw[->] (O) -- ++(0,1.25*\l,0) node[right] {\(\mathbf{\hat{y}}\)}; + \draw[->] (O) -- ++(0,0,1.25*\l) node[above] {\(\mathbf{\hat{z}}\)}; + + % meridians + \foreach \phi in {0, 30, 60, ..., 150}{ + \tdplotsetrotatedcoords{\phi}{90}{0}; + \tdplotdrawarc[lightgray, densely dotted, tdplot_rotated_coords]{(O)}{\l}{0}{360}{}{}; + } + + % dot above and its projection + \pgfmathsetmacro{\phi}{120} + \pgfmathsetmacro{\theta}{40} + + \pgfmathsetmacro{\px}{cos(\phi)*sin(\theta)*\l} + \pgfmathsetmacro{\py}{sin(\phi)*sin(\theta)*\l} + \pgfmathsetmacro{\pz}{cos(\theta)*\l}) + + % point A + \coordinate (A) at (\px,\py,\pz); + \coordinate (Ap) at (\px,\py, 0); + + % lines + \draw[red!80!black, ->] (O) -- (A); + \draw[red!80!black, densely dashed] (O) -- (Ap) -- (A) + node[above right] {\(\mathbf{\hat{r}}\)}; + + % arcs + \tdplotdrawarc[blue!80!black, ->]{(O)}{.8\l}{0}{\phi}{}{}; + \node[below right, blue!80!black] at (.8\l,0,0) {\(\bm{\hat{\varphi}}\)}; + + \tdplotsetrotatedcoords{\phi-90}{-90}{0}; + \tdplotdrawarc[blue!80!black, ->, tdplot_rotated_coords]{(O)}{.95\l}{0}{\theta}{}{}; + \node[above right = 1mm, blue!80!black] at (0,0,.8\l) {\(\bm{\hat{\vartheta}}\)}; + + + % dots + \draw (O) node[dot] {}; + \draw (A) node[dot, fill = red!80!black] {}; + +\end{tikzpicture} +\end{document} +% vim:ts=2 sw=2 et: diff --git a/buch/papers/kugel/images/Makefile b/buch/papers/kugel/images/Makefile deleted file mode 100644 index 4226dab..0000000 --- a/buch/papers/kugel/images/Makefile +++ /dev/null @@ -1,30 +0,0 @@ -# -# Makefile -- build images -# -# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -# -all: curvature.jpg spherecurve.jpg - -curvature.inc: curvgraph.m - octave curvgraph.m - -curvature.png: curvature.pov curvature.inc - povray +A0.1 +W1920 +H1080 +Ocurvature.png curvature.pov - -curvature.jpg: curvature.png - convert curvature.png -density 300 -units PixelsPerInch curvature.jpg - -spherecurve2.inc: spherecurve.m - octave spherecurve.m - -spherecurve.png: spherecurve.pov spherecurve.inc - povray +A0.1 +W1080 +H1080 +Ospherecurve.png spherecurve.pov - -spherecurve.jpg: spherecurve.png - convert spherecurve.png -density 300 -units PixelsPerInch spherecurve.jpg - -spherecurve: spherecurve.cpp - g++ -o spherecurve -g -Wall -O spherecurve.cpp - -spherecurve.inc: spherecurve - ./spherecurve diff --git a/buch/papers/kugel/images/curvature.maxima b/buch/papers/kugel/images/curvature.maxima deleted file mode 100644 index 6313642..0000000 --- a/buch/papers/kugel/images/curvature.maxima +++ /dev/null @@ -1,6 +0,0 @@ - -f: exp(-r^2/sigma^2)/sigma; -laplacef: ratsimp(diff(r * diff(f,r), r) / r); -f: exp(-r^2/(2*sigma^2))/(sqrt(2)*sigma); -laplacef: ratsimp(diff(r * diff(f,r), r) / r); - diff --git a/buch/papers/kugel/images/curvature.pov b/buch/papers/kugel/images/curvature.pov deleted file mode 100644 index 3b15d77..0000000 --- a/buch/papers/kugel/images/curvature.pov +++ /dev/null @@ -1,139 +0,0 @@ -// -// curvature.pov -// -// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -// - -#version 3.7; -#include "colors.inc" - -global_settings { - assumed_gamma 1 -} - -#declare imagescale = 0.09; - -camera { - location <10, 10, -40> - look_at <0, 0, 0> - right 16/9 * x * imagescale - up y * imagescale -} - -light_source { - <-10, 10, -40> color White - area_light <1,0,0> <0,0,1>, 10, 10 - adaptive 1 - jitter -} - -sky_sphere { - pigment { - color rgb<1,1,1> - } -} - -// -// draw an arrow from to with thickness with -// color -// -#macro arrow(from, to, arrowthickness, c) -#declare arrowdirection = vnormalize(to - from); -#declare arrowlength = vlength(to - from); -union { - sphere { - from, 1.1 * arrowthickness - } - cylinder { - from, - from + (arrowlength - 5 * arrowthickness) * arrowdirection, - arrowthickness - } - cone { - from + (arrowlength - 5 * arrowthickness) * arrowdirection, - 2 * arrowthickness, - to, - 0 - } - pigment { - color c - } - finish { - specular 0.9 - metallic - } -} -#end - -arrow(<-3.1,0,0>, <3.1,0,0>, 0.01, White) -arrow(<0,-1,0>, <0,1,0>, 0.01, White) -arrow(<0,0,-2.1>, <0,0,2.1>, 0.01, White) - -#include "curvature.inc" - -#declare sigma = 1; -#declare s = 1.4; -#declare N0 = 0.4; -#declare funktion = function(r) { - (exp(-r*r/(sigma*sigma)) / sigma - - - exp(-r*r/(2*sigma*sigma)) / (sqrt(2)*sigma)) / N0 -}; -#declare hypot = function(xx, yy) { sqrt(xx*xx+yy*yy) }; - -#declare Funktion = function(x,y) { funktion(hypot(x+s,y)) - funktion(hypot(x-s,y)) }; -#macro punkt(xx,yy) - -#end - -#declare griddiameter = 0.006; -union { - #declare xmin = -3; - #declare xmax = 3; - #declare ymin = -2; - #declare ymax = 2; - - - #declare xstep = 0.2; - #declare ystep = 0.02; - #declare xx = xmin; - #while (xx < xmax + xstep/2) - #declare yy = ymin; - #declare P = punkt(xx, yy); - #while (yy < ymax - ystep/2) - #declare yy = yy + ystep; - #declare Q = punkt(xx, yy); - sphere { P, griddiameter } - cylinder { P, Q, griddiameter } - #declare P = Q; - #end - sphere { P, griddiameter } - #declare xx = xx + xstep; - #end - - #declare xstep = 0.02; - #declare ystep = 0.2; - #declare yy = ymin; - #while (yy < ymax + ystep/2) - #declare xx = xmin; - #declare P = punkt(xx, yy); - #while (xx < xmax - xstep/2) - #declare xx = xx + xstep; - #declare Q = punkt(xx, yy); - sphere { P, griddiameter } - cylinder { P, Q, griddiameter } - #declare P = Q; - #end - sphere { P, griddiameter } - #declare yy = yy + ystep; - #end - - pigment { - color rgb<0.8,0.8,0.8> - } - finish { - metallic - specular 0.8 - } -} - diff --git a/buch/papers/kugel/images/curvgraph.m b/buch/papers/kugel/images/curvgraph.m deleted file mode 100644 index 75effd6..0000000 --- a/buch/papers/kugel/images/curvgraph.m +++ /dev/null @@ -1,140 +0,0 @@ -# -# curvature.m -# -# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -# - -global N; -N = 10; - -global sigma2; -sigma2 = 1; - -global s; -s = 1.4; - -global cmax; -cmax = 0.9; -global cmin; -cmin = -0.9; - -global Cmax; -global Cmin; -Cmax = 0; -Cmin = 0; - -xmin = -3; -xmax = 3; -xsteps = 200; -hx = (xmax - xmin) / xsteps; - -ymin = -2; -ymax = 2; -ysteps = 200; -hy = (ymax - ymin) / ysteps; - -function retval = f0(r) - global sigma2; - retval = exp(-r^2/sigma2)/sqrt(sigma2) - exp(-r^2/(2*sigma2))/(sqrt(2*sigma2)); -end - -global N0; -N0 = f0(0) -N0 = 0.4; - -function retval = f1(x,y) - global N0; - retval = f0(hypot(x, y)) / N0; -endfunction - -function retval = f(x, y) - global s; - retval = f1(x+s, y) - f1(x-s, y); -endfunction - -function retval = curvature0(r) - global sigma2; - retval = ( - -4*(sigma2-r^2)*exp(-r^2/sigma2) - + - (2*sigma2-r^2)*exp(-r^2/(2*sigma2)) - ) / (sigma2^(5/2)); -endfunction - -function retval = curvature1(x, y) - retval = curvature0(hypot(x, y)); -endfunction - -function retval = curvature(x, y) - global s; - retval = curvature1(x+s, y) - curvature1(x-s, y); -endfunction - -function retval = farbe(x, y) - global Cmax; - global Cmin; - global cmax; - global cmin; - c = curvature(x, y); - if (c < Cmin) - Cmin = c - endif - if (c > Cmax) - Cmax = c - endif - u = (c - cmin) / (cmax - cmin); - if (u > 1) - u = 1; - endif - if (u < 0) - u = 0; - endif - color = [ u, 0.5, 1-u ]; - color = color/max(color); - color(1,4) = c/2; - retval = color; -endfunction - -function dreieck(fn, A, B, C) - fprintf(fn, "\ttriangle {\n"); - fprintf(fn, "\t <%.4f,%.4f,%.4f>,\n", A(1,1), A(1,3), A(1,2)); - fprintf(fn, "\t <%.4f,%.4f,%.4f>,\n", B(1,1), B(1,3), B(1,2)); - fprintf(fn, "\t <%.4f,%.4f,%.4f>\n", C(1,1), C(1,3), C(1,2)); - fprintf(fn, "\t}\n"); -endfunction - -function viereck(fn, punkte) - color = farbe(mean(punkte(:,1)), mean(punkte(:,2))); - fprintf(fn, " mesh {\n"); - dreieck(fn, punkte(1,:), punkte(2,:), punkte(3,:)); - dreieck(fn, punkte(2,:), punkte(3,:), punkte(4,:)); - fprintf(fn, "\tpigment { color rgb<%.4f,%.4f,%.4f> } // %.4f\n", - color(1,1), color(1,2), color(1,3), color(1,4)); - fprintf(fn, " }\n"); -endfunction - -fn = fopen("curvature.inc", "w"); -punkte = zeros(4,3); -for ix = (0:xsteps-1) - x = xmin + ix * hx; - punkte(1,1) = x; - punkte(2,1) = x; - punkte(3,1) = x + hx; - punkte(4,1) = x + hx; - for iy = (0:ysteps-1) - y = ymin + iy * hy; - punkte(1,2) = y; - punkte(2,2) = y + hy; - punkte(3,2) = y; - punkte(4,2) = y + hy; - for i = (1:4) - punkte(i,3) = f(punkte(i,1), punkte(i,2)); - endfor - viereck(fn, punkte); - end -end -#fprintf(fn, " finish { metallic specular 0.5 }\n"); -fclose(fn); - -printf("Cmax = %.4f\n", Cmax); -printf("Cmin = %.4f\n", Cmin); diff --git a/buch/papers/kugel/images/spherecurve.cpp b/buch/papers/kugel/images/spherecurve.cpp deleted file mode 100644 index 8ddf5e5..0000000 --- a/buch/papers/kugel/images/spherecurve.cpp +++ /dev/null @@ -1,292 +0,0 @@ -/* - * spherecurve.cpp - * - * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule - */ -#include -#include -#include -#include -#include - -inline double sqr(double x) { return x * x; } - -/** - * \brief Class for 3d vectors (also used as colors) - */ -class vector { - double X[3]; -public: - vector() { X[0] = X[1] = X[2] = 0; } - vector(double a) { X[0] = X[1] = X[2] = a; } - vector(double x, double y, double z) { - X[0] = x; X[1] = y; X[2] = z; - } - vector(double theta, double phi) { - double s = sin(theta); - X[0] = cos(phi) * s; - X[1] = sin(phi) * s; - X[2] = cos(theta); - } - vector(const vector& other) { - for (int i = 0; i < 3; i++) { - X[i] = other.X[i]; - } - } - vector operator+(const vector& other) const { - return vector(X[0] + other.X[0], - X[1] + other.X[1], - X[2] + other.X[2]); - } - vector operator*(double l) const { - return vector(X[0] * l, X[1] * l, X[2] * l); - } - double operator*(const vector& other) const { - double s = 0; - for (int i = 0; i < 3; i++) { - s += X[i] * other.X[i]; - } - return s; - } - double norm() const { - double s = 0; - for (int i = 0; i < 3; i++) { - s += sqr(X[i]); - } - return sqrt(s); - } - vector normalize() const { - double l = norm(); - return vector(X[0]/l, X[1]/l, X[2]/l); - } - double max() const { - return std::max(X[0], std::max(X[1], X[2])); - } - double l0norm() const { - double l = 0; - for (int i = 0; i < 3; i++) { - if (fabs(X[i]) > l) { - l = fabs(X[i]); - } - } - return l; - } - vector l0normalize() const { - double l = l0norm(); - vector result(X[0]/l, X[1]/l, X[2]/l); - return result; - } - const double& operator[](int i) const { return X[i]; } - double& operator[](int i) { return X[i]; } -}; - -/** - * \brief Derived 3d vector class implementing color - * - * The constructor in this class converts a single value into a - * color on a suitable gradient. - */ -class color : public vector { -public: - static double utop; - static double ubottom; - static double green; -public: - color(double u) { - u = (u - ubottom) / (utop - ubottom); - if (u > 1) { - u = 1; - } - if (u < 0) { - u = 0; - } - u = pow(u,2); - (*this)[0] = u; - (*this)[1] = green * u * (1 - u); - (*this)[2] = 1-u; - double l = l0norm(); - for (int i = 0; i < 3; i++) { - (*this)[i] /= l; - } - } -}; - -double color::utop = 12; -double color::ubottom = -31; -double color::green = 0.5; - -/** - * \brief Surface model - * - * This class contains the definitions of the functions to plot - * and the parameters to - */ -class surfacefunction { - static vector axes[6]; - - double _a; - double _A; - - double _umin; - double _umax; -public: - double a() const { return _a; } - double A() const { return _A; } - - double umin() const { return _umin; } - double umax() const { return _umax; } - - surfacefunction(double a, double A) : _a(a), _A(A), _umin(0), _umax(0) { - } - - double f(double z) { - return A() * exp(a() * (sqr(z) - 1)); - } - - double g(double z) { - return -f(z) * 2*a() * ((2*a()*sqr(z) + (3-2*a()))*sqr(z) - 1); - } - - double F(const vector& v) { - double s = 0; - for (int i = 0; i < 6; i++) { - s += f(axes[i] * v); - } - return s / 6; - } - - double G(const vector& v) { - double s = 0; - for (int i = 0; i < 6; i++) { - s += g(axes[i] * v); - } - return s / 6; - } -protected: - color farbe(const vector& v) { - double u = G(v); - if (u < _umin) { - _umin = u; - } - if (u > _umax) { - _umax = u; - } - return color(u); - } -}; - -static double phi = (1 + sqrt(5)) / 2; -static double sl = sqrt(sqr(phi) + 1); -vector surfacefunction::axes[6] = { - vector( 0. , -1./sl, phi/sl ), - vector( 0. , 1./sl, phi/sl ), - vector( 1./sl, phi/sl, 0. ), - vector( -1./sl, phi/sl, 0. ), - vector( phi/sl, 0. , 1./sl ), - vector( -phi/sl, 0. , 1./sl ) -}; - -/** - * \brief Class to construct the plot - */ -class surface : public surfacefunction { - FILE *outfile; - - int _phisteps; - int _thetasteps; - double _hphi; - double _htheta; -public: - int phisteps() const { return _phisteps; } - int thetasteps() const { return _thetasteps; } - double hphi() const { return _hphi; } - double htheta() const { return _htheta; } - void phisteps(int s) { _phisteps = s; _hphi = 2 * M_PI / s; } - void thetasteps(int s) { _thetasteps = s; _htheta = M_PI / s; } - - surface(const std::string& filename, double a, double A) - : surfacefunction(a, A) { - outfile = fopen(filename.c_str(), "w"); - phisteps(400); - thetasteps(200); - } - - ~surface() { - fclose(outfile); - } - -private: - void triangle(const vector& v0, const vector& v1, const vector& v2) { - fprintf(outfile, " mesh {\n"); - vector c = (v0 + v1 + v2) * (1./3.); - vector color = farbe(c.normalize()); - vector V0 = v0 * (1 + F(v0)); - vector V1 = v1 * (1 + F(v1)); - vector V2 = v2 * (1 + F(v2)); - fprintf(outfile, "\ttriangle {\n"); - fprintf(outfile, "\t <%.6f,%.6f,%.6f>,\n", - V0[0], V0[2], V0[1]); - fprintf(outfile, "\t <%.6f,%.6f,%.6f>,\n", - V1[0], V1[2], V1[1]); - fprintf(outfile, "\t <%.6f,%.6f,%.6f>\n", - V2[0], V2[2], V2[1]); - fprintf(outfile, "\t}\n"); - fprintf(outfile, "\tpigment { color rgb<%.4f,%.4f,%.4f> }\n", - color[0], color[1], color[2]); - fprintf(outfile, "\tfinish { metallic specular 0.5 }\n"); - fprintf(outfile, " }\n"); - } - - void northcap() { - vector v0(0, 0, 1); - for (int i = 1; i <= phisteps(); i++) { - fprintf(outfile, " // northcap i = %d\n", i); - vector v1(htheta(), (i - 1) * hphi()); - vector v2(htheta(), i * hphi()); - triangle(v0, v1, v2); - } - } - - void southcap() { - vector v0(0, 0, -1); - for (int i = 1; i <= phisteps(); i++) { - fprintf(outfile, " // southcap i = %d\n", i); - vector v1(M_PI - htheta(), (i - 1) * hphi()); - vector v2(M_PI - htheta(), i * hphi()); - triangle(v0, v1, v2); - } - } - - void zone() { - for (int j = 1; j < thetasteps() - 1; j++) { - for (int i = 1; i <= phisteps(); i++) { - fprintf(outfile, " // zone j = %d, i = %d\n", - j, i); - vector v0( j * htheta(), (i-1) * hphi()); - vector v1((j+1) * htheta(), (i-1) * hphi()); - vector v2( j * htheta(), i * hphi()); - vector v3((j+1) * htheta(), i * hphi()); - triangle(v0, v1, v2); - triangle(v1, v2, v3); - } - } - } -public: - void draw() { - northcap(); - southcap(); - zone(); - } -}; - -/** - * \brief main function - */ -int main(int argc, char *argv[]) { - surface S("spherecurve.inc", 5, 10); - color::green = 1.0; - S.draw(); - std::cout << "umin: " << S.umin() << std::endl; - std::cout << "umax: " << S.umax() << std::endl; - return EXIT_SUCCESS; -} diff --git a/buch/papers/kugel/images/spherecurve.m b/buch/papers/kugel/images/spherecurve.m deleted file mode 100644 index 99d5c9a..0000000 --- a/buch/papers/kugel/images/spherecurve.m +++ /dev/null @@ -1,160 +0,0 @@ -# -# spherecurve.m -# -# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -# -global a; -a = 5; -global A; -A = 10; - -phisteps = 400; -hphi = 2 * pi / phisteps; -thetasteps = 200; -htheta = pi / thetasteps; - -function retval = f(z) - global a; - global A; - retval = A * exp(a * (z^2 - 1)); -endfunction - -function retval = g(z) - global a; - retval = -f(z) * 2 * a * (2 * a * z^4 + (3 - 2*a) * z^2 - 1); - # 2 - # - a 2 4 2 2 a z - #(%o6) - %e (4 a z + (6 a - 4 a ) z - 2 a) %e -endfunction - -phi = (1 + sqrt(5)) / 2; - -global axes; -axes = [ - 0, 0, 1, -1, phi, -phi; - 1, -1, phi, phi, 0, 0; - phi, phi, 0, 0, 1, 1; -]; -axes = axes / (sqrt(phi^2+1)); - -function retval = kugel(theta, phi) - retval = [ - cos(phi) * sin(theta); - sin(phi) * sin(theta); - cos(theta) - ]; -endfunction - -function retval = F(v) - global axes; - s = 0; - for i = (1:6) - z = axes(:,i)' * v; - s = s + f(z); - endfor - retval = s / 6; -endfunction - -function retval = F2(theta, phi) - v = kugel(theta, phi); - retval = F(v); -endfunction - -function retval = G(v) - global axes; - s = 0; - for i = (1:6) - s = s + g(axes(:,i)' * v); - endfor - retval = s / 6; -endfunction - -function retval = G2(theta, phi) - v = kugel(theta, phi); - retval = G(v); -endfunction - -function retval = cnormalize(u) - utop = 11; - ubottom = -30; - retval = (u - ubottom) / (utop - ubottom); - if (retval > 1) - retval = 1; - endif - if (retval < 0) - retval = 0; - endif -endfunction - -global umin; -umin = 0; -global umax; -umax = 0; - -function color = farbe(v) - global umin; - global umax; - u = G(v); - if (u < umin) - umin = u; - endif - if (u > umax) - umax = u; - endif - u = cnormalize(u); - color = [ u, 0.5, 1-u ]; - color = color/max(color); -endfunction - -function dreieck(fn, v0, v1, v2) - fprintf(fn, " mesh {\n"); - c = (v0 + v1 + v2) / 3; - c = c / norm(c); - color = farbe(c); - v0 = v0 * (1 + F(v0)); - v1 = v1 * (1 + F(v1)); - v2 = v2 * (1 + F(v2)); - fprintf(fn, "\ttriangle {\n"); - fprintf(fn, "\t <%.6f,%.6f,%.6f>,\n", v0(1,1), v0(3,1), v0(2,1)); - fprintf(fn, "\t <%.6f,%.6f,%.6f>,\n", v1(1,1), v1(3,1), v1(2,1)); - fprintf(fn, "\t <%.6f,%.6f,%.6f>\n", v2(1,1), v2(3,1), v2(2,1)); - fprintf(fn, "\t}\n"); - fprintf(fn, "\tpigment { color rgb<%.4f,%.4f,%.4f> }\n", - color(1,1), color(1,2), color(1,3)); - fprintf(fn, "\tfinish { metallic specular 0.5 }\n"); - fprintf(fn, " }\n"); -endfunction - -fn = fopen("spherecurve2.inc", "w"); - - for i = (1:phisteps) - # Polkappe nord - v0 = [ 0; 0; 1 ]; - v1 = kugel(htheta, (i-1) * hphi); - v2 = kugel(htheta, i * hphi); - fprintf(fn, " // i = %d\n", i); - dreieck(fn, v0, v1, v2); - - # Polkappe sued - v0 = [ 0; 0; -1 ]; - v1 = kugel(pi-htheta, (i-1) * hphi); - v2 = kugel(pi-htheta, i * hphi); - dreieck(fn, v0, v1, v2); - endfor - - for j = (1:thetasteps-2) - for i = (1:phisteps) - v0 = kugel( j * htheta, (i-1) * hphi); - v1 = kugel((j+1) * htheta, (i-1) * hphi); - v2 = kugel( j * htheta, i * hphi); - v3 = kugel((j+1) * htheta, i * hphi); - fprintf(fn, " // i = %d, j = %d\n", i, j); - dreieck(fn, v0, v1, v2); - dreieck(fn, v1, v2, v3); - endfor - endfor - -fclose(fn); - -umin -umax diff --git a/buch/papers/kugel/images/spherecurve.maxima b/buch/papers/kugel/images/spherecurve.maxima deleted file mode 100644 index 1e9077c..0000000 --- a/buch/papers/kugel/images/spherecurve.maxima +++ /dev/null @@ -1,13 +0,0 @@ -/* - * spherecurv.maxima - * - * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule - */ -f: exp(-a * sin(theta)^2); - -g: ratsimp(diff(sin(theta) * diff(f, theta), theta)/sin(theta)); -g: subst(z, cos(theta), g); -g: subst(sqrt(1-z^2), sin(theta), g); -ratsimp(g); - -f: ratsimp(subst(sqrt(1-z^2), sin(theta), f)); diff --git a/buch/papers/kugel/images/spherecurve.pov b/buch/papers/kugel/images/spherecurve.pov deleted file mode 100644 index b1bf4b8..0000000 --- a/buch/papers/kugel/images/spherecurve.pov +++ /dev/null @@ -1,73 +0,0 @@ -// -// curvature.pov -// -// (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -// - -#version 3.7; -#include "colors.inc" - -global_settings { - assumed_gamma 1 -} - -#declare imagescale = 0.13; - -camera { - location <10, 10, -40> - look_at <0, 0, 0> - right x * imagescale - up y * imagescale -} - -light_source { - <-10, 10, -40> color White - area_light <1,0,0> <0,0,1>, 10, 10 - adaptive 1 - jitter -} - -sky_sphere { - pigment { - color rgb<1,1,1> - } -} - -// -// draw an arrow from to with thickness with -// color -// -#macro arrow(from, to, arrowthickness, c) -#declare arrowdirection = vnormalize(to - from); -#declare arrowlength = vlength(to - from); -union { - sphere { - from, 1.1 * arrowthickness - } - cylinder { - from, - from + (arrowlength - 5 * arrowthickness) * arrowdirection, - arrowthickness - } - cone { - from + (arrowlength - 5 * arrowthickness) * arrowdirection, - 2 * arrowthickness, - to, - 0 - } - pigment { - color c - } - finish { - specular 0.9 - metallic - } -} -#end - -arrow(<-2.7,0,0>, <2.7,0,0>, 0.03, White) -arrow(<0,-2.7,0>, <0,2.7,0>, 0.03, White) -arrow(<0,0,-2.7>, <0,0,2.7>, 0.03, White) - -#include "spherecurve.inc" - -- cgit v1.2.1 From 10a72bf8d66de28f3f1b5598c37c32d29a306893 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Tue, 16 Aug 2022 18:25:31 +0200 Subject: 3. Ueberarbeitung, Verbesserungen --- buch/papers/0f1/teil0.tex | 4 ++-- buch/papers/0f1/teil1.tex | 12 +++++------- buch/papers/0f1/teil2.tex | 20 ++++++++++++-------- buch/papers/0f1/teil3.tex | 12 ++++++------ 4 files changed, 25 insertions(+), 23 deletions(-) diff --git a/buch/papers/0f1/teil0.tex b/buch/papers/0f1/teil0.tex index 9aca368..335cf92 100644 --- a/buch/papers/0f1/teil0.tex +++ b/buch/papers/0f1/teil0.tex @@ -6,10 +6,10 @@ \section{Ausgangslage\label{0f1:section:ausgangslage}} \rhead{Ausgangslage} Die hypergeometrische Funktion $\mathstrut_0F_1$ wird in vielen Funktionen als Basisfunktion benutzt, -zum Beispiel um die Airy Funktion zu berechnen. +zum Beispiel um die Airy-Funktion zu berechnen. In der GNU Scientific Library \cite{0f1:library-gsl} ist die Funktion $\mathstrut_0F_1$ vorhanden. -Allerdings wirft die Funktion bei negativen Übergabenwerten wie zum Beispiel \verb+gsl_sf_hyperg_0F1(1, -1)+ eine Exception. +Allerdings wirft die Funktion bei negativen Übergabewerten wie zum Beispiel \verb+gsl_sf_hyperg_0F1(1, -1)+ eine Exception. Bei genauerer Untersuchung hat sich gezeigt, dass die Funktion je nach Betriebssystem funktioniert oder eben nicht. So kann die Funktion unter Windows fehlerfrei aufgerufen werden, beim Mac OS und Linux sind negative Übergabeparameter im Moment nicht möglich. Ziel dieser Arbeit war es zu evaluieren, ob es mit einfachen mathematischen Operationen möglich ist, die hypergeometrische Funktion $\mathstrut_0F_1$ zu implementieren. diff --git a/buch/papers/0f1/teil1.tex b/buch/papers/0f1/teil1.tex index c0f857d..8d00f95 100644 --- a/buch/papers/0f1/teil1.tex +++ b/buch/papers/0f1/teil1.tex @@ -6,8 +6,7 @@ \section{Mathematischer Hintergrund \label{0f1:section:mathHintergrund}} \rhead{Mathematischer Hintergrund} -Basierend auf den Herleitungen des Abschnittes \ref{buch:rekursion:section:hypergeometrische-funktion}, werden im nachfolgenden Abschnitt nochmals die Resultate -beschrieben. +Basierend auf den Herleitungen des Abschnittes \ref{buch:rekursion:section:hypergeometrische-funktion} werden im nachfolgenden Abschnitt nochmals die Resultate beschrieben. \subsection{Hypergeometrische Funktion \label{0f1:subsection:hypergeometrisch}} @@ -59,7 +58,7 @@ Angewendet auf die Funktion $\mathstrut_pF_q$ ergibt sich für $\mathstrut_0F_1$ -\subsection{Airy Funktion +\subsection{Airy-Funktion \label{0f1:subsection:airy}} Die Funktion $\operatorname{Ai}(x)$ und die verwandte Funktion $\operatorname{Bi}(x)$ werden als Airy-Funktion bezeichnet. Sie werden zur Lösung verschiedener physikalischer Probleme benutzt, wie zum Beispiel zur Lösung der Schrödinger-Gleichung \cite{0f1:wiki-airyFunktion}. @@ -70,8 +69,8 @@ Die Funktion $\operatorname{Ai}(x)$ und die verwandte Funktion $\operatorname{Bi heisst die {\em Airy-Differentialgleichung}. \end{definition} -Die Airy Funktion lässt sich auf verschiedene Arten darstellen. -Als hypergeometrische Funktion berechnet, ergibt sich wie in Abschnitt \ref{buch:differentialgleichungen:section:hypergeometrisch} hergeleitet, folgende Lösungen der Airy-Differentialgleichung zu den Anfangsbedingungen $\operatorname{Ai}(0)=1$ und $\operatorname{Ai}'(0)=0$, sowie $\operatorname{Bi}(0)=0$ und $\operatorname{Bi}'(0)=1$. +Die Airy-Funktion lässt sich auf verschiedene Arten darstellen. +Als hypergeometrische Funktion berechnet, ergeben sich wie in Abschnitt \ref{buch:differentialgleichungen:section:hypergeometrisch} hergeleitet, folgende Lösungen der Airy-Differentialgleichung zu den Anfangsbedingungen $\operatorname{Ai}(0)=1$ und $\operatorname{Ai}'(0)=0$, sowie $\operatorname{Bi}(0)=0$ und $\operatorname{Bi}'(0)=1$: \begin{align} \label{0f1:airy:hypergeometrisch:eq} @@ -96,7 +95,6 @@ x\cdot\mathstrut_0F_1\biggl( \qedhere \end{align} -Um die Stabilität der Algorithmen zu $\mathstrut_0F_1$ zu überprüfen, wird in dieser Arbeit die Airy Funktion $\operatorname{Ai}(x)$ \eqref{0f1:airy:hypergeometrisch:eq} -benutzt. +Um die Stabilität der Algorithmen zu $\mathstrut_0F_1$ zu überprüfen, wird in dieser Arbeit die Airy Funktion $\operatorname{Ai}(x)$ benutzt. diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index ef9f55e..9b3a586 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -11,7 +11,7 @@ Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieb \subsection{Potenzreihe \label{0f1:subsection:potenzreihe}} -Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:umsetzung:0f1:eq}. +Die naheliegendste Lösung ist die Programmierung der Potenzreihe \begin{align} \label{0f1:umsetzung:0f1:eq} @@ -23,7 +23,7 @@ Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:ums \frac{1}{c} +\frac{z^1}{(c+1) \cdot 1} + \cdots - + \frac{z^{20}}{c(c+1)(c+2)\cdots(c+19) \cdot 2.4 \cdot 10^{18}} + + \frac{z^{20}}{c(c+1)(c+2)\cdots(c+19) \cdot 2.4 \cdot 10^{18}}. \end{align} \lstinputlisting[style=C,float,caption={Potenzreihe.},label={0f1:listing:potenzreihe}, firstline=59]{papers/0f1/listings/potenzreihe.c} @@ -31,15 +31,17 @@ Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:ums \subsection{Kettenbruch \label{0f1:subsection:kettenbruch}} Eine weitere Variante zur Berechnung von $\mathstrut_0F_1(;c;z)$ ist die Umsetzung als Kettenbruch. -Der Vorteil einer Umsetzung als Kettenbruch gegenüber der Potenzreihe, ist die schnellere Konvergenz. +Der Vorteil einer Umsetzung als Kettenbruch gegenüber der Potenzreihe ist die schnellere Konvergenz. +\subsubsection{Grundlage} Ein endlicher Kettenbruch \cite{0f1:wiki-kettenbruch} ist ein Bruch der Form \begin{equation*} -a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}} +a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}}, \end{equation*} in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind. -Nimmt man nun folgenden Gleichung \cite{0f1:wiki-fraction}: +\subsubsection{Rekursionsbeziehungen und Kettenbrüche} +Nimmt man nun folgende Gleichung \cite{0f1:wiki-fraction}: \begin{equation*} f_{i-1} - f_i = k_i z f_{i+1}, \end{equation*} @@ -48,7 +50,7 @@ Ergibt sich folgender Zusammenhang: \begin{equation*} \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}} \end{equation*} - +\subsubsection{Rekursion für $\mathstrut_0F_1$} Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies: \begin{equation} \label{0f1:math:potenzreihe:0f1:eq} @@ -68,6 +70,7 @@ erhält man: \cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{\cfrac{z}{(c+2)(c+3)}}{\cdots}}}}. \end{equation*} +\subsubsection{Algorithmus} Mit weiteren Relationen ergibt sich nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} @@ -92,7 +95,7 @@ lässt sich zu \cfrac{A_k}{B_k} = \cfrac{b_{k+1}}{a_{k+1} + \cfrac{p}{q}} = \frac{b_{k+1} \cdot q}{a_{k+1} \cdot q + p} \end{align*} umformen. -Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken: +Dies lässt sich auch durch die folgende Matrizenschreibweise \begin{equation*} \begin{pmatrix} A_k\\ @@ -112,6 +115,7 @@ Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken: \end{pmatrix}. %\label{0f1:math:rekursionsformel:herleitung} \end{equation*} +ausdrücken. Wendet man dies nun auf den Kettenbruch in der Form \begin{equation*} \frac{A_k}{B_k} = a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{k-1}}{a_{k-1} + \cfrac{b_k}{a_k}}}}} @@ -166,7 +170,7 @@ Und schlussendlich kann der Näherungsbruch berechnet werden. -\subsubsection{Lösung} +\subsubsection{Algorithmus} Die Berechnung von $A_k, B_k$ gemäss \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise \cite{0f1:kettenbrueche} aufschreiben: \begin{itemize} \item Startbedingungen: diff --git a/buch/papers/0f1/teil3.tex b/buch/papers/0f1/teil3.tex index b283b07..d7cdfe8 100644 --- a/buch/papers/0f1/teil3.tex +++ b/buch/papers/0f1/teil3.tex @@ -13,9 +13,9 @@ Ebenso kann festgestellt werden, dass je grösser der Wert $z$ in $\mathstrut_0F \subsection{Konvergenz \label{0f1:subsection:konvergenz}} -Es zeigt sich in Abbildung \ref{0f1:ausblick:plot:airy:konvergenz}, dass nach drei Iterationen ($k = 3$) die Funktionen genaue Resultate im Bereich von $-2$ bis $2$ liefert. Ebenso kann festgestellt werden, dass der Kettenbruch schneller konvergiert und im positiven Bereich sogar mit der Referenzfunktion $\operatorname{Ai}(x)$ übereinstimmt. Da die Rekursionsformel eine Abwandlung des Kettenbruches ist, verhalten sich die Funktionen in diesem Fall gleich. +Es zeigt sich in Abbildung \ref{0f1:ausblick:plot:airy:konvergenz}, dass nach drei Iterationen ($k = 3$) die Funktionen genaue Resultate im Bereich von $-2$ bis $2$ liefert. Ebenso kann festgestellt werden, dass der Kettenbruch schneller konvergiert und im positiven Bereich mit der Referenzfunktion $\operatorname{Ai}(x)$ übereinstimmt. Da die Rekursionsformel eine Abwandlung des Kettenbruches ist, verhalten sich die Funktionen in diesem Fall gleich. -Erst wenn mehrerer Iterationen gemacht werden, um die Genauigkeit zu verbessern, ist der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen. +Erst wenn mehrerer Iterationen gerechnet werden, um die Genauigkeit zu verbessern, ist der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen. Interessant ist auch, dass die Rekursionsformel nahezu gleich schnell wie die Potenzreihe konvergiert, aber sich danach, wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} zu beobachten ist, einschwingt. Dieses Verhalten ist auch bei grösseren $z$ zu beobachten, allerdings ist dann die Differenz zwischen dem ersten lokalen Minimum von $k$ bis zum Abbruch kleiner. Dieses Phänomen ist auf die Lösung der Rekursionsformel \eqref{0f1:math:matrix:ende:eq} zurück zu führen. Da im Gegensatz die ganz kleinen Werte nicht zu einer Konvergenz wie beim Kettenbruch führen, sondern sich noch eine Zeit lang durch die Multiplikation aufschwingen. @@ -29,7 +29,7 @@ Verändert sich der Wert von $z$ in $\mathstrut_0F_1(;c;z)$ gegen grössere posi Wohingegen die Potenzreihe (Listing \ref{0f1:listing:potenzreihe}) das Problem hat, dass je mehr Terme berechnet werden, desto schneller wächst die Fakultät im Nenner. Dies führt zu einer Bereichsüberschreitung des \verb+double+ Bereiches \cite{0f1:double}, der spätesten ab $k=167$ eintritt. Schlussendlich gibt das Unterprogramm das Resultat \verb+-nan(ind)+ zurück. Die Rekursionformel \eqref{0f1:listing:kettenbruchRekursion} liefert für sehr grosse positive Werte die genausten Ergebnisse, verglichen mit der GNU Scientific Library. Wie schon vermutet ist die Rekursionsformel, im positivem Bereich, der stabilste Algorithmus. Um die Konvergenz zu gewährleisten, muss wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, die Iterationstiefe $k$ genug gross gewählt werden. -Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Grund dafür ist die Potenz von $z$, was zum Phänomen der Auslöschung \cite{0f1:SeminarNumerik} führt. Schön zu beobachten ist dies in der Abbildung \ref{0f1:ausblick:plot:airy:stabilitaet} mit der Airy-Funktion als Test. So sind sowohl die Potenzreihe, der Kettenbruch, als auch die Rekursionsformel bis ungefähr $\frac{-15^3}{9}$ stabil. Dies macht auch Sinn, da alle Algorithmen auf der gleichen mathematischen Grundlage basieren. Danach verhält sich allerdings die Instabilität unterschiedlich. Diese programmiertechnischen Unterschiede sind auch in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} und \ref{0f1:ausblick:plot:konvergenz:negativ} festzustellen. +Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Grund dafür ist die Potenz von $z$, was zum Phänomen der Auslöschung \cite{0f1:SeminarNumerik} führt. Schön zu beobachten ist dies in der Abbildung \ref{0f1:ausblick:plot:airy:stabilitaet} mit der Airy-Funktion als Test. So sind nach Abbildung \ref{0f1:ausblick:plot:airy:stabilitaet} die Potenzreihe, der Kettenbruch, als auch die Rekursionsformel, bis ungefähr $\frac{-15^3}{9}$ stabil. Dies macht auch Sinn, da alle Algorithmen auf der gleichen mathematischen Grundlage basieren. Danach verhält sich allerdings die Instabilität unterschiedlich. Diese programmiertechnischen Unterschiede sind auch in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} und \ref{0f1:ausblick:plot:konvergenz:negativ} festzustellen. \begin{figure} \centering @@ -41,21 +41,21 @@ Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Gru \begin{figure} \centering \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzPositiv.pdf} - \caption{Konvergenz mit positivem z; Logarithmisch, vorzeichenlose dargestellte Differenz vom erwarteten Endresultat. + \caption{Konvergenz mit positivem $z$; Logarithmisch, vorzeichenlose dargestellte Differenz vom erwarteten Endresultat. \label{0f1:ausblick:plot:konvergenz:positiv}} \end{figure} \begin{figure} \centering \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzNegativ.pdf} - \caption{Konvergenz mit negativem z; Logarithmisch, vorzeichenlose dargestellte Differenz vom erwarteten Endresultat. + \caption{Konvergenz mit negativem $z$; Logarithmisch, vorzeichenlose dargestellte Differenz vom erwarteten Endresultat. \label{0f1:ausblick:plot:konvergenz:negativ}} \end{figure} \begin{figure} \centering \includegraphics[width=1\textwidth]{papers/0f1/images/stabilitaet.pdf} - \caption{Stabilität der 3 Algorithmen verglichen mit der Referenz Funktion $\operatorname{Ai}(x)$. + \caption{Stabilität der drei Algorithmen verglichen mit der Referenz Funktion $\operatorname{Ai}(x)$. \label{0f1:ausblick:plot:airy:stabilitaet}} \end{figure} -- cgit v1.2.1 From cd9bd7f2fb6e1088130c9eef5a96ea996fd14947 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Tue, 16 Aug 2022 21:44:28 +0200 Subject: 3. Ueberarbeitung, bilder --- buch/papers/0f1/images/konvergenzNegativ.pdf | Bin 18155 -> 18226 bytes buch/papers/0f1/images/konvergenzPositiv.pdf | Bin 18581 -> 17532 bytes buch/papers/0f1/teil3.tex | 4 ++-- 3 files changed, 2 insertions(+), 2 deletions(-) diff --git a/buch/papers/0f1/images/konvergenzNegativ.pdf b/buch/papers/0f1/images/konvergenzNegativ.pdf index 03b2ba1..232c964 100644 Binary files a/buch/papers/0f1/images/konvergenzNegativ.pdf and b/buch/papers/0f1/images/konvergenzNegativ.pdf differ diff --git a/buch/papers/0f1/images/konvergenzPositiv.pdf b/buch/papers/0f1/images/konvergenzPositiv.pdf index 2e45129..71b1042 100644 Binary files a/buch/papers/0f1/images/konvergenzPositiv.pdf and b/buch/papers/0f1/images/konvergenzPositiv.pdf differ diff --git a/buch/papers/0f1/teil3.tex b/buch/papers/0f1/teil3.tex index d7cdfe8..eb32c52 100644 --- a/buch/papers/0f1/teil3.tex +++ b/buch/papers/0f1/teil3.tex @@ -16,7 +16,7 @@ Ebenso kann festgestellt werden, dass je grösser der Wert $z$ in $\mathstrut_0F Es zeigt sich in Abbildung \ref{0f1:ausblick:plot:airy:konvergenz}, dass nach drei Iterationen ($k = 3$) die Funktionen genaue Resultate im Bereich von $-2$ bis $2$ liefert. Ebenso kann festgestellt werden, dass der Kettenbruch schneller konvergiert und im positiven Bereich mit der Referenzfunktion $\operatorname{Ai}(x)$ übereinstimmt. Da die Rekursionsformel eine Abwandlung des Kettenbruches ist, verhalten sich die Funktionen in diesem Fall gleich. Erst wenn mehrerer Iterationen gerechnet werden, um die Genauigkeit zu verbessern, ist der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen. -Interessant ist auch, dass die Rekursionsformel nahezu gleich schnell wie die Potenzreihe konvergiert, aber sich danach, wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} zu beobachten ist, einschwingt. Dieses Verhalten ist auch bei grösseren $z$ zu beobachten, allerdings ist dann die Differenz zwischen dem ersten lokalen Minimum von $k$ bis zum Abbruch kleiner. +Interessant ist auch, dass die Rekursionsformel nahezu gleich schnell wie die Potenzreihe konvergiert, aber sich danach, wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} zu beobachten ist, auf. Dieses Verhalten ist auch bei grösseren $z$ zu beobachten, allerdings ist dann die Differenz zwischen dem ersten lokalen Minimum von $k$ bis zum Abbruch kleiner. Dieses Phänomen ist auf die Lösung der Rekursionsformel \eqref{0f1:math:matrix:ende:eq} zurück zu führen. Da im Gegensatz die ganz kleinen Werte nicht zu einer Konvergenz wie beim Kettenbruch führen, sondern sich noch eine Zeit lang durch die Multiplikation aufschwingen. Ist $z$ negativ wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies zu aufgrund des Vorzeichens zu alternierenden Termen. So steigt bei allen Algorithmen zuerst die Differenz zum erwarteten Endwert. Erst nach genügend Iterationen sind die Terme genügend klein, so dass sie das Endresultat nicht mehr signifikant beeinflussen. @@ -24,7 +24,7 @@ Auch hier konvergiert der Kettenbruch am schnellsten von allen Algorithmen. Eben \subsection{Stabilität \label{0f1:subsection:Stabilitaet}} -Verändert sich der Wert von $z$ in $\mathstrut_0F_1(;c;z)$ gegen grössere positive Werte, wie zum Beispiel $c = 800$ liefert die Kettenbruch-Funktion (Listing \ref{0f1:listing:kettenbruchIterativ}) \verb+inf+ zurück. Dies könnte durch ein Abbruchkriterien abgefangen werden. Allerdings würde das, bei grossen Werten zulasten der Genauigkeit gehen. Trotzdem könnte, je nach Anwendung, auf ein paar Nachkommastellen verzichtet werden. +Verändert sich der Wert von $z$ in $\mathstrut_0F_1(;c;z)$ gegen grössere positive Werte, wie zum Beispiel $c = 800$ liefert die Kettenbruch-Funktion (Listing \ref{0f1:listing:kettenbruchIterativ}) \verb+inf+ zurück. Dies könnte durch ein Abbruchkriterien abgefangen werden. Allerdings würde das bei grossen Werten zulasten der Genauigkeit gehen. Trotzdem könnte, je nach Anwendung, auf ein paar Nachkommastellen verzichtet werden. Wohingegen die Potenzreihe (Listing \ref{0f1:listing:potenzreihe}) das Problem hat, dass je mehr Terme berechnet werden, desto schneller wächst die Fakultät im Nenner. Dies führt zu einer Bereichsüberschreitung des \verb+double+ Bereiches \cite{0f1:double}, der spätesten ab $k=167$ eintritt. Schlussendlich gibt das Unterprogramm das Resultat \verb+-nan(ind)+ zurück. Die Rekursionformel \eqref{0f1:listing:kettenbruchRekursion} liefert für sehr grosse positive Werte die genausten Ergebnisse, verglichen mit der GNU Scientific Library. Wie schon vermutet ist die Rekursionsformel, im positivem Bereich, der stabilste Algorithmus. Um die Konvergenz zu gewährleisten, muss wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, die Iterationstiefe $k$ genug gross gewählt werden. -- cgit v1.2.1 From 37be038856d46324ca0f036f486c73b48bc22e4c Mon Sep 17 00:00:00 2001 From: tschwall <55748566+tschwall@users.noreply.github.com> Date: Tue, 16 Aug 2022 22:24:51 +0200 Subject: Updated stuff --- buch/SeminarSpezielleFunktionen.pdf | Bin 22768070 -> 22768314 bytes buch/papers/parzyl/img/plane.pdf | Bin 0 -> 2072 bytes buch/papers/parzyl/teil0.tex | 81 +++++++++++++++++++++++------------- buch/papers/parzyl/teil1.tex | 2 +- buch/papers/parzyl/teil2.tex | 13 +++--- buch/papers/parzyl/teil3.tex | 3 +- 6 files changed, 63 insertions(+), 36 deletions(-) create mode 100644 buch/papers/parzyl/img/plane.pdf diff --git a/buch/SeminarSpezielleFunktionen.pdf b/buch/SeminarSpezielleFunktionen.pdf index 6091e14..36b612f 100644 Binary files a/buch/SeminarSpezielleFunktionen.pdf and b/buch/SeminarSpezielleFunktionen.pdf differ diff --git a/buch/papers/parzyl/img/plane.pdf b/buch/papers/parzyl/img/plane.pdf new file mode 100644 index 0000000..c52c336 Binary files /dev/null and b/buch/papers/parzyl/img/plane.pdf differ diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 1f23d6e..3b14287 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -4,42 +4,65 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Einleitung\label{parzyl:section:teil0}} -\rhead{Teil 0} -Die Laplace-Gleichung ist eine wichtige Gleichung in der Physik. -Mit ihr lässt sich zum Beispiel das elektrische Feld in einem ladungsfreien Raum bestimmen. -In diesem Kapitel wird die Lösung der Laplace-Gleichung im -parabolischen Zylinderkoordinatensystem genauer untersucht. -\subsection{Laplace Gleichung} -Die partielle Differentialgleichung -\begin{equation} - \Delta f = 0 -\end{equation} -ist als Laplace-Gleichung bekannt. -Sie ist eine spezielle Form der Poisson-Gleichung +\rhead{Einleitung} +%Die Laplace-Gleichung ist eine wichtige Gleichung in der Physik. +%Mit ihr lässt sich zum Beispiel das elektrische Feld in einem ladungsfreien Raum bestimmen. +%In diesem Kapitel wird die Lösung der Laplace-Gleichung im +%parabolischen Zylinderkoordinatensystem genauer untersucht. +Die Helmholtz-Gleichung ist eine wichtige Gleichung in der Physik. Mit ihr lässt sich zum Beispiel das Verhalten von elektromagnetischen Wellen beschreiben. +In diesem Kapitel wird die Lösung der Helmholtz-Gleichung im parabolischen Zylinderkoordinatensystem, die parabolischen Zylinderfunktionen, genauer untersucht. + +\subsection{Helmholtz-Gleichung} +Die partielle Differentialgleichung \begin{equation} - \Delta f = g + \nabla f = \lambda f \end{equation} -mit $g$ als beliebiger Funktion. -In der Physik hat die Laplace-Gleichung in verschiedenen Gebieten -verwendet, zum Beispiel im Elektromagnetismus. -Das Gaussche Gesetz in den Maxwellgleichungen +ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwert Problem für den Laplace-Operator. Sie ist eine der Gleichungen welche auftritt wenn die Wellengleichung \begin{equation} - \nabla \cdot E = \frac{\varrho}{\epsilon_0} -\label{parzyl:eq:max1} + \left ( \nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right ) u(\textbf{r},t) + = + 0 \end{equation} -besagt, dass die Divergenz eines elektrischen Feldes an einem -Punkt gleich der Ladungsdichte an diesem Punkt ist. -Das elektrische Feld ist hierbei der Gradient des elektrischen -Potentials +mit Hilfe von Separation \begin{equation} - \nabla \phi = E. -\end{equation} -Eingesetzt in \eqref{parzyl:eq:max1} resultiert + u(\textbf{r},t) = A(\textbf{r})T(t) +\end{equation} +in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der Teil, welcher Zeit unabhängig ist \begin{equation} - \nabla \cdot \nabla \phi = \Delta \phi = \frac{\varrho}{\epsilon_0}, + \nabla^2 A(\textbf{r}) = \lambda A(\textbf{r}). \end{equation} -was eine Poisson-Gleichung ist. -An ladungsfreien Stellen ist der rechte Teil der Gleichung $0$. + +%\subsection{Laplace Gleichung} +%Die partielle Differentialgleichung +%\begin{equation} +% \Delta f = 0 +%\end{equation} +%ist als Laplace-Gleichung bekannt. +%Sie ist eine spezielle Form der Poisson-Gleichung +%\begin{equation} +% \Delta f = g +%\end{equation} +%mit $g$ als beliebiger Funktion. +%In der Physik hat die Laplace-Gleichung in verschiedenen Gebieten +%verwendet, zum Beispiel im Elektromagnetismus. +%Das Gaussche Gesetz in den Maxwellgleichungen +%\begin{equation} +% \nabla \cdot E = \frac{\varrho}{\epsilon_0} +%\label{parzyl:eq:max1} +%\end{equation} +%besagt, dass die Divergenz eines elektrischen Feldes an einem +%Punkt gleich der Ladungsdichte an diesem Punkt ist. +%Das elektrische Feld ist hierbei der Gradient des elektrischen +%Potentials +%\begin{equation} +% \nabla \phi = E. +%\end{equation} +%Eingesetzt in \eqref{parzyl:eq:max1} resultiert +%\begin{equation} +% \nabla \cdot \nabla \phi = \Delta \phi = \frac{\varrho}{\epsilon_0}, +%\end{equation} +%was eine Poisson-Gleichung ist. +%An ladungsfreien Stellen ist der rechte Teil der Gleichung $0$. \subsection{Parabolische Zylinderkoordinaten \label{parzyl:subsection:finibus}} Im parabolischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index e140796..cb929d6 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -5,7 +5,7 @@ % \section{Lösung \label{parzyl:section:teil1}} -\rhead{Problemstellung} +\rhead{Lösung} Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} können mit Hilfe der Whittaker Gleichung gelöst werden. \begin{definition} diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index aaea42b..4af6860 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -5,12 +5,15 @@ % \section{Anwendung in der Physik \label{parzyl:section:teil2}} -\rhead{Teil 2} +\rhead{Anwendung in der Physik} - -\subsection{Elektrisches Feld einer semi-infiniten Platte -\label{parzyl:subsection:bonorum}} -Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte finden will. +Die parabolischen Zylinderkoordinaten tauchen auf, wenn man das elektrische Feld einer semi-infiniten Platte, wie in Abbildung \ref{parzyl:fig:leiterplatte} gezeigt, finden will. +\begin{figure} + \centering + \includegraphics[width=0.9\textwidth]{papers/parzyl/img/plane.pdf} + \caption{Semi-infinite Leiterplatte} + \label{parzyl:fig:leiterplatte} +\end{figure} Das dies so ist kann im zwei Dimensionalen mit Hilfe von komplexen Funktionen gezeigt werden. Die Platte ist dann nur eine Linie, was man in Abbildung TODO sieht. Jede komplexe Funktion $F(z)$ kann geschrieben werden als \begin{equation} diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 12b7519..972fd33 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -5,7 +5,8 @@ % \section{Eigenschaften \label{parzyl:section:Eigenschaften}} -\rhead{Teil 3} +\rhead{Eigenschaften} + \subsection{Potenzreihenentwicklung \label{parzyl:potenz}} Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, können auch als Potenzreihen geschrieben werden -- cgit v1.2.1 From 8dad5da7d8a4c982a6933b0f6d3c58c64d66c37c Mon Sep 17 00:00:00 2001 From: Alain Date: Tue, 16 Aug 2022 22:25:46 +0200 Subject: schaffe --- buch/papers/parzyl/teil1.tex | 61 +++++++++++++++++++++++++++++++++++++++----- 1 file changed, 54 insertions(+), 7 deletions(-) diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index e140796..a52665b 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -44,21 +44,68 @@ eine sondern zwei Lösungen. Die zweite Lösung der Whittaker-Gleichung ist $W_{k,-m} (z)$. Somit hat \eqref{parzyl:eq:weberDiffEq} \begin{align} - w_1 & = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right)\\ - w_2 & = z^{-1/2} W_{k,1/4} \left({\textstyle \frac{1}{2}} z^2\right) + w_1(k, z) & = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right)\\ + w_2(k, z) & = z^{-1/2} W_{k,1/4} \left({\textstyle \frac{1}{2}} z^2\right) \end{align} als Lösungen. - -Ausgeschrieben ergeben sich als Lösungen +Mit der Hypergeometrischen Funktion ausgeschrieben ergeben sich die Lösungen \begin{align} \label{parzyl:eq:solution_dgl} - w_1 &= e^{-z^2/4} \, + w_1(k,z) &= e^{-z^2/4} \, {}_{1} F_{1} ( {\textstyle \frac{1}{4}} - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) \\ - w_2 & = z e^{-z^2/4} \, + w_2(k,z) & = z e^{-z^2/4} \, {}_{1} F_{1} ({\textstyle \frac{3}{4}} - - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) + - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2). \end{align} +In der Literatur gibt es verschiedene Standartlösungen für $w(k,z)$ präsentiert. +Whittaker und Whatson zeigen in \dots eine Lösung +\begin{equation} + D_n(z) = \frac{ + \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{2}} z^{-\frac{1}{2}} + }{ + \Gamma \left( {\textstyle \frac{1}{2}} \right) - {\textstyle \frac{1}{2}} n) + } + M_{\frac{1}{2} n + \frac{1}{4}, - \frac{1}{4}} \left(\frac{1}{2}z^2\right) + + + \frac{ + \Gamma\left(-{\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{2}} z^{-\frac{1}{2}} + }{ + \Gamma\left(- {\textstyle \frac{1}{2}} n\right) + } + M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}z^2\right). +\end{equation} +welche die Differenzialgleichung +\begin{equation} + \frac{d^2D_n(z)}{dz^2} + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right)D_n(z) = 0 +\end{equation} +löst. + +Blablubla beschreibt zwei Lösungen $U(a, z)$ und $V(a,z)$ der Differenzialgleichung +\begin{equation} + \frac{d^2 y}{d z^2} - \left(\frac{1}{4} z^2 + a\right) y = 0. +\end{equation} +\begin{align} + U(a,z) &= + \cos\left(\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right) Y_1 + - \sin\left(\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right) Y_2 \\ + V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left( + \sin\left(\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right) Y_1 + + \cos\left(\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right) Y_2 + \right) +\end{align} +mit +\begin{align} + Y_1 &= \frac{1}{\sqrt{\pi}} + \frac{\Gamma\left({\textstyle \frac{1}{4} - + {\textstyle \frac{1}{2}}a}\right)} + {2^{\frac{1}{2} a + \frac{1}{4}}} w_1\\ + Y_2 &= \frac{1}{\sqrt{\pi}} + \frac{\Gamma\left({\textstyle \frac{3}{4} - + {\textstyle \frac{1}{2}}a}\right)} + {2^{\frac{1}{2} a - \frac{1}{4}}} w_2 +\end{align} + -- cgit v1.2.1 From 7d969250f8860f407255091a61b0b441b172c524 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Tue, 16 Aug 2022 22:53:23 +0200 Subject: 3.Ueberarbeitung, bilder2 --- buch/papers/0f1/images/konvergenzNegativ.pdf | Bin 18226 -> 18524 bytes buch/papers/0f1/images/konvergenzPositiv.pdf | Bin 17532 -> 18253 bytes buch/papers/0f1/teil3.tex | 12 +++++------- 3 files changed, 5 insertions(+), 7 deletions(-) diff --git a/buch/papers/0f1/images/konvergenzNegativ.pdf b/buch/papers/0f1/images/konvergenzNegativ.pdf index 232c964..07d2a44 100644 Binary files a/buch/papers/0f1/images/konvergenzNegativ.pdf and b/buch/papers/0f1/images/konvergenzNegativ.pdf differ diff --git a/buch/papers/0f1/images/konvergenzPositiv.pdf b/buch/papers/0f1/images/konvergenzPositiv.pdf index 71b1042..8e1e7e4 100644 Binary files a/buch/papers/0f1/images/konvergenzPositiv.pdf and b/buch/papers/0f1/images/konvergenzPositiv.pdf differ diff --git a/buch/papers/0f1/teil3.tex b/buch/papers/0f1/teil3.tex index eb32c52..b6c0f4f 100644 --- a/buch/papers/0f1/teil3.tex +++ b/buch/papers/0f1/teil3.tex @@ -15,12 +15,10 @@ Ebenso kann festgestellt werden, dass je grösser der Wert $z$ in $\mathstrut_0F \label{0f1:subsection:konvergenz}} Es zeigt sich in Abbildung \ref{0f1:ausblick:plot:airy:konvergenz}, dass nach drei Iterationen ($k = 3$) die Funktionen genaue Resultate im Bereich von $-2$ bis $2$ liefert. Ebenso kann festgestellt werden, dass der Kettenbruch schneller konvergiert und im positiven Bereich mit der Referenzfunktion $\operatorname{Ai}(x)$ übereinstimmt. Da die Rekursionsformel eine Abwandlung des Kettenbruches ist, verhalten sich die Funktionen in diesem Fall gleich. -Erst wenn mehrerer Iterationen gerechnet werden, um die Genauigkeit zu verbessern, ist der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen. -Interessant ist auch, dass die Rekursionsformel nahezu gleich schnell wie die Potenzreihe konvergiert, aber sich danach, wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} zu beobachten ist, auf. Dieses Verhalten ist auch bei grösseren $z$ zu beobachten, allerdings ist dann die Differenz zwischen dem ersten lokalen Minimum von $k$ bis zum Abbruch kleiner. -Dieses Phänomen ist auf die Lösung der Rekursionsformel \eqref{0f1:math:matrix:ende:eq} zurück zu führen. Da im Gegensatz die ganz kleinen Werte nicht zu einer Konvergenz wie beim Kettenbruch führen, sondern sich noch eine Zeit lang durch die Multiplikation aufschwingen. +Erst wenn mehrerer Iterationen gerechnet werden, ist wie Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen. Allerdings muss beachtet werden, dass die Rekursionsformel zwar erst nach 35 Approximationen gänzlich konvergiert, nach 27 Iterationen sich nicht mehr gross verändert. + +Ist $z$ negativ wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies zu aufgrund des Vorzeichens zu alternierenden Termen. So steigt bei allen Algorithmen zuerst die Differenz zum erwarteten Endwert. Erst nach genügend Iterationen sind die Terme so klein, dass sie das Endresultat nicht mehr signifikant beeinflussen. Während die Potenzreihe zusammen mit dem Kettenbruch nach 34 Approximationen konvergiert, braucht die Rekursionsformel noch zwei Iterationen mehr. Wohingegen die Rekursionsformel der genauste Algorithmus im negativen Bereich ist. Da der Computer mit einer relativen Genauigkeit von $10^{-15}$ rechnet, ist dies das Maximum an Präzision, dass erreicht werden kann. -Ist $z$ negativ wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies zu aufgrund des Vorzeichens zu alternierenden Termen. So steigt bei allen Algorithmen zuerst die Differenz zum erwarteten Endwert. Erst nach genügend Iterationen sind die Terme genügend klein, so dass sie das Endresultat nicht mehr signifikant beeinflussen. -Auch hier konvergiert der Kettenbruch am schnellsten von allen Algorithmen. Ebenso bricht die Rekursionsformel nahezu gleichzeitig mit der Potenzreihe ab. \subsection{Stabilität \label{0f1:subsection:Stabilitaet}} @@ -41,14 +39,14 @@ Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Gru \begin{figure} \centering \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzPositiv.pdf} - \caption{Konvergenz mit positivem $z$; Logarithmisch, vorzeichenlose dargestellte Differenz vom erwarteten Endresultat. + \caption{Konvergenz mit positivem $z$; Logarithmisch dargestellte absoluter Fehler. \label{0f1:ausblick:plot:konvergenz:positiv}} \end{figure} \begin{figure} \centering \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzNegativ.pdf} - \caption{Konvergenz mit negativem $z$; Logarithmisch, vorzeichenlose dargestellte Differenz vom erwarteten Endresultat. + \caption{Konvergenz mit negativem $z$; Logarithmisch dargestellte absoluter Fehler. \label{0f1:ausblick:plot:konvergenz:negativ}} \end{figure} -- cgit v1.2.1 From 4a9a4ca761db0007138a778a87c652505570b071 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Tue, 16 Aug 2022 23:39:32 +0200 Subject: kugel: Update figures makefile --- buch/papers/kugel/Makefile | 3 ++- .../kugel/figures/tikz/spherical-coordinates.pdf | Bin 5824 -> 40319 bytes 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/buch/papers/kugel/Makefile b/buch/papers/kugel/Makefile index f798a55..995206b 100644 --- a/buch/papers/kugel/Makefile +++ b/buch/papers/kugel/Makefile @@ -5,5 +5,6 @@ # images: - @echo "no images to be created in kugel" + $(MAKE) -C ./figures/povray/ + $(MAKE) -C ./figures/tikz/ diff --git a/buch/papers/kugel/figures/tikz/spherical-coordinates.pdf b/buch/papers/kugel/figures/tikz/spherical-coordinates.pdf index 28f242e..1bff016 100644 Binary files a/buch/papers/kugel/figures/tikz/spherical-coordinates.pdf and b/buch/papers/kugel/figures/tikz/spherical-coordinates.pdf differ -- cgit v1.2.1 From c4cf68ac67f7fbadaacae64597ae713a6879f944 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Tue, 16 Aug 2022 23:39:59 +0200 Subject: kugel: Comment out preliminaries, review manu's work until legendre --- buch/papers/kugel/main.tex | 2 +- buch/papers/kugel/packages.tex | 5 + buch/papers/kugel/spherical-harmonics.tex | 229 +++++++++++++++++++++++------- 3 files changed, 180 insertions(+), 56 deletions(-) diff --git a/buch/papers/kugel/main.tex b/buch/papers/kugel/main.tex index 98d9cb2..a281cae 100644 --- a/buch/papers/kugel/main.tex +++ b/buch/papers/kugel/main.tex @@ -11,7 +11,7 @@ \chapterauthor{Manuel Cattaneo, Naoki Pross} \input{papers/kugel/introduction} -\input{papers/kugel/preliminaries} +% \input{papers/kugel/preliminaries} \input{papers/kugel/spherical-harmonics} \input{papers/kugel/applications} diff --git a/buch/papers/kugel/packages.tex b/buch/papers/kugel/packages.tex index 1c4f3e0..b0e1f61 100644 --- a/buch/papers/kugel/packages.tex +++ b/buch/papers/kugel/packages.tex @@ -8,3 +8,8 @@ % following example %\usepackage{packagename} \usepackage{cases} + +\newcommand{\kugeltodo}[1]{\textcolor{red!70!black}{\texttt{[TODO: #1]}}} + +\DeclareMathOperator{\sphlaplacian}{\nabla^2_{\mathit{S}}} +\DeclareMathOperator{\surflaplacian}{\nabla^2_{\partial \mathit{S}}} diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex index c76e757..70657c9 100644 --- a/buch/papers/kugel/spherical-harmonics.tex +++ b/buch/papers/kugel/spherical-harmonics.tex @@ -1,70 +1,189 @@ -% vim:ts=2 sw=2 et spell: +% vim:ts=2 sw=2 et spell tw=80: \section{Spherical Harmonics} -We finally arrived at the main section, which gives our chapter its name. The idea is to discuss spherical harmonics, their mathematical derivation and some of their properties and applications.\newline -The subsection \ref{} will be devoted to the Eigenvalue problem of the Laplace operator. Through the latter, we will derive the set of Eigenfunctions that obey the equation presented in \ref{}[TODO: reference to eigenvalue equation], which will be defined as \emph{Spherical Harmonics}. In fact, this subsection will present their mathematical derivation.\newline -In the subsection \ref{}, on the other hand, some interesting properties related to them will be discussed. Some of these will come back to help us understand in more detail why they are useful in various real-world applications, which will be presented in the section \ref{}.\newline -One specific property will be studied in more detail in the subsection \ref{}, namely the recursive property. -The last subsection is devoted to one of the most beautiful applications (In our humble opinion), namely the derivation of a Fourier-style series expansion but defined on the sphere instead of a plane.\newline -More importantly, this subsection will allow us to connect all the dots we have created with the previous sections, concluding that Fourier is just a specific case of the application of the concept of orthogonality.\newline -Our hope is that after reading this section you will appreciate the beauty and power of generalization that mathematics offers us. -\subsection{Eigenvalue Problem on the Spherical surface} -\subsubsection{Unormalized Spherical Harmonics} -From the chapter \ref{}, we know that the spherical Laplacian is defined as. \begin{equation*} - \nabla^2_S := \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2} - \left[ - \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial}{\partial\vartheta} \right) - + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2} - \right] -\end{equation*} -But we do not want to consider this algebraic monster entirely, since this includes the whole set $\mathbb{R}^3$; rather, we want to focus only on the spherical surface (as the title suggests). We can then further concretise our calculations by selecting any number for the variable $r$, so that we have a sphere and, more importantly, a spherical surface on which we can ``play''.\newline -Surely you have already heard of the unit circle, a geometric entity used extensively in many mathematical contexts. The most famous and basic among them is surely trigonometry.\newline -Extending this concept into three dimensions, we will talk about the unit sphere. This is a very famous sphere, as is the unit circle. So since we need a sphere why not use the most famous one? Thus imposing $r=1$.\newline -Now, since the variable $r$ became a constant, we can leave out all derivatives with respect to $r$, setting them to zero. Then substituting the value of $r$ for 1, we will obtain the operator we will refer to as \emph{Spherical Surface Operator}: +\if 0 +\kugeltodo{Rewrite this section if the preliminaries become an addendum} +We finally arrived at the main section, which gives our chapter its name. The +idea is to discuss spherical harmonics, their mathematical derivation and some +of their properties and applications. + +The subsection \ref{} \kugeltodo{Fix references} will be devoted to the +Eigenvalue problem of the Laplace operator. Through the latter we will derive +the set of Eigenfunctions that obey the equation presented in \ref{} +\kugeltodo{reference to eigenvalue equation}, which will be defined as +\emph{Spherical Harmonics}. In fact, this subsection will present their +mathematical derivation. + +In the subsection \ref{}, on the other hand, some interesting properties +related to them will be discussed. Some of these will come back to help us +understand in more detail why they are useful in various real-world +applications, which will be presented in the section \ref{}. + +One specific property will be studied in more detail in the subsection \ref{}, +namely the recursive property. The last subsection is devoted to one of the +most beautiful applications (In our humble opinion), namely the derivation of a +Fourier-style series expansion but defined on the sphere instead of a plane. +More importantly, this subsection will allow us to connect all the dots we have +created with the previous sections, concluding that Fourier is just a specific +case of the application of the concept of orthogonality. Our hope is that after +reading this section you will appreciate the beauty and power of generalization +that mathematics offers us. +\fi + +\subsection{Eigenvalue Problem} + +\begin{figure} + \centering + \includegraphics{papers/kugel/figures/tikz/spherical-coordinates} + \caption{ + Spherical coordinate system. Space is described with the free variables $r + \in \mathbb{R}_0^+$, $\vartheta \in [0; \pi]$ and $\varphi \in [0; 2\pi)$. + \label{kugel:fig:spherical-coordinates} + } +\end{figure} + +From Section \ref{buch:pde:section:kugel}, we know that the spherical Laplacian +in the spherical coordinate system (shown in Figure +\ref{kugel:fig:spherical-coordinates}) is is defined as \begin{equation*} - \nabla^2_{\partial S} := \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial}{\partial\vartheta} \right) - + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2}. + \sphlaplacian := + \frac{1}{r^2} \frac{\partial}{\partial r} \left( + r^2 \frac{\partial}{\partial r} + \right) + + \frac{1}{r^2} \left[ + \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( + \sin\vartheta \frac{\partial}{\partial\vartheta} + \right) + + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2} + \right]. \end{equation*} -As can be seen, for this definition, the subscript ``$\partial S$'' was used to emphasize the fact that we are on the spherical surface, which can be understood as a boundary of the sphere.\newline -Now that we have defined an operator, we can go on to calculate its eigenfunctions. As mentioned earlier, we can translate this problem at first abstract into a much more concrete problem, which has to do with the field of \emph{Partial Differential Equaitons} (PDEs). The functions we want to find are simply functions that respect the following expression: -\begin{equation}\label{kugel:eq:sph_srfc_laplace} - \nabla^2_{\partial S} f = \lambda f +But we will not consider this algebraic monstrosity in its entirety. As the +title suggests, we will only care about the \emph{surface} of the sphere. This +is for many reasons, but mainly to simplify reduce the already broad scope of +this text. Concretely, we will always work on the unit sphere, which just means +that we set $r = 1$ and keep only $\vartheta$ and $\varphi$ as free variables. +Now, since the variable $r$ became a constant, we can leave out all derivatives +with respect to $r$ and substitute all $r$'s with 1's to obtain a new operator +that deserves its own name. + +\begin{definition}[Surface spherical Laplacian] + \label{kugel:def:surface-laplacian} + The operator + \begin{equation*} + \surflaplacian := + \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( + \sin\vartheta \frac{\partial}{\partial\vartheta} + \right) + + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial\varphi^2}, + \end{equation*} + is called the surface spherical Laplacian. +\end{definition} + +In the definition, the subscript ``$\partial S$'' was used to emphasize the +fact that we are on the spherical surface, which can be understood as being the +boundary of the sphere. But what does it actually do? To get an intuition, +first of all, notice the fact that $\surflaplacian$ have second derivatives, +which means that this a measure of \emph{curvature}; But curvature of what? To +get an even stronger intuition we will go into geometry, were curvature can be +grasped very well visually. Consider figure \ref{kugel:fig:curvature} where the +curvature is shown using colors. First we have the curvature of a curve in 1D, +then the curvature of a surface (2D), and finally the curvature of a function on +the surface of the unit sphere. + +\begin{figure} + \centering + \includegraphics[width=.3\linewidth]{papers/kugel/figures/tikz/curvature-1d} + \hskip 5mm + \includegraphics[width=.3\linewidth]{papers/kugel/figures/povray/curvature} + \hskip 5mm + \includegraphics[width=.3\linewidth]{papers/kugel/figures/povray/spherecurve} + \caption{ + \kugeltodo{Fix alignment / size, add caption. Would be nice to match colors.} + \label{kugel:fig:curvature} + } +\end{figure} + +Now that we have defined an operator, we can go and study its eigenfunctions, +which means that we would like to find the functions $f(\vartheta, \varphi)$ +that satisfy the equation +\begin{equation} \label{kuvel:eqn:eigen} + \surflaplacian f = -\lambda f. \end{equation} -Which is traditionally written as follows: -\begin{equation*} - \nabla^2_{\partial S} f = -\lambda f -\end{equation*} -Perhaps the fact that we are dealing with a PDE may not be obvious at first glance, but if we extend the operator $\nabla^2_{\partial S}$ according to Eq.(\ref{kugel:eq:sph_srfc_laplace}), we will get: -\begin{equation}\label{kugel:eq:PDE_sph} - \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial f}{\partial\vartheta} \right) - + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 f}{\partial\varphi^2} + \lambda f = 0, +Perhaps it may not be obvious at first glance, but we are in fact dealing with a +partial differential equation (PDE). If we unpack the notation of the operator +$\nabla^2_{\partial S}$ according to definition +\ref{kugel:def:surface-laplacian}, we get: +\begin{equation} \label{kugel:eqn:eigen-pde} + \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( + \sin\vartheta \frac{\partial f}{\partial\vartheta} + \right) + + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 f}{\partial\varphi^2} + + \lambda f = 0. \end{equation} -making it emerge.\newline -All functions satisfying Eq.(\ref{kugel:eq:PDE_sph}), are called eigenfunctions. Our new goal is therefore to solve this PDE. The task seems very difficult but we can simplify it with a well-known technique, namely the \emph{separation Ansatz}. The latter consists in assuming that the function $f(\vartheta, \varphi)$ we are looking for can be factorized in the following form -\begin{equation}\label{kugel:eq:sep_ansatz_0} +Since all functions satisfying \eqref{kugel:eqn:eigen-pde} are the +\emph{eigenfunctions} of $\surflaplacian$, our new goal is to solve this PDE. +The task may seem very difficult but we can simplify it with a well-known +technique: \emph{the separation Ansatz}. It consists in assuming that the +function $f(\vartheta, \varphi)$ can be factorized in the following form: +\begin{equation} \label{kugel:eqn:sep-ansatz:0} f(\vartheta, \varphi) = \Theta(\vartheta)\Phi(\varphi). \end{equation} -In short, we are saying that the effect of the two independent variables can be described using the multiplication of two functions that describe their effect separately. If we include this assumption in Eq.(\ref{kugel:eq:PDE_sph}), we have: -\begin{equation} - \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial \Theta(\vartheta)}{\partial\vartheta} \right)\Phi(\varphi) - + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 \Phi(\varphi)}{\partial\varphi^2} \Theta(\vartheta) + \lambda \Theta(\vartheta)\Phi(\varphi) = 0. \label{kugel:eq:sep_ansatz_1} +In other words, we are saying that the effect of the two independent variables +can be described using the multiplication of two functions that describe their +effect separately. This separation process was already presented in section +\ref{buch:pde:section:kugel}, but we will briefly rehearse it here for +convenience. If we substitute this assumption in +\eqref{kugel:eqn:eigen-pde}, we have: +\begin{equation} \label{kugel:eqn:sep-ansatz:1} + \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( + \sin\vartheta \frac{\partial \Theta(\vartheta)}{\partial\vartheta} + \right) \Phi(\varphi) + + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 \Phi(\varphi)}{\partial\varphi^2} + \Theta(\vartheta) + + \lambda \Theta(\vartheta)\Phi(\varphi) = 0. \end{equation} -Dividing Eq.(\ref{kugel:eq:sep_ansatz_1}) by $\Theta(\vartheta)\Phi(\varphi)$ and inserting an auxiliary variable $m$, which we will call the separating constant, we will have: -\begin{equation*} -\frac{1}{\Theta(\vartheta)}\sin \vartheta \frac{d}{d \vartheta} \left( \sin \vartheta \frac{d \Theta}{d \vartheta} \right) + \lambda \sin^2 \vartheta = -\frac{1}{\Phi(\varphi)} \frac{d^2\Phi(\varphi)}{d\varphi^2} = m, -\end{equation*} -which is equivalent to the following system of two \emph{Ordinary Differential Equations} (ODEs) -\begin{align} - \frac{d^2\Phi(\varphi)}{d\varphi^2} &= -m \Phi(\varphi) \label{kugel:eq:ODE_1} \\ - \sin \vartheta \frac{d}{d \vartheta} \left( \sin \vartheta \frac{d \Theta}{d \vartheta} \right) + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right)\Theta(\vartheta) &= 0 \label{kugel:eq:ODE_2} -\end{align} -The solution of Eq.(\ref{kugel:eq:ODE_1}) is quite trivial. The complex exponential is obviously the function we are looking for, so we can write +Dividing by $\Theta(\vartheta)\Phi(\varphi)$ and introducing an auxiliary +variable $m$, the separation constant, yields: \begin{equation*} - \Phi_m(\varphi) = e^{j m \varphi}, \quad m \in \mathbb{Z}. + \frac{1}{\Theta(\vartheta)}\sin \vartheta \frac{d}{d \vartheta} \left( + \sin \vartheta \frac{d \Theta}{d \vartheta} + \right) + + \lambda \sin^2 \vartheta + = -\frac{1}{\Phi(\varphi)} \frac{d^2\Phi(\varphi)}{d\varphi^2} + = m, \end{equation*} -The restriction for the separation constant $m$ arises from the fact that we require the following periodic constraint $\Phi_m(\varphi + 2\pi) = \Phi_m(\varphi)$.\newline -As for Eq.(\ref{kugel:eq:ODE_2}), the resolution will not be so straightforward. We can begin by considering the substitution $x = \cos \vartheta$. The operator $\frac{d}{d \vartheta}$ will be: +which is equivalent to the following system of 2 first order differential +equations (ODEs): +\begin{subequations} + \begin{gather} + \frac{d^2\Phi(\varphi)}{d\varphi^2} = -m \Phi(\varphi), + \label{kugel:eqn:ode-phi} \\ + \sin \vartheta \frac{d}{d \vartheta} \left( + \sin \vartheta \frac{d \Theta}{d \vartheta} + \right) + + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right) + \Theta(\vartheta) = 0 + \label{kugel:eqn:ode-theta}. + \end{gather} +\end{subequations} +The solution of \eqref{kugel:eqn:ode-phi} is easy to find: The complex +exponential is obviously the function we are looking for. So we can directly +write the solutions +\begin{equation} \label{kugel:eqn:ode-phi-sol} + \Phi(\varphi) = e^{i m \varphi}, \quad m \in \mathbb{Z}. +\end{equation} +The restriction that the separation constant $m$ needs to be an integer arises +from the fact that we require a $2\pi$-periodicity in $\varphi$ since +$\Phi(\varphi + 2\pi) = \Phi(\varphi)$. Unfortunately, solving +\eqref{kugel:eqn:ode-theta} is not so straightforward. Actually it is quite +difficult, and the process is so involved that it will require a dedicated +section of its own. + +\subsection{Legendre Functions} + +To solve \eqref{kugel:eqn:ode-theta} +We can begin by considering the substitution $x = \cos \vartheta$. The operator $\frac{d}{d \vartheta}$ will be: \begin{align*} \frac{d}{d \vartheta} = \frac{dx}{d \vartheta}\frac{d}{dx} &= -\sin \vartheta \frac{d}{dx} \\ &= -\sqrt{1-x^2} \frac{d}{dx}. -- cgit v1.2.1 From 4a97506a4759a46f3263aee2c46d684aed0fb104 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Wed, 17 Aug 2022 01:35:28 +0200 Subject: 3. Ueberarbeitung, done --- buch/papers/0f1/teil2.tex | 35 ++++++++++++++++++++++++++--------- buch/papers/0f1/teil3.tex | 8 ++++---- 2 files changed, 30 insertions(+), 13 deletions(-) diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 9b3a586..64f8d83 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -41,37 +41,54 @@ a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}}, in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind. \subsubsection{Rekursionsbeziehungen und Kettenbrüche} -Nimmt man nun folgende Gleichung \cite{0f1:wiki-fraction}: +Will man einen Kettenbruch für das Verhältnis $\frac{f_i(z)}{f_{i-1}(z)}$ finden, braucht man dazu eine Relation der analytischer Funktion $f_i(z)$. +Nimmt man die Gleichung \cite{0f1:wiki-fraction}: \begin{equation*} f_{i-1} - f_i = k_i z f_{i+1}, \end{equation*} wo $f_i$ analytische Funktionen sind und $i > 0$ ist, sowie $k_i$ konstant. Ergibt sich folgender Zusammenhang: \begin{equation*} - \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}} + \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}}. \end{equation*} +Geht man einen Schritt weiter und nimmt für $g_i = \frac{f_i}{f_{i-1}}$ an, kommt man zur Formel +\begin{equation*} + g_i = \cfrac{1}{1+k_izg_{i+1}}. +\end{equation*} +Setzt man dies nun für $g_1$ in den Bruch ein, ergibt sich folgendes: +\begin{equation*} + g_1 = \cfrac{f_1}{f_0} = \cfrac{1}{1+k_izg_2} = \cfrac{1}{1+\cfrac{k_1z}{1+k_2zg_3}} = \cdots +\end{equation*} +Repetiert man dies unendlich, erhält man einen Kettenbruch in der Form: +\begin{equation} + \label{0f1:math:rekursion:eq} + \cfrac{f_1}{f_0} = \cfrac{1}{1+\cfrac{k_1z}{1+\cfrac{k_2z}{1+\cfrac{k_3z}{\cdots}}}}. +\end{equation} + \subsubsection{Rekursion für $\mathstrut_0F_1$} -Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies: +Angewendet auf die Potenzreihe \begin{equation} \label{0f1:math:potenzreihe:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots \end{equation} -Durch Substitution kann bewiesen werden, dass die nachfolgende Formel eine Relation zur obigen Potenzreihe \eqref{0f1:math:potenzreihe:0f1:eq} ist: +kann durch Substitution bewiesen werden, dass \begin{equation*} - \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z). + \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z) \end{equation*} +eine Relation dazu ist. Wenn man für $f_i$ und $k_i$ folgende Annahme trifft: \begin{align*} - f_i =& \mathstrut_0F_1(;c+1;z)\\ - k_i =& \frac{1}{(c+1)(c+i-1)} + f_i =& \mathstrut_0F_1(;c+i;z)\\ + k_i =& \frac{1}{(c+i)(c+i-1)} \end{align*} -erhält man: +und in die Formel \eqref{0f1:math:rekursion:eq} einsetzt, erhält man: \begin{equation*} \cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{\cfrac{z}{(c+2)(c+3)}}{\cdots}}}}. \end{equation*} \subsubsection{Algorithmus} -Mit weiteren Relationen ergibt sich nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch +Da mit obigen Formeln nur ein Verhältnis zwischen $ \frac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)}$ berechnet wurde, braucht es weitere Relationen um $\mathstrut_0F_1(;c;z)$ zu erhalten. +So ergeben ähnliche Relationen nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}}, diff --git a/buch/papers/0f1/teil3.tex b/buch/papers/0f1/teil3.tex index b6c0f4f..2afc34b 100644 --- a/buch/papers/0f1/teil3.tex +++ b/buch/papers/0f1/teil3.tex @@ -15,9 +15,9 @@ Ebenso kann festgestellt werden, dass je grösser der Wert $z$ in $\mathstrut_0F \label{0f1:subsection:konvergenz}} Es zeigt sich in Abbildung \ref{0f1:ausblick:plot:airy:konvergenz}, dass nach drei Iterationen ($k = 3$) die Funktionen genaue Resultate im Bereich von $-2$ bis $2$ liefert. Ebenso kann festgestellt werden, dass der Kettenbruch schneller konvergiert und im positiven Bereich mit der Referenzfunktion $\operatorname{Ai}(x)$ übereinstimmt. Da die Rekursionsformel eine Abwandlung des Kettenbruches ist, verhalten sich die Funktionen in diesem Fall gleich. -Erst wenn mehrerer Iterationen gerechnet werden, ist wie Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen. Allerdings muss beachtet werden, dass die Rekursionsformel zwar erst nach 35 Approximationen gänzlich konvergiert, nach 27 Iterationen sich nicht mehr gross verändert. +Erst wenn mehrerer Iterationen gerechnet werden, ist wie Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen. Bei der Rekursionsformel muss beachtet werden, dass sie zwar erst nach 35 Approximationen gänzlich konvergiert, allerdings nach 27 Iterationen sich nicht mehr gross verändert. -Ist $z$ negativ wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies zu aufgrund des Vorzeichens zu alternierenden Termen. So steigt bei allen Algorithmen zuerst die Differenz zum erwarteten Endwert. Erst nach genügend Iterationen sind die Terme so klein, dass sie das Endresultat nicht mehr signifikant beeinflussen. Während die Potenzreihe zusammen mit dem Kettenbruch nach 34 Approximationen konvergiert, braucht die Rekursionsformel noch zwei Iterationen mehr. Wohingegen die Rekursionsformel der genauste Algorithmus im negativen Bereich ist. Da der Computer mit einer relativen Genauigkeit von $10^{-15}$ rechnet, ist dies das Maximum an Präzision, dass erreicht werden kann. +Ist $z$ negativ wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies zu aufgrund des Vorzeichens zu alternierenden Termen. So steigt bei allen Algorithmen zuerst die Differenz zum erwarteten Endwert. Erst nach genügend Iterationen sind die Terme so klein, dass sie das Endresultat nicht mehr signifikant beeinflussen. Während die Potenzreihe zusammen mit dem Kettenbruch nach 34 Approximationen konvergiert, braucht die Rekursionsformel noch zwei Iterationen mehr. \subsection{Stabilität @@ -39,14 +39,14 @@ Im negativem Bereich sind alle gewählten und umgesetzten Ansätze instabil. Gru \begin{figure} \centering \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzPositiv.pdf} - \caption{Konvergenz mit positivem $z$; Logarithmisch dargestellte absoluter Fehler. + \caption{Konvergenz mit positivem $z$; Logarithmisch dargestellter absoluter Fehler. \label{0f1:ausblick:plot:konvergenz:positiv}} \end{figure} \begin{figure} \centering \includegraphics[width=0.8\textwidth]{papers/0f1/images/konvergenzNegativ.pdf} - \caption{Konvergenz mit negativem $z$; Logarithmisch dargestellte absoluter Fehler. + \caption{Konvergenz mit negativem $z$; Logarithmisch dargestellter absoluter Fehler. \label{0f1:ausblick:plot:konvergenz:negativ}} \end{figure} -- cgit v1.2.1 From a5d4cd12216d17c62b6493675aecf453f82c9ea4 Mon Sep 17 00:00:00 2001 From: Alain Date: Wed, 17 Aug 2022 08:10:05 +0200 Subject: =?UTF-8?q?l=C3=B6sungssachen?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/parzyl/references.bib | 24 +++++++++++++++++++ buch/papers/parzyl/teil1.tex | 49 +++++++++++++++++++++++++++++++-------- 2 files changed, 63 insertions(+), 10 deletions(-) diff --git a/buch/papers/parzyl/references.bib b/buch/papers/parzyl/references.bib index 494ff7c..40be69a 100644 --- a/buch/papers/parzyl/references.bib +++ b/buch/papers/parzyl/references.bib @@ -33,3 +33,27 @@ url = {https://doi.org/10.1016/j.acha.2017.11.004} } +@book{parzyl:whittaker, + place={Cambridge}, + edition={4}, + series={Cambridge Mathematical Library}, + title={A Course of Modern Analysis}, + DOI={10.1017/CBO9780511608759}, + publisher={Cambridge University Press}, + author={Whittaker, E. T. and Watson, G. N.}, + year={1996}, + collection={Cambridge Mathematical Library}} + +@book{parzyl:abramowitz-stegun, + added-at = {2008-06-25T06:25:58.000+0200}, + address = {New York}, + author = {Abramowitz, Milton and Stegun, Irene A.}, + edition = {ninth Dover printing, tenth GPO printing}, + interhash = {d4914a420f489f7c5129ed01ec3cf80c}, + intrahash = {23ec744709b3a776a1af0a3fd65cd09f}, + keywords = {Handbook}, + publisher = {Dover}, + timestamp = {2008-06-25T06:25:58.000+0200}, + title = {Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables}, + year = 1972 +} \ No newline at end of file diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index b02a1bf..edc6db0 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -62,7 +62,7 @@ Mit der Hypergeometrischen Funktion ausgeschrieben ergeben sich die Lösungen - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2). \end{align} In der Literatur gibt es verschiedene Standartlösungen für $w(k,z)$ präsentiert. -Whittaker und Whatson zeigen in \dots eine Lösung +Whittaker und Watson zeigen in \cite{parzyl:whittaker} eine Lösung \begin{equation} D_n(z) = \frac{ \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{2}} z^{-\frac{1}{2}} @@ -76,7 +76,7 @@ Whittaker und Whatson zeigen in \dots eine Lösung }{ \Gamma\left(- {\textstyle \frac{1}{2}} n\right) } - M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}z^2\right). + M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}z^2\right) \end{equation} welche die Differenzialgleichung \begin{equation} @@ -84,18 +84,40 @@ welche die Differenzialgleichung \end{equation} löst. -Blablubla beschreibt zwei Lösungen $U(a, z)$ und $V(a,z)$ der Differenzialgleichung +In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, z)$ und $V(a,z)$ +\begin{align} + U(a,z) &= + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \\ + V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ + \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 + \right\} +\end{align} +mit +\begin{align} + Y_1 &= \frac{1}{\sqrt{\pi}} + \frac{\Gamma\left({\textstyle \frac{1}{4} - + {\textstyle \frac{1}{2}}a}\right)} + {2^{\frac{1}{2} a + \frac{1}{4}}} w_1\\ + Y_2 &= \frac{1}{\sqrt{\pi}} + \frac{\Gamma\left({\textstyle \frac{3}{4} - + {\textstyle \frac{1}{2}}a}\right)} + {2^{\frac{1}{2} a - \frac{1}{4}}} w_2 +\end{align} +der Differenzialgleichung \begin{equation} - \frac{d^2 y}{d z^2} - \left(\frac{1}{4} z^2 + a\right) y = 0. + \frac{d^2 y}{d z^2} - \left(\frac{1}{4} z^2 + a\right) y = 0 \end{equation} +beschrieben. \begin{align} U(a,z) &= - \cos\left(\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right) Y_1 - - \sin\left(\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right) Y_2 \\ - V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left( - \sin\left(\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right) Y_1 - + \cos\left(\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right) Y_2 - \right) + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \\ + V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ + \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 + \right\} \end{align} mit \begin{align} @@ -109,3 +131,10 @@ mit {2^{\frac{1}{2} a - \frac{1}{4}}} w_2 \end{align} +Die Lösungen $U(a,z)$ und $V(a, z)$ können auch mit $D_n(z)$ +ausgedrückt werden +\begin{align} + U(a,z) &= D_{-a-1/2}(z) \\ + V(a,z) &= \frac{\Gamma \left({\textstyle \frac{1}{2}} + a\right)}{\pi} + \left[\sin\left(\pi a\right) D_{-a-1/2}(z) + D_{-a-1/2}(-x)\right]. +\end{align} -- cgit v1.2.1 From 1e358f56c6ad619ff5a2259ff9043af1ee8f274f Mon Sep 17 00:00:00 2001 From: Alain Date: Wed, 17 Aug 2022 08:21:27 +0200 Subject: =?UTF-8?q?=C3=A4nderungen?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/parzyl/teil0.tex | 18 ++---------------- buch/papers/parzyl/teil1.tex | 21 +++++++++++++++++++-- 2 files changed, 21 insertions(+), 18 deletions(-) diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 3b14287..2844a6e 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -238,26 +238,12 @@ und + \mu \right ) - i(\tau) + i(z) = 0 \end{equation} führt. -Die Lösung von \eqref{parzyl:sep_dgl_3} -\begin{equation} - i(z) - = - A\cos{ - \left ( - \sqrt{\lambda + \mu}z - \right )} - + - B\sin{ - \left ( - \sqrt{\lambda + \mu}z - \right )} -\end{equation} -ist und \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} die sogenannten Weberschen Differentialgleichungen sind, welche die parabolischen Zylinder Funktionen als Lösung haben. + diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index edc6db0..154ee71 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -6,6 +6,22 @@ \section{Lösung \label{parzyl:section:teil1}} \rhead{Lösung} + +\eqref{parzyl:sep_dgl_3} beschriebt einen ungedämpften harmonischen Oszillator. +Die Lösung ist somit +\begin{equation} + i(z) + = + A\cos{ + \left ( + \sqrt{\lambda + \mu}z + \right )} + + + B\sin{ + \left ( + \sqrt{\lambda + \mu}z + \right )}. +\end{equation} Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} können mit Hilfe der Whittaker Gleichung gelöst werden. \begin{definition} @@ -78,7 +94,7 @@ Whittaker und Watson zeigen in \cite{parzyl:whittaker} eine Lösung } M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}z^2\right) \end{equation} -welche die Differenzialgleichung +welche die Differentialgleichung \begin{equation} \frac{d^2D_n(z)}{dz^2} + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right)D_n(z) = 0 \end{equation} @@ -105,7 +121,7 @@ mit {\textstyle \frac{1}{2}}a}\right)} {2^{\frac{1}{2} a - \frac{1}{4}}} w_2 \end{align} -der Differenzialgleichung +der Differentialgleichung \begin{equation} \frac{d^2 y}{d z^2} - \left(\frac{1}{4} z^2 + a\right) y = 0 \end{equation} @@ -138,3 +154,4 @@ ausgedrückt werden V(a,z) &= \frac{\Gamma \left({\textstyle \frac{1}{2}} + a\right)}{\pi} \left[\sin\left(\pi a\right) D_{-a-1/2}(z) + D_{-a-1/2}(-x)\right]. \end{align} +TODO Plot \ No newline at end of file -- cgit v1.2.1 From 2cc8141db9b3cb5e7cfa27cf6187fdf0c23f7240 Mon Sep 17 00:00:00 2001 From: Alain Date: Wed, 17 Aug 2022 08:26:46 +0200 Subject: fehlerverbesserungen --- buch/papers/parzyl/teil0.tex | 4 +--- buch/papers/parzyl/teil1.tex | 4 ++-- 2 files changed, 3 insertions(+), 5 deletions(-) diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 2844a6e..4a6f8f4 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -97,8 +97,6 @@ Ebene gezogen werden. Um in diesem Koordinatensystem integrieren und differenzieren zu können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$. -\dots - Wird eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten betrachtet kann dies im kartesischen Koordinatensystem mit \begin{equation} @@ -107,7 +105,7 @@ kann dies im kartesischen Koordinatensystem mit \label{parzyl:eq:ds} \end{equation} ausgedrückt werden. -Das Skalierungsfaktoren werden so bestimmt, dass +Die Skalierungsfaktoren werden so bestimmt, dass \begin{equation} \left(ds\right)^2 = \left(h_{\sigma}d\sigma\right)^2 + \left(h_{\tau}d\tau\right)^2 + \left(h_z dz\right)^2 diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 154ee71..83aa00e 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -22,8 +22,8 @@ Die Lösung ist somit \sqrt{\lambda + \mu}z \right )}. \end{equation} -Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} können mit -Hilfe der Whittaker Gleichung gelöst werden. +Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} werden in \cite{parzyl:whittaker} +mit Hilfe der Whittaker Gleichung gelöst. \begin{definition} Die Funktion \begin{equation*} -- cgit v1.2.1 From 3e8ec5a6aea34b07f0c18aac6fa69ee21bdf89c1 Mon Sep 17 00:00:00 2001 From: Alain Date: Wed, 17 Aug 2022 08:34:26 +0200 Subject: mehr fehler --- buch/papers/parzyl/teil1.tex | 24 +----------------------- 1 file changed, 1 insertion(+), 23 deletions(-) diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 83aa00e..a56d94b 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -125,29 +125,7 @@ der Differentialgleichung \begin{equation} \frac{d^2 y}{d z^2} - \left(\frac{1}{4} z^2 + a\right) y = 0 \end{equation} -beschrieben. -\begin{align} - U(a,z) &= - \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 - - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \\ - V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 - + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 - \right\} -\end{align} -mit -\begin{align} - Y_1 &= \frac{1}{\sqrt{\pi}} - \frac{\Gamma\left({\textstyle \frac{1}{4} - - {\textstyle \frac{1}{2}}a}\right)} - {2^{\frac{1}{2} a + \frac{1}{4}}} w_1\\ - Y_2 &= \frac{1}{\sqrt{\pi}} - \frac{\Gamma\left({\textstyle \frac{3}{4} - - {\textstyle \frac{1}{2}}a}\right)} - {2^{\frac{1}{2} a - \frac{1}{4}}} w_2 -\end{align} - -Die Lösungen $U(a,z)$ und $V(a, z)$ können auch mit $D_n(z)$ +beschrieben. Die Lösungen $U(a,z)$ und $V(a, z)$ können auch mit $D_n(z)$ ausgedrückt werden \begin{align} U(a,z) &= D_{-a-1/2}(z) \\ -- cgit v1.2.1 From 46f7c56ca3b5cb512ed2b82beefeb2057af0d8cf Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Wed, 17 Aug 2022 13:30:40 +0200 Subject: Corrected formatting errors in fourier example. --- buch/papers/sturmliouville/waermeleitung_beispiel.tex | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 7a37b2b..a72c562 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -20,7 +20,7 @@ die partielle Differentialgleichung \frac{\partial u}{\partial t} = \kappa \frac{\partial^{2}u}{{\partial x}^{2}}, \end{equation} -wobei der Stab in diesem Fall auf der X-Achse im Intervall $[0,l]$ liegt. +wobei der Stab in diesem Fall auf der $X$-Achse im Intervall $[0,l]$ liegt. Da diese Differentialgleichung das Problem allgemein für einen homogenen Stab beschreibt, werden zusätzliche Bedingungen benötigt, um beispielsweise @@ -35,7 +35,7 @@ Tempreatur gehalten werden. Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene Temperatur zurückgeben darf. Diese wird einfachheitshalber als $0$ angenomen. -Es folgen nun +Es folgt nun \begin{equation} \label{sturmliouville:eq:example-fourier-boundary-condition-ends-constant} u(t,0) @@ -52,7 +52,7 @@ als Randbedingungen. \subsubsection{Randbedingungen für Stab mit isolierten Enden} -Bei isolierten Enden des Stabes können belibige Temperaturen für $x = 0$ und +Bei isolierten Enden des Stabes können beliebige Temperaturen für $x = 0$ und $x = l$ auftreten. In diesem Fall ist es nicht erlaubt, dass Wärme vom Stab an die Umgebung oder von der Umgebung an den Stab abgegeben wird. @@ -187,7 +187,7 @@ somit auch zu orthogonalen Lösungen führen. % Lösung von X(x), Teil mu % -\subsubsection{Lösund der Differentialgleichung in x} +\subsubsection{Lösund der Differentialgleichung in $x$} Als erstes wird auf die Gleichung~\eqref{sturmliouville:eq:example-fourier-separated-x} eingegangen. Aufgrund der Struktur der Gleichung @@ -473,7 +473,7 @@ berechnet: \\ 2\int_{0}^{l}u(0, x)\cos\left(\frac{m \pi}{l}x\right)dx =& - a_0 \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + a_0 \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx + \sum_{n = 1}^{\infty}\left[a_n\int_{-l}^{l}\cos\left(\frac{n\pi}{l}x\right) \cos\left(\frac{m \pi}{l}x\right)dx\right] @@ -487,7 +487,7 @@ berechnet: Betrachtet man nun die Summanden auf der rechten Seite stellt man fest, dass nahezu alle Terme verschwinden, denn \[ - \int_{-l}^{l}cos\left(\frac{m \pi}{l}x\right) dx + \int_{-l}^{l}\cos\left(\frac{m \pi}{l}x\right) dx = 0, \] @@ -528,10 +528,10 @@ mit $u = \frac{m \pi}{l}x$ substituiert wird: \frac{\sin\left(2u\right)}{4}\right]_{u=-m\pi}^{m\pi} \\ &= - a_m\frac{l}{m\pi}\left(\frac{m\pi}{2} + + a_m\frac{l}{m\pi}\biggl(\frac{m\pi}{2} + \underbrace{\frac{\sin\left(2m\pi\right)}{4}}_{\displaystyle = 0} - \frac{-m\pi}{2} - - \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\right) + \underbrace{\frac{\sin\left(-2m\pi\right)}{4}}_{\displaystyle = 0}\biggr) \\ &= a_m l -- cgit v1.2.1 From c06cb44760c3258ab6d5d30451283371b4881346 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 17 Aug 2022 14:40:44 +0200 Subject: kugel: Add reference --- buch/papers/kugel/references.bib | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/buch/papers/kugel/references.bib b/buch/papers/kugel/references.bib index b74c5cd..e5d6452 100644 --- a/buch/papers/kugel/references.bib +++ b/buch/papers/kugel/references.bib @@ -192,4 +192,15 @@ Created by Henry Reich}, urldate = {2022-08-01}, date = {2022}, file = {Metric Spaces\: Completeness:/Users/npross/Zotero/storage/5JYEE8NF/completeness.html:text/html}, +} + +@book{bell_special_2004, + location = {Mineola, {NY}}, + title = {Special functions for scientists and engineers}, + isbn = {978-0-486-43521-3}, + series = {Dover books on mathematics}, + pagetotal = {247}, + publisher = {Dover Publ}, + author = {Bell, William Wallace}, + date = {2004}, } \ No newline at end of file -- cgit v1.2.1 From fb7badcc5d1353ad11fff486b634d25a7b26b38b Mon Sep 17 00:00:00 2001 From: Alain Date: Wed, 17 Aug 2022 15:44:00 +0200 Subject: les bildeurs --- buch/papers/parzyl/img/D_plot.png | Bin 0 -> 712446 bytes buch/papers/parzyl/img/v_plot.png | Bin 0 -> 637451 bytes buch/papers/parzyl/teil1.tex | 16 ++++++++++++++-- 3 files changed, 14 insertions(+), 2 deletions(-) create mode 100644 buch/papers/parzyl/img/D_plot.png create mode 100644 buch/papers/parzyl/img/v_plot.png diff --git a/buch/papers/parzyl/img/D_plot.png b/buch/papers/parzyl/img/D_plot.png new file mode 100644 index 0000000..f76e35b Binary files /dev/null and b/buch/papers/parzyl/img/D_plot.png differ diff --git a/buch/papers/parzyl/img/v_plot.png b/buch/papers/parzyl/img/v_plot.png new file mode 100644 index 0000000..b8c803e Binary files /dev/null and b/buch/papers/parzyl/img/v_plot.png differ diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index a56d94b..673fa7f 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -88,7 +88,7 @@ Whittaker und Watson zeigen in \cite{parzyl:whittaker} eine Lösung M_{\frac{1}{2} n + \frac{1}{4}, - \frac{1}{4}} \left(\frac{1}{2}z^2\right) + \frac{ - \Gamma\left(-{\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{2}} z^{-\frac{1}{2}} + \Gamma\left(-{\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} z^{-\frac{1}{2}} }{ \Gamma\left(- {\textstyle \frac{1}{2}} n\right) } @@ -132,4 +132,16 @@ ausgedrückt werden V(a,z) &= \frac{\Gamma \left({\textstyle \frac{1}{2}} + a\right)}{\pi} \left[\sin\left(\pi a\right) D_{-a-1/2}(z) + D_{-a-1/2}(-x)\right]. \end{align} -TODO Plot \ No newline at end of file +TODO Plot +\begin{figure} + \centering + \includegraphics[scale=0.3]{papers/parzyl/img/D_plot.png} + \caption{$D_a(z)$ mit unterschiedlichen Werten für $a$.} + \label{parzyl:fig:dnz} +\end{figure} +\begin{figure} + \centering + \includegraphics[scale=0.3]{papers/parzyl/img/v_plot.png} + \caption{$V(a,z)$ mit unterschiedlichen Werten für $a$.} + \label{parzyl:fig:Vnz} +\end{figure} \ No newline at end of file -- cgit v1.2.1 From 030aa1f0d5bb3020c909ff7cedd102ea5ff69927 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= Date: Wed, 17 Aug 2022 15:47:34 +0200 Subject: Revised solution properties section. --- buch/papers/sturmliouville/eigenschaften.tex | 32 ++++++++++++++++------------ 1 file changed, 18 insertions(+), 14 deletions(-) diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index 85f0bf3..bef8a39 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -37,31 +37,35 @@ für die Lösungen des Sturm-Liouville-Problems zur Folge hat. \subsubsection{Exkurs zum Spektralsatz} -Um zu verstehen was für Eigenschaften der selbstadjungierte Operator $L_0$ in +Um zu verstehen welche Eigenschaften der selbstadjungierte Operator $L_0$ in den Lösungen hervorbringt, wird der Spektralsatz benötigt. Dieser wird in der linearen Algebra oft verwendet um zu zeigen, dass eine Matrix diagonalisierbar ist, beziehungsweise dass eine Orthonormalbasis existiert. -Dazu wird zunächst gezeigt, dass eine gegebene $n\times n$-Matrix $A$ aus einem -endlichdimensionalem $\mathbb{K}$-Vektorraum selbstadjungiert ist, also dass + +Im Fall einer gegebenen $n\times n$-Matrix $A$ mit reellen Einträgen wird dazu +zunächst gezeigt, dass $A$ selbstadjungiert ist, also dass \[ \langle Av, w \rangle = \langle v, Aw \rangle \] -für $ v, w \in \mathbb{K}^n$ gilt. -Ist dies der Fall, folgt direkt, dass $A$ auch normal ist. -Dann wird die Aussage des Spektralsatzes -\cite{sturmliouville:spektralsatz-wiki} verwended, welche besagt, dass für -Endomorphismen genau dann eine Orthonormalbasis aus Eigenvektoren existiert, -wenn sie normal sind und nur Eigenwerte aus $\mathbb{K}$ besitzten. +für $ v, w \in \mathbb{R}^n$ gilt. +Ist dies der Fall, kann die Aussage des Spektralsatzes +\cite{sturmliouville:spektralsatz-wiki} verwended werden. +Daraus folgt dann, dass eine Orthonormalbasis aus Eigenvektoren existiert, +wenn $A$ nur Eigenwerte aus $\mathbb{R}$ besitzt. Dies ist allerdings nicht die Einzige Version des Spektralsatzes. -Unter anderen gibt es den Spektralsatz für kompakte Operatoren -\cite{sturmliouville:spektralsatz-wiki}. -Dieser besagt, dass wenn ein linearer kompakter Operator in -$\mathbb{R}$ selbstadjungiert ist, ein (eventuell endliches) -Orthonormalsystem existiert. +Unter anderen gibt es den Spektralsatz für kompakte Operatoren +\cite{sturmliouville:spektralsatz-wiki}, welcher für das +Sturm-Liouville-Problem von Bedeutung ist. +Welche Voraussetzungen erfüllt sein müssen, um diese Version des +Satzes verwenden zu können, wird hier aber nicht diskutiert und kann bei den +Beispielen in diesem Kapitel als gegeben betrachtet werden. +Grundsätzlich ist die Aussage in dieser Version dieselbe, wie bei den Matrizen, +also dass für ein Operator eine Orthonormalbasis aus Eigenvektoren existiert, +falls er selbstadjungiert ist. \subsubsection{Anwendung des Spektralsatzes auf $L_0$} -- cgit v1.2.1 From 88cc0ae20e53d67b671f0713a7921c18736bdf3e Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 17 Aug 2022 16:12:40 +0200 Subject: kugel: fix figures makefile, add curvature-1d --- buch/papers/kugel/figures/tikz/Makefile | 12 + buch/papers/kugel/figures/tikz/curvature-1d.dat | 500 ++++++++++++++++++++++++ buch/papers/kugel/figures/tikz/curvature-1d.pdf | Bin 0 -> 15387 bytes buch/papers/kugel/figures/tikz/curvature-1d.py | 32 ++ buch/papers/kugel/figures/tikz/curvature-1d.tex | 21 + 5 files changed, 565 insertions(+) create mode 100644 buch/papers/kugel/figures/tikz/Makefile create mode 100644 buch/papers/kugel/figures/tikz/curvature-1d.dat create mode 100644 buch/papers/kugel/figures/tikz/curvature-1d.pdf create mode 100644 buch/papers/kugel/figures/tikz/curvature-1d.py create mode 100644 buch/papers/kugel/figures/tikz/curvature-1d.tex diff --git a/buch/papers/kugel/figures/tikz/Makefile b/buch/papers/kugel/figures/tikz/Makefile new file mode 100644 index 0000000..4ec4e5a --- /dev/null +++ b/buch/papers/kugel/figures/tikz/Makefile @@ -0,0 +1,12 @@ +FIGURES := spherical-coordinates.pdf curvature-1d.pdf + +all: $(FIGURES) + +%.pdf: %.tex + pdflatex $< + +curvature-1d.pdf: curvature-1d.tex curvature-1d.dat + pdflatex curvature-1d.tex + +curvature-1d.dat: curvature-1d.py + python3 $< diff --git a/buch/papers/kugel/figures/tikz/curvature-1d.dat b/buch/papers/kugel/figures/tikz/curvature-1d.dat new file mode 100644 index 0000000..6622398 --- /dev/null +++ b/buch/papers/kugel/figures/tikz/curvature-1d.dat @@ -0,0 +1,500 @@ +0.000000000000000000e+00 1.000000000000000000e+00 5.000007286987066095e+02 +2.004008016032064049e-02 1.025056790958151831e+00 4.899813296957295279e+02 +4.008016032064128098e-02 1.050121598724190752e+00 4.799659543969494848e+02 +6.012024048096192147e-02 1.075186379145250948e+00 4.699586248906784931e+02 +8.016032064128256196e-02 1.100243094530689136e+00 4.599633600341078932e+02 +1.002004008016031955e-01 1.125283716879951434e+00 4.499841738393695891e+02 +1.202404809619238429e-01 1.150300231106550664e+00 4.400250738615438877e+02 +1.402805611222444904e-01 1.175284638256853809e+00 4.300900595892592833e+02 +1.603206412825651239e-01 1.200228958722394657e+00 4.201831208385332275e+02 +1.803607214428857575e-01 1.225125235444413541e+00 4.103082361504954747e+02 +2.004008016032063910e-01 1.249965537109345881e+00 4.004693711936409954e+02 +2.204408817635270523e-01 1.274741961333968554e+00 3.906704771712513775e+02 +2.404809619238476859e-01 1.299446637838927776e+00 3.809154892346260795e+02 +2.605210420841683194e-01 1.324071731609375302e+00 3.712083249027585907e+02 +2.805611222444889807e-01 1.348609446041445725e+00 3.615528824890962483e+02 +3.006012024048095865e-01 1.373052026073301457e+00 3.519530395360096122e+02 +3.206412825651302478e-01 1.397391761299501045e+00 3.424126512576057166e+02 +3.406813627254509091e-01 1.421620989067430063e+00 3.329355489915074031e+02 +3.607214428857715149e-01 1.445732097554558448e+00 3.235255386602207750e+02 +3.807615230460921762e-01 1.469717528825280173e+00 3.141863992427096832e+02 +4.008016032064127820e-01 1.493569781866116220e+00 3.049218812567906411e+02 +4.208416833667334433e-01 1.517281415598057848e+00 2.957357052529569614e+02 +4.408817635270541047e-01 1.540845051864837556e+00 2.866315603202378384e+02 +4.609218436873747105e-01 1.564253378395934257e+00 2.776131026046919601e+02 +4.809619238476953718e-01 1.587499151743118286e+00 2.686839538411309150e+02 +5.010020040080159776e-01 1.610575200189357625e+00 2.598476998986618582e+02 +5.210420841683366389e-01 1.633474426628916509e+00 2.511078893406329655e+02 +5.410821643286573002e-01 1.656189811417493107e+00 2.424680319995614752e+02 +5.611222444889779615e-01 1.678714415191247422e+00 2.339315975676150003e+02 +5.811623246492986228e-01 1.701041381653590534e+00 2.255020142032130082e+02 +6.012024048096191731e-01 1.723163940328612753e+00 2.171826671543084046e+02 +6.212424849699398344e-01 1.745075409280051337e+00 2.089768973989005474e+02 +6.412825651302604957e-01 1.766769197794693991e+00 2.008880003033277433e+02 +6.613226452905811570e-01 1.788238809029157217e+00 1.929192242988764008e+02 +6.813627254509018183e-01 1.809477842618958832e+00 1.850737695772391760e+02 +7.014028056112223686e-01 1.830479997248850577e+00 1.773547868053454408e+02 +7.214428857715430299e-01 1.851239073183373218e+00 1.697653758600805816e+02 +7.414829659318636912e-01 1.871748974756613837e+00 1.623085845834024497e+02 +7.615230460921843525e-01 1.892003712820175432e+00 1.549874075583541639e+02 +7.815631262525050138e-01 1.911997407148365635e+00 1.478047849064652723e+02 +8.016032064128255641e-01 1.931724288799645972e+00 1.407636011070246695e+02 +8.216432865731462254e-01 1.951178702433387091e+00 1.338666838386980942e+02 +8.416833667334668867e-01 1.970355108581006931e+00 1.271168028439571600e+02 +8.617234468937875480e-01 1.989248085870571892e+00 1.205166688167746969e+02 +8.817635270541082093e-01 2.007852333203973494e+00 1.140689323140332476e+02 +9.018036072144288706e-01 2.026162671885804123e+00 1.077761826910842018e+02 +9.218436873747494209e-01 2.044174047703075203e+00 1.016409470618853419e+02 +9.418837675350700822e-01 2.061881532954947804e+00 9.566568928413349227e+01 +9.619238476953907435e-01 2.079280328431652780e+00 8.985280896980044929e+01 +9.819639278557114048e-01 2.096365765341811738e+00 8.420464052146976996e+01 +1.002004008016031955e+00 2.113133307187384347e+00 7.872345219486057033e+01 +1.022044088176352616e+00 2.129578551585488810e+00 7.341144518791566043e+01 +1.042084168336673278e+00 2.145697232036356539e+00 6.827075275681968947e+01 +1.062124248496993939e+00 2.161485219636723798e+00 6.330343935930140020e+01 +1.082164328657314600e+00 2.176938524737964453e+00 5.851149982556578522e+01 +1.102204408817635262e+00 2.192053298548298113e+00 5.389685855718687435e+01 +1.122244488977955923e+00 2.206825834678430187e+00 4.946136875428519630e+01 +1.142284569138276584e+00 2.221252570630007028e+00 4.520681167129833966e+01 +1.162324649298597246e+00 2.235330089226285288e+00 4.113489590164444110e+01 +1.182364729458917685e+00 2.249055119984439521e+00 3.724725669156617869e+01 +1.202404809619238346e+00 2.262424540428958686e+00 3.354545528342948302e+01 +1.222444889779559007e+00 2.275435377345608856e+00 3.003097828874255271e+01 +1.242484969939879669e+00 2.288084807975446999e+00 2.670523709114522859e+01 +1.262525050100200330e+00 2.300370161148418191e+00 2.356956727960955078e+01 +1.282565130260520991e+00 2.312288918356074419e+00 2.062522811207871243e+01 +1.302605210420841653e+00 2.323838714762985536e+00 1.787340200976009186e+01 +1.322645290581162314e+00 2.335017340156437360e+00 1.531519408227492640e+01 +1.342685370741482975e+00 2.345822739834032333e+00 1.295163168385587404e+01 +1.362725450901803637e+00 2.356253015428841913e+00 1.078366400077049292e+01 +1.382765531062124298e+00 2.366306425671775404e+00 8.812161670136093861e+00 +1.402805611222444737e+00 2.375981387090854824e+00 7.037916430279492097e+00 +1.422845691382765398e+00 2.385276474647127998e+00 5.461640802781636772e+00 +1.442885771543086060e+00 2.394190422306948562e+00 4.083967806335150996e+00 +1.462925851703406721e+00 2.402722123550405264e+00 2.905450702529595031e+00 +1.482965931863727382e+00 2.410870631815691834e+00 1.926562773666154138e+00 +1.503006012024048044e+00 2.418635160879236246e+00 1.147697132691613664e+00 +1.523046092184368705e+00 2.426015085171442820e+00 5.691665653277303560e-01 +1.543086172344689366e+00 2.433009940027915263e+00 1.912034044591185422e-01 +1.563126252505010028e+00 2.439619421876060734e+00 1.395943683027547552e-02 +1.583166332665330689e+00 2.445843388357002546e+00 3.750584208938356756e-02 +1.603206412825651128e+00 2.451681858382752210e+00 2.618331642032580286e-01 +1.623246492985971789e+00 2.457135012128611962e+00 6.868513152547650602e-01 +1.643286573146292451e+00 2.462203190960818411e+00 1.312389611621266550e+00 +1.663326653306613112e+00 2.466886897299453096e+00 2.138196842519770602e+00 +1.683366733466933773e+00 2.471186794416676769e+00 3.163941370891084848e+00 +1.703406813627254435e+00 2.475103706170361573e+00 4.389211266582178084e+00 +1.723446893787575096e+00 2.478638616673238371e+00 5.813514471774004377e+00 +1.743486973947895757e+00 2.481792669897687542e+00 7.436278998587575018e+00 +1.763527054108216419e+00 2.484567169216326032e+00 9.256853158789395408e+00 +1.783567134268537080e+00 2.486963576878586935e+00 1.127450582550371472e+01 +1.803607214428857741e+00 2.488983513423490557e+00 1.348842672682692978e+01 +1.823647294589178181e+00 2.490628757028852114e+00 1.589772677122579658e+01 +1.843687374749498842e+00 2.491901242797179172e+00 1.850143840458866151e+01 +1.863727454909819503e+00 2.492803061978552392e+00 2.129851599878729118e+01 +1.883767535070140164e+00 2.493336461130795989e+00 2.428783627159159408e+01 +1.903807615230460826e+00 2.493503841217282080e+00 2.746819873777046439e+01 +1.923847695390781487e+00 2.493307756642720641e+00 3.083832619119621654e+01 +1.943887775551102148e+00 2.492750914227336079e+00 3.439686521775931283e+01 +1.963927855711422810e+00 2.491836172119830994e+00 3.814238673888808506e+01 +1.983967935871743471e+00 2.490566538649576334e+00 4.207338658545420174e+01 +2.004008016032063910e+00 2.488945171118494670e+00 4.618828610183413019e+01 +2.024048096192384794e+00 2.486975374533113126e+00 5.048543277988349587e+01 +2.044088176352705233e+00 2.484660600277302400e+00 5.496310092257003532e+01 +2.064128256513026116e+00 2.482004444726231274e+00 5.961949233699898087e+01 +2.084168336673346555e+00 2.479010647802090794e+00 6.445273705655124274e+01 +2.104208416833667439e+00 2.475683091472176578e+00 6.946089409184656915e+01 +2.124248496993987878e+00 2.472025798189923851e+00 7.464195221022733051e+01 +2.144288577154308317e+00 2.468042929279522735e+00 7.999383074345310263e+01 +2.164328657314629201e+00 2.463738783264768806e+00 8.551438042327842481e+01 +2.184368737474949640e+00 2.459117794142811952e+00 9.120138424458035331e+01 +2.204408817635270523e+00 2.454184529603501197e+00 9.705255835568922862e+01 +2.224448897795590963e+00 2.448943689195040463e+00 1.030655529755629374e+02 +2.244488977955911846e+00 2.443400102436689814e+00 1.092379533374396345e+02 +2.264529058116232285e+00 2.437558726879272442e+00 1.155672806585862560e+02 +2.284569138276553169e+00 2.431424646114265897e+00 1.220509931357573947e+02 +2.304609218436873608e+00 2.425003067732275142e+00 1.286864869659601709e+02 +2.324649298597194491e+00 2.418299321231706767e+00 1.354710973921206971e+02 +2.344689378757514930e+00 2.411318855878493483e+00 1.424020997732258422e+02 +2.364729458917835370e+00 2.404067238517710425e+00 1.494767106785168664e+02 +2.384769539078156253e+00 2.396550151337982548e+00 1.566920890052907680e+02 +2.404809619238476692e+00 2.388773389589562868e+00 1.640453371198620403e+02 +2.424849699398797576e+00 2.380742859257013677e+00 1.715335020212285144e+02 +2.444889779559118015e+00 2.372464574687412675e+00 1.791535765269697436e+02 +2.464929859719438898e+00 2.363944656175040571e+00 1.869025004809070936e+02 +2.484969939879759337e+00 2.355189327503528496e+00 1.947771619820341300e+02 +2.505010020040080221e+00 2.346204913446435114e+00 2.027743986342312610e+02 +2.525050100200400660e+00 2.336997837227277053e+00 2.108909988162550349e+02 +2.545090180360721543e+00 2.327574617940013191e+00 2.191237029714987443e+02 +2.565130260521041983e+00 2.317941867931036182e+00 2.274692049170012638e+02 +2.585170340681362422e+00 2.308106290143709938e+00 2.359241531711823257e+02 +2.605210420841683305e+00 2.298074675426524660e+00 2.444851522997685436e+02 +2.625250501002003745e+00 2.287853899805951663e+00 2.531487642793698569e+02 +2.645290581162324628e+00 2.277450921725090449e+00 2.619115098781609845e+02 +2.665330661322645067e+00 2.266872779249217817e+00 2.707698700531099121e+02 +2.685370741482965951e+00 2.256126587239360770e+00 2.797202873631965190e+02 +2.705410821643286390e+00 2.245219534495030533e+00 2.887591673980486462e+02 +2.725450901803607273e+00 2.234158880867263886e+00 2.978828802214276834e+02 +2.745490981963927712e+00 2.222951954343126868e+00 3.070877618289785573e+02 +2.765531062124248596e+00 2.211606148102859937e+00 3.163701156196634088e+02 +2.785571142284569035e+00 2.200128917550841834e+00 3.257262138802831259e+02 +2.805611222444889474e+00 2.188527777321561008e+00 3.351522992824964149e+02 +2.825651302605210358e+00 2.176810298261803389e+00 3.446445863917298311e+02 +2.845691382765530797e+00 2.164984104390269337e+00 3.541992631873747541e+02 +2.865731462925851680e+00 2.153056869835828113e+00 3.638124925936636487e+02 +2.885771543086172120e+00 2.141036315755658670e+00 3.734804140206049965e+02 +2.905811623246493003e+00 2.128930207234495775e+00 3.831991449143642399e+02 +2.925851703406813442e+00 2.116746350166242685e+00 3.929647823164625606e+02 +2.945891783567134325e+00 2.104492588119187158e+00 4.027734044311732191e+02 +2.965931863727454765e+00 2.092176799186097114e+00 4.126210722004783520e+02 +2.985971943887775648e+00 2.079806892820440289e+00 4.225038308859634526e+02 +3.006012024048096087e+00 2.067390806660023728e+00 4.324177116570036219e+02 +3.026052104208416527e+00 2.054936503339299669e+00 4.423587331846135839e+02 +3.046092184368737410e+00 2.042451967291644355e+00 4.523229032403145879e+02 +3.066132264529057849e+00 2.029945201542878497e+00 4.623062202993779124e+02 +3.086172344689378733e+00 2.017424224497317731e+00 4.723046751478044598e+02 +3.106212424849699172e+00 2.004897066717655107e+00 4.823142524923883343e+02 +3.126252505010020055e+00 1.992371767699953278e+00 4.923309325732264483e+02 +3.146292585170340494e+00 1.979856372645053764e+00 5.023506927780170486e+02 +3.166332665330661378e+00 1.967358929227692510e+00 5.123695092575079570e+02 +3.186372745490981817e+00 1.954887484364624450e+00 5.223833585414381560e+02 +3.206412825651302256e+00 1.942450080983050720e+00 5.323882191543301587e+02 +3.226452905811623140e+00 1.930054754790647475e+00 5.423800732304792973e+02 +3.246492985971943579e+00 1.917709531048496396e+00 5.523549081274929904e+02 +3.266533066132264462e+00 1.905422421348207829e+00 5.623087180377352752e+02 +3.286573146292584902e+00 1.893201420394537093e+00 5.722375055970223912e+02 +3.306613226452905785e+00 1.881054502794775818e+00 5.821372834899317468e+02 +3.326653306613226224e+00 1.868989619856223694e+00 5.920040760510720474e+02 +3.346693386773547108e+00 1.857014696393007203e+00 6.018339208616766882e+02 +3.366733466933867547e+00 1.845137627543546266e+00 6.116228703408767160e+02 +3.386773547094188430e+00 1.833366275599931816e+00 6.213669933310161468e+02 +3.406813627254508869e+00 1.821708466850500807e+00 6.310623766763693538e+02 +3.426853707414829309e+00 1.810171988436861001e+00 6.407051267946321786e+02 +3.446893787575150192e+00 1.798764585226647394e+00 6.502913712405503475e+02 +3.466933867735470631e+00 1.787493956703248177e+00 6.598172602610595732e+02 +3.486973947895791515e+00 1.776367753873757227e+00 6.692789683413144530e+02 +3.507014028056111954e+00 1.765393576196397918e+00 6.786726957409805436e+02 +3.527054108216432837e+00 1.754578968528644589e+00 6.879946700201794556e+02 +3.547094188376753277e+00 1.743931418097274477e+00 6.972411475544654422e+02 +3.567134268537074160e+00 1.733458351491558469e+00 7.064084150382354892e+02 +3.587174348697394599e+00 1.723167131680813480e+00 7.154927909759586555e+02 +3.607214428857715482e+00 1.713065055057490182e+00 7.244906271606341761e+02 +3.627254509018035922e+00 1.703159348507010673e+00 7.333983101388791965e+02 +3.647294589178356361e+00 1.693457166505509370e+00 7.422122626620608798e+02 +3.667334669338677244e+00 1.683965588246658651e+00 7.509289451228887629e+02 +3.687374749498997684e+00 1.674691614798728523e+00 7.595448569768896050e+02 +3.707414829659318567e+00 1.665642166293012316e+00 7.680565381481970917e+02 +3.727454909819639006e+00 1.656824079144766593e+00 7.764605704190873894e+02 +3.747494989979959890e+00 1.648244103307762831e+00 7.847535788027066701e+02 +3.767535070140280329e+00 1.639908899563566447e+00 7.929322328984358137e+02 +3.787575150300601212e+00 1.631825036846622945e+00 8.009932482293520479e+02 +3.807615230460921651e+00 1.623998989606231236e+00 8.089333875612445581e+02 +3.827655310621242535e+00 1.616437135206458375e+00 8.167494622026619027e+02 +3.847695390781562974e+00 1.609145751365050003e+00 8.244383332854611126e+02 +3.867735470941883413e+00 1.602131013632347223e+00 8.319969130253510912e+02 +3.887775551102204297e+00 1.595398992911243319e+00 8.394221659619206548e+02 +3.907815631262524736e+00 1.588955653019160641e+00 8.467111101776515625e+02 +3.927855711422845619e+00 1.582806848293030866e+00 8.538608184954326816e+02 +3.947895791583166059e+00 1.576958321238246530e+00 8.608684196540875746e+02 +3.967935871743486942e+00 1.571415700222517753e+00 8.677310994614492756e+02 +3.987975951903807381e+00 1.566184497215570515e+00 8.744461019245148918e+02 +4.008016032064127820e+00 1.561270105575586431e+00 8.810107303562293737e+02 +4.028056112224448704e+00 1.556677797883275982e+00 8.874223484584509833e+02 +4.048096192384769587e+00 1.552412723824457164e+00 8.936783813806663375e+02 +4.068136272545089582e+00 1.548479908121984883e+00 8.997763167540272207e+02 +4.088176352705410466e+00 1.544884248517864656e+00 9.057137057002989877e+02 +4.108216432865731349e+00 1.541630513806363734e+00 9.114881638153049153e+02 +4.128256513026052232e+00 1.538723341918903031e+00 9.170973721264856522e+02 +4.148296593186372228e+00 1.536167238061506124e+00 9.225390780241765469e+02 +4.168336673346693111e+00 1.533966572905543835e+00 9.278110961662381442e+02 +4.188376753507013994e+00 1.532125580832512046e+00 9.329113093556687772e+02 +4.208416833667334878e+00 1.530648358233542172e+00 9.378376693908538755e+02 +4.228456913827654873e+00 1.529538861864323529e+00 9.425881978881050145e+02 +4.248496993987975756e+00 1.528800907256105734e+00 9.471609870761637922e+02 +4.268537074148296639e+00 1.528438167183412855e+00 9.515542005623437944e+02 +4.288577154308616635e+00 1.528454170189090799e+00 9.557660740700115412e+02 +4.308617234468937518e+00 1.528852299167273276e+00 9.597949161471043453e+02 +4.328657314629258401e+00 1.529635790004841844e+00 9.636391088454030296e+02 +4.348697394789579285e+00 1.530807730281920964e+00 9.672971083702858550e+02 +4.368737474949899280e+00 1.532371058031932520e+00 9.707674457007029787e+02 +4.388777555110220163e+00 1.534328560561707189e+00 9.740487271791230341e+02 +4.408817635270541047e+00 1.536682873332125610e+00 9.771396350712136609e+02 +4.428857715430861930e+00 1.539436478899741445e+00 9.800389280950321336e+02 +4.448897795591181925e+00 1.542591705919805545e+00 9.827454419195138371e+02 +4.468937875751502808e+00 1.546150728211101333e+00 9.852580896320574766e+02 +4.488977955911823692e+00 1.550115563882954017e+00 9.875758621750194379e+02 +4.509018036072143687e+00 1.554488074524779329e+00 9.896978287509432448e+02 +4.529058116232464570e+00 1.559269964458483093e+00 9.916231371963593801e+02 +4.549098196392785454e+00 1.564462780054019841e+00 9.933510143240067691e+02 +4.569138276553106337e+00 1.570067909108384452e+00 9.948807662333381359e+02 +4.589178356713426332e+00 1.576086580288286632e+00 9.962117785891847461e+02 +4.609218436873747216e+00 1.582519862636726060e+00 9.973435168684678729e+02 +4.629258517034068099e+00 1.589368665143676473e+00 9.982755265748584179e+02 +4.649298597194388982e+00 1.596633736381040114e+00 9.990074334212996519e+02 +4.669338677354708977e+00 1.604315664202031311e+00 9.995389434803163340e+02 +4.689378757515029861e+00 1.612414875505097545e+00 9.998698433020541643e+02 +4.709418837675350744e+00 1.620931636062481251e+00 1.000000000000000000e+03 +4.729458917835670739e+00 1.629866050413486533e+00 9.999293613043465712e+02 +4.749498997995991623e+00 1.639218061822500072e+00 9.996579555829848687e+02 +4.769539078156312506e+00 1.648987452301774237e+00 9.991858918301107906e+02 +4.789579158316633389e+00 1.659173842698966617e+00 9.985133596224548000e+02 +4.809619238476953385e+00 1.669776692849408217e+00 9.976406290431494881e+02 +4.829659318637274268e+00 1.680795301793028163e+00 9.965680505732656229e+02 +4.849699398797595151e+00 1.692228808055850298e+00 9.952960549510630699e+02 +4.869739478957916035e+00 1.704076189995956891e+00 9.938251529990096742e+02 +4.889779559118236030e+00 1.716336266213768447e+00 9.921559354186391602e+02 +4.909819639278556913e+00 1.729007696026489072e+00 9.902890725533304703e+02 +4.929859719438877796e+00 1.742088980006505361e+00 9.882253141191039276e+02 +4.949899799599197792e+00 1.755578460583548051e+00 9.859654889035417682e+02 +4.969939879759518675e+00 1.769474322710359537e+00 9.835105044329535531e+02 +4.989979959919839558e+00 1.783774594591596818e+00 9.808613466079225418e+02 +5.010020040080160442e+00 1.798477148475690290e+00 9.780190793073752502e+02 +5.030060120240480437e+00 1.813579701509330233e+00 9.749848439613382425e+02 +5.050100200400801320e+00 1.829079816654240354e+00 9.717598590925483677e+02 +5.070140280561122204e+00 1.844974903665872024e+00 9.683454198271051609e+02 +5.090180360721443087e+00 1.861262220133622414e+00 9.647428973743595861e+02 +5.110220440881763082e+00 1.877938872582164631e+00 9.609537384762481906e+02 +5.130260521042083965e+00 1.895001817633443997e+00 9.569794648262927694e+02 +5.150300601202404849e+00 1.912447863228867728e+00 9.528216724585031443e+02 +5.170340681362724844e+00 1.930273669911211520e+00 9.484820311064232783e+02 +5.190380761523045727e+00 1.948475752165717889e+00 9.439622835325791357e+02 +5.210420841683366611e+00 1.967050479819845377e+00 9.392642448286025001e+02 +5.230460921843687494e+00 1.985994079501115728e+00 9.343898016863045086e+02 +5.250501002004007489e+00 2.005302636152468398e+00 9.293409116399966479e+02 +5.270541082164328373e+00 2.024972094604515771e+00 9.241196022803618462e+02 +5.290581162324649256e+00 2.044998261204058920e+00 9.187279704401921663e+02 +5.310621242484970139e+00 2.065376805498225998e+00 9.131681813523182427e+02 +5.330661322645290134e+00 2.086103261973545120e+00 9.074424677800708423e+02 +5.350701402805611018e+00 2.107173031849256084e+00 9.015531291206212927e+02 +5.370741482965931901e+00 2.128581384924137954e+00 8.955025304815651452e+02 +5.390781563126251896e+00 2.150323461476119746e+00 8.892931017311141204e+02 +5.410821643286572780e+00 2.172394274213905074e+00 8.829273365222821894e+02 +5.430861723446893663e+00 2.194788710279818922e+00 8.764077912914567605e+02 +5.450901803607214546e+00 2.217501533303093186e+00 8.697370842317545794e+02 +5.470941883767534542e+00 2.240527385502743662e+00 8.629178942415799156e+02 +5.490981963927855425e+00 2.263860789839213794e+00 8.559529598487991962e+02 +5.511022044088176308e+00 2.287496152213901457e+00 8.488450781109748959e+02 +5.531062124248497192e+00 2.311427763715702355e+00 8.415971034920893317e+02 +5.551102204408817187e+00 2.335649802913659201e+00 8.342119467162179944e+02 +5.571142284569138070e+00 2.360156338194801862e+00 8.266925735986054633e+02 +5.591182364729458953e+00 2.384941330146225447e+00 8.190420038546226351e+02 +5.611222444889778949e+00 2.409998633980471094e+00 8.112633098870738877e+02 +5.631262525050099832e+00 2.435322002003218689e+00 8.033596155523445077e+02 +5.651302605210420715e+00 2.460905086122306518e+00 7.953340949058906517e+02 +5.671342685370741599e+00 2.486741440397069347e+00 7.871899709275636496e+02 +5.691382765531061594e+00 2.512824523626973505e+00 7.789305142272897911e+02 +5.711422845691382477e+00 2.539147701978509364e+00 7.705590417316205958e+02 +5.731462925851703361e+00 2.565704251649277179e+00 7.620789153516853958e+02 +5.751503006012024244e+00 2.592487361568209359e+00 7.534935406330763499e+02 +5.771543086172344239e+00 2.619490136130837588e+00 7.448063653882098833e+02 +5.791583166332665122e+00 2.646705597968513235e+00 7.360208783117147959e+02 +5.811623246492986006e+00 2.674126690750449509e+00 7.271406075794046728e+02 +5.831663326653306001e+00 2.701746282017488454e+00 7.181691194313910955e+02 +5.851703406813626884e+00 2.729557166046437722e+00 7.091100167399115435e+02 +5.871743486973947768e+00 2.757552066743818919e+00 6.999669375624501981e+02 +5.891783567134268651e+00 2.785723640567889792e+00 6.907435536807222434e+02 +5.911823647294588646e+00 2.814064479477745628e+00 6.814435691261201100e+02 +5.931863727454909530e+00 2.842567113908326615e+00 6.720707186922043093e+02 +5.951903807615230413e+00 2.871224015770126758e+00 6.626287664348450335e+02 +5.971943887775551296e+00 2.900027601472412453e+00 6.531215041606080831e+02 +5.991983967935871291e+00 2.928970234968723663e+00 6.435527499039991426e+02 +6.012024048096192175e+00 2.958044230823453802e+00 6.339263463941722421e+02 +6.032064128256513058e+00 2.987241857298241765e+00 6.242461595117250681e+02 +6.052104208416833053e+00 3.016555339456976181e+00 6.145160767361943499e+02 +6.072144288577153937e+00 3.045976862288150677e+00 6.047400055848752345e+02 +6.092184368737474820e+00 3.075498573843291616e+00 5.949218720435990235e+02 +6.112224448897795703e+00 3.105112588390241068e+00 5.850656189900898880e+02 +6.132264529058115698e+00 3.134810989579997376e+00 5.751752046105395948e+02 +6.152304609218436582e+00 3.164585833625852995e+00 5.652546008100322297e+02 +6.172344689378757465e+00 3.194429152493549307e+00 5.553077916174643178e+02 +6.192384769539078349e+00 3.224332957101171182e+00 5.453387715855913029e+02 +6.212424849699398344e+00 3.254289240527490801e+00 5.353515441868502194e+02 +6.232464929859719227e+00 3.284289981227487498e+00 5.253501202055987278e+02 +6.252505010020040110e+00 3.314327146253717160e+00 5.153385161274204620e+02 +6.272545090180360106e+00 3.344392694482282824e+00 5.053207525261383921e+02 +6.292585170340680989e+00 3.374478579842083992e+00 4.953008524491854700e+02 +6.312625250501001872e+00 3.404576754546040807e+00 4.852828398019860288e+02 +6.332665330661322756e+00 3.434679172323020335e+00 4.752707377319885609e+02 +6.352705410821642751e+00 3.464777791649148231e+00 4.652685670130051676e+02 +6.372745490981963634e+00 3.494864578977221026e+00 4.552803444305018843e+02 +6.392785571142284518e+00 3.524931511962900554e+00 4.453100811684944347e+02 +6.412825651302604513e+00 3.554970582686421299e+00 4.353617811986907782e+02 +6.432865731462925396e+00 3.584973800868508143e+00 4.254394396725285787e+02 +6.452905811623246279e+00 3.614933197079194027e+00 4.155470413167602146e+02 +6.472945891783567163e+00 3.644840825938279849e+00 4.056885588332180532e+02 +6.492985971943887158e+00 3.674688769306128311e+00 3.958679513034139177e+02 +6.513026052104208041e+00 3.704469139463525185e+00 3.860891625986033660e+02 +6.533066132264528925e+00 3.734174082279312135e+00 3.763561197959638776e+02 +6.553106212424849808e+00 3.763795780364542765e+00 3.666727316015129077e+02 +6.573146292585169803e+00 3.793326456211875808e+00 3.570428867804062634e+02 +6.593186372745490686e+00 3.822758375318961566e+00 3.474704525952413405e+02 +6.613226452905811570e+00 3.852083849294539952e+00 3.379592732530011290e+02 +6.633266533066131565e+00 3.881295238946041781e+00 3.285131683612518714e+02 +6.653306613226452448e+00 3.910384957347420976e+00 3.191359313942206768e+02 +6.673346693386773332e+00 3.939345472885993349e+00 3.098313281693717158e+02 +6.693386773547094215e+00 3.968169312287071815e+00 3.006030953350844470e+02 +6.713426853707414210e+00 3.996849063615168340e+00 2.914549388700485792e+02 +6.733466933867735094e+00 4.025377379250564047e+00 2.823905325949738199e+02 +6.753507014028055977e+00 4.053746978840048421e+00 2.734135166972172897e+02 +6.773547094188376860e+00 4.081950652220645459e+00 2.645274962689139784e+02 +6.793587174348696855e+00 4.109981262315153927e+00 2.557360398592040838e+02 +6.813627254509017739e+00 4.137831747998339971e+00 2.470426780411323762e+02 +6.833667334669338622e+00 4.165495126932617254e+00 2.384509019938032282e+02 +6.853707414829658617e+00 4.192964498372094617e+00 2.299641621003518992e+02 +6.873747494989979501e+00 4.220233045933865057e+00 2.215858665622992305e+02 +6.893787575150300384e+00 4.247294040335392928e+00 2.133193800308498282e+02 +6.913827655310621267e+00 4.274140842096944226e+00 2.051680222556753677e+02 +6.933867735470941263e+00 4.300766904207941721e+00 1.971350667517327224e+02 +6.953907815631262146e+00 4.327165774756191574e+00 1.892237394846470409e+02 +6.973947895791583029e+00 4.353331099518909397e+00 1.814372175751938983e+02 +6.993987975951903913e+00 4.379256624514525242e+00 1.737786280233937930e+02 +7.014028056112223908e+00 4.404936198514227463e+00 1.662510464527364036e+02 +7.034068136272544791e+00 4.430363775512244473e+00 1.588574958750354824e+02 +7.054108216432865675e+00 4.455533417153866971e+00 1.516009454764152053e+02 +7.074148296593185670e+00 4.480439295120240750e+00 1.444843094249101227e+02 +7.094188376753506553e+00 4.505075693468969966e+00 1.375104457001587832e+02 +7.114228456913827436e+00 4.529437010929587615e+00 1.306821549456662126e+02 +7.134268537074148320e+00 4.553517763152981068e+00 1.240021793440882476e+02 +7.154308617234468315e+00 4.577312584913854288e+00 1.174732015159950436e+02 +7.174348697394789198e+00 4.600816232265364292e+00 1.110978434425529429e+02 +7.194388777555110082e+00 4.624023584645035712e+00 1.048786654125609346e+02 +7.214428857715430965e+00 4.646929646931139857e+00 9.881816499425976019e+01 +7.234468937875750960e+00 4.669529551448691862e+00 9.291877603233054117e+01 +7.254509018036071843e+00 4.691818559924266552e+00 8.718286767048279273e+01 +7.274549098196392727e+00 4.713792065388847874e+00 8.161274340002822214e+01 +7.294589178356712722e+00 4.735445594027945404e+00 7.621064013481766608e+01 +7.314629258517033605e+00 4.756774806978249615e+00 7.097872731291521120e+01 +7.334669338677354489e+00 4.777775502070065627e+00 6.591910602537187458e+01 +7.354709418837675372e+00 4.798443615514884186e+00 6.103380817244479317e+01 +7.374749498997995367e+00 4.818775223537352659e+00 5.632479564760383539e+01 +7.394789579158316251e+00 4.838766543951037669e+00 5.179395954965144000e+01 +7.414829659318637134e+00 4.858413937677311445e+00 4.744311942327492204e+01 +7.434869739478958017e+00 4.877713910206781023e+00 4.327402252833200436e+01 +7.454909819639278012e+00 4.896663113002647449e+00 3.928834313816695811e+01 +7.474949899799598896e+00 4.915258344845452321e+00 3.548768186723586382e+01 +7.494989979959919779e+00 4.933496553118660088e+00 3.187356502831510241e+01 +7.515030060120239774e+00 4.951374835034558330e+00 2.844744401954644530e+01 +7.535070140280560658e+00 4.968890438800001697e+00 2.521069474156775314e+01 +7.555110220440881541e+00 4.986040764721496821e+00 2.216461704496407137e+01 +7.575150300601202424e+00 5.002823366249223191e+00 1.931043420825829671e+01 +7.595190380761522420e+00 5.019235950959545889e+00 1.664929244665321662e+01 +7.615230460921843303e+00 5.035276381475634722e+00 1.418226045172094807e+01 +7.635270541082164186e+00 5.050942676325811398e+00 1.191032896222642634e+01 +7.655310621242485070e+00 5.066233010739295217e+00 9.834410366254722646e+00 +7.675350701402805065e+00 5.081145717379013327e+00 7.955338334803988332e+00 +7.695390781563125948e+00 5.095679287011193104e+00 6.273867486990178044e+00 +7.715430861723446831e+00 5.109832369111450667e+00 4.790673086998884500e+00 +7.735470941883766827e+00 5.123603772407154366e+00 3.506350772904916813e+00 +7.755511022044087710e+00 5.136992465355831428e+00 2.421416317469038848e+00 +7.775551102204408593e+00 5.149997576559419699e+00 1.536305421008269612e+00 +7.795591182364729477e+00 5.162618395114220604e+00 8.513735364222744240e-01 +7.815631262525049472e+00 5.174854370896386335e+00 3.668957264467385126e-01 +7.835671342685370355e+00 5.186705114782850679e+00 8.306655319023606432e-02 +7.855711422845691239e+00 5.198170398807591575e+00 0.000000000000000000e+00 +7.875751503006012122e+00 5.209250156253183661e+00 1.177294256871248418e-01 +7.895791583166332117e+00 5.219944481677590176e+00 4.362075511299656205e-01 +7.915831663326653000e+00 5.230253630876193327e+00 9.553064782610614092e-01 +7.935871743486973884e+00 5.240178020779059587e+00 1.674817741429812656e+00 +7.955911823647293879e+00 5.249718229283516280e+00 2.594452391120483092e+00 +7.975951903807614762e+00 5.258874995022061682e+00 3.713841109991943057e+00 +7.995991983967935646e+00 5.267649217065747180e+00 5.032534361192301020e+00 +8.016032064128255641e+00 5.276041954563106096e+00 6.550002568888864118e+00 +8.036072144288576524e+00 5.284054426314822805e+00 8.265636330941418919e+00 +8.056112224448897408e+00 5.291688010284259391e+00 1.017874666363291603e+01 +8.076152304609218291e+00 5.298944243044088509e+00 1.228856527835901602e+01 +8.096192384769539174e+00 5.305824819159209227e+00 1.459424489016658200e+01 +8.116232464929860058e+00 5.312331590506231827e+00 1.709485955801583756e+01 +8.136272545090179165e+00 5.318466565529778478e+00 1.978940505663001659e+01 +8.156312625250500048e+00 5.324231908435906213e+00 2.267679927978462828e+01 +8.176352705410820931e+00 5.329629938322985261e+00 2.575588267487045968e+01 +8.196392785571141815e+00 5.334663128250363151e+00 2.902541870856099848e+01 +8.216432865731462698e+00 5.339334104245210710e+00 3.248409436339298395e+01 +8.236472945891783581e+00 5.343645644247928317e+00 3.613052066506330817e+01 +8.256513026052104465e+00 5.347600676996553837e+00 3.996323324022881707e+01 +8.276553106212425348e+00 5.351202280850603010e+00 4.398069290458620628e+01 +8.296593186372744455e+00 5.354453682554823679e+00 4.818128628099457700e+01 +8.316633266533065338e+00 5.357358255943372782e+00 5.256332644739540427e+01 +8.336673346693386222e+00 5.359919520584902841e+00 5.712505361426364914e+01 +8.356713426853707105e+00 5.362141140369139691e+00 6.186463583132555044e+01 +8.376753507014027988e+00 5.364026922035497691e+00 6.678016972325357870e+01 +8.396793587174348872e+00 5.365580813644318603e+00 7.186968125404561647e+01 +8.416833667334669755e+00 5.366806902991370976e+00 7.713112651978079271e+01 +8.436873747494988862e+00 5.367709415966225528e+00 8.256239256943308646e+01 +8.456913827655309746e+00 5.368292714855172676e+00 8.816129825341631943e+01 +8.476953907815630629e+00 5.368561296589365206e+00 9.392559509951207986e+01 +8.496993987975951512e+00 5.368519790938893976e+00 9.985296821583851568e+01 +8.517034068136272396e+00 5.368172958653508076e+00 1.059410372204906849e+02 +8.537074148296593279e+00 5.367525689550741497e+00 1.121873571974812194e+02 +8.557114228456914162e+00 5.366583000552199501e+00 1.185894196785977641e+02 +8.577154308617233269e+00 5.365350033668812024e+00 1.251446536507811516e+02 +8.597194388777554153e+00 5.363832053935846389e+00 1.318504265886247424e+02 +8.617234468937875036e+00 5.362034447298508866e+00 1.387040455115703708e+02 +8.637274549098195919e+00 5.359962718449001073e+00 1.457027580653883660e+02 +8.657314629258516803e+00 5.357622488615882084e+00 1.528437536274986712e+02 +8.677354709418837686e+00 5.355019493306628853e+00 1.601241644356925917e+02 +8.697394789579158569e+00 5.352159580004308026e+00 1.675410667398015221e+02 +8.717434869739479453e+00 5.349048705819276606e+00 1.750914819758495753e+02 +8.737474949899798560e+00 5.345692935096859166e+00 1.827723779622187124e+02 +8.757515030060119443e+00 5.342098436981957299e+00 1.905806701173493138e+02 +8.777555110220440326e+00 5.338271482941573609e+00 1.985132226984773354e+02 +8.797595190380761210e+00 5.334218444246249469e+00 2.065668500609244802e+02 +8.817635270541082093e+00 5.329945789411409507e+00 2.147383179374249096e+02 +8.837675350701402976e+00 5.325460081599669770e+00 2.230243447369789749e+02 +8.857715430861723860e+00 5.320767975985125631e+00 2.314216028627118078e+02 +8.877755511022042967e+00 5.315876217080687027e+00 2.399267200482068745e+02 +8.897795591182363850e+00 5.310791636029545515e+00 2.485362807117820694e+02 +8.917835671342684734e+00 5.305521147861844256e+00 2.572468273281535289e+02 +8.937875751503005617e+00 5.300071748717661180e+00 2.660548618169502788e+02 +8.957915831663326500e+00 5.294450513037422645e+00 2.749568469475133838e+02 +8.977955911823647384e+00 5.288664590720861369e+00 2.839492077594163675e+02 +8.997995991983968267e+00 5.282721204255688363e+00 2.930283329981389784e+02 +9.018036072144287374e+00 5.276627645817097978e+00 3.021905765653149274e+02 +9.038076152304608257e+00 5.270391274339290000e+00 3.114322589829767480e+02 +9.058116232464929141e+00 5.264019512560196290e+00 3.207496688711975139e+02 +9.078156312625250024e+00 5.257519844040566603e+00 3.301390644385522819e+02 +9.098196392785570907e+00 5.250899810158627723e+00 3.395966749847884216e+02 +9.118236472945891791e+00 5.244167007081546927e+00 3.491187024151063270e+02 +9.138276553106212674e+00 5.237329082714865081e+00 3.587013227654414891e+02 +9.158316633266533557e+00 5.230393733631166775e+00 3.683406877381355002e+02 +9.178356713426852664e+00 5.223368701979203443e+00 3.780329262473783842e+02 +9.198396793587173548e+00 5.216261772374713779e+00 3.877741459738065259e+02 +9.218436873747494431e+00 5.209080768774191128e+00 3.975604349276194398e+02 +9.238476953907815314e+00 5.201833551332843975e+00 4.073878630196048221e+02 +9.258517034068136198e+00 5.194528013248028486e+00 4.172524836394272256e+02 +9.278557114228457081e+00 5.187172077589415231e+00 4.271503352405529768e+02 +9.298597194388777964e+00 5.179773694117139726e+00 4.370774429311730955e+02 +9.318637274549097071e+00 5.172340836089261096e+00 4.470298200704844476e+02 +9.338677354709417955e+00 5.164881497059755411e+00 4.570034698696940154e+02 +9.358717434869738838e+00 5.157403687668390191e+00 4.669943869970894639e+02 +9.378757515030059722e+00 5.149915432423705752e+00 4.769985591865493006e+02 +9.398797595190380605e+00 5.142424766480450771e+00 4.870119688488334759e+02 +9.418837675350701488e+00 5.134939732412731495e+00 4.970305946850124315e+02 +9.438877755511022372e+00 5.127468376984182008e+00 5.070504133013864703e+02 +9.458917835671341479e+00 5.120018747916452284e+00 5.170674008252445901e+02 +9.478957915831662362e+00 5.112598890657316097e+00 5.270775345208204499e+02 +9.498997995991983245e+00 5.105216845149687543e+00 5.370767944047840956e+02 +9.519038076152304129e+00 5.097880642602845569e+00 5.470611648606347899e+02 +9.539078156312625012e+00 5.090598302267177466e+00 5.570266362513380045e+02 +9.559118236472945895e+00 5.083377828213707872e+00 5.669692065295602106e+02 +9.579158316633266779e+00 5.076227206119739321e+00 5.768848828448577706e+02 +9.599198396793587662e+00 5.069154400061871790e+00 5.867696831471699852e+02 +9.619238476953906769e+00 5.062167349317696186e+00 5.966196377859761242e+02 +9.639278557114227652e+00 5.055273965177453199e+00 6.064307911044755883e+02 +9.659318637274548536e+00 5.048482127766917849e+00 6.161992030281406869e+02 +9.679358717434869419e+00 5.041799682882824207e+00 6.259209506470201632e+02 +9.699398797595190302e+00 5.035234438842048021e+00 6.355921297911449983e+02 +9.719438877755511186e+00 5.028794163345857271e+00 6.452088565984089428e+02 +9.739478957915832069e+00 5.022486580360477681e+00 6.547672690742948589e+02 +9.759519038076151176e+00 5.016319367015202424e+00 6.642635286428171639e+02 +9.779559118236472059e+00 5.010300150519331197e+00 6.736938216880639629e+02 +9.799599198396792943e+00 5.004436505099149279e+00 6.830543610857074555e+02 +9.819639278557113826e+00 4.998735948956176678e+00 6.923413877238837131e+02 +9.839679358717434710e+00 4.993205941247933488e+00 7.015511720128191655e+02 +9.859719438877755593e+00 4.987853879092396525e+00 7.106800153826006863e+02 +9.879759519038076476e+00 4.982687094597387123e+00 7.197242517684906034e+02 +9.899799599198395583e+00 4.977712851916056280e+00 7.286802490831846626e+02 +9.919839679358716467e+00 4.972938344329665306e+00 7.375444106754310951e+02 +9.939879759519037350e+00 4.968370691358828140e+00 7.463131767744092713e+02 +9.959919839679358233e+00 4.964016935904367323e+00 7.549830259193067832e+02 +9.979959919839679117e+00 4.959884041418952449e+00 7.635504763735062852e+02 +1.000000000000000000e+01 4.955978889110630448e+00 7.720120875228209343e+02 diff --git a/buch/papers/kugel/figures/tikz/curvature-1d.pdf b/buch/papers/kugel/figures/tikz/curvature-1d.pdf new file mode 100644 index 0000000..6425af6 Binary files /dev/null and b/buch/papers/kugel/figures/tikz/curvature-1d.pdf differ diff --git a/buch/papers/kugel/figures/tikz/curvature-1d.py b/buch/papers/kugel/figures/tikz/curvature-1d.py new file mode 100644 index 0000000..4710fc8 --- /dev/null +++ b/buch/papers/kugel/figures/tikz/curvature-1d.py @@ -0,0 +1,32 @@ +import numpy as np +import matplotlib.pyplot as plt + + +@np.vectorize +def fn(x): + return (x ** 2) * 2 / 100 + (1 + x / 4) + np.sin(x) + +@np.vectorize +def ddfn(x): + return 2 * 5 / 100 - np.sin(x) + +x = np.linspace(0, 10, 500) +y = fn(x) +ddy = ddfn(x) + +cmap = ddy - np.min(ddy) +cmap = cmap * 1000 / np.max(cmap) + +plt.plot(x, y) +plt.plot(x, ddy) +# plt.plot(x, cmap) + +plt.show() + +fname = "curvature-1d.dat" +np.savetxt(fname, np.array([x, y, cmap]).T, delimiter=" ") + +# with open(fname, "w") as f: +# # f.write("x y cmap\n") +# for xv, yv, cv in zip(x, y, cmap): +# f.write(f"{xv} {yv} {cv}\n") diff --git a/buch/papers/kugel/figures/tikz/curvature-1d.tex b/buch/papers/kugel/figures/tikz/curvature-1d.tex new file mode 100644 index 0000000..6983fb0 --- /dev/null +++ b/buch/papers/kugel/figures/tikz/curvature-1d.tex @@ -0,0 +1,21 @@ +% vim:ts=2 sw=2 et: +\documentclass[tikz, border=5mm]{standalone} +\usepackage{pgfplots} + +\begin{document} +\begin{tikzpicture} + \begin{axis}[ + clip = false, + width = 8cm, height = 6cm, + xtick = \empty, ytick = \empty, + colormap name = viridis, + axis lines = middle, + axis line style = {ultra thick, -latex} + ] + \addplot+[ + smooth, mark=none, line width = 3pt, mesh, + point meta=explicit, + ] file {curvature-1d.dat}; + \end{axis} +\end{tikzpicture} +\end{document} -- cgit v1.2.1 From 7e51ae842c61ba338aec179d71fab2d041ebe8c5 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 17 Aug 2022 16:29:41 +0200 Subject: kugel: Review manu's text, improve legendre functions --- buch/papers/kugel/main.tex | 1 + buch/papers/kugel/proofs.tex | 245 +++++++++++++++++ buch/papers/kugel/spherical-harmonics.tex | 424 ++++++++++-------------------- 3 files changed, 385 insertions(+), 285 deletions(-) create mode 100644 buch/papers/kugel/proofs.tex diff --git a/buch/papers/kugel/main.tex b/buch/papers/kugel/main.tex index a281cae..ad19178 100644 --- a/buch/papers/kugel/main.tex +++ b/buch/papers/kugel/main.tex @@ -14,6 +14,7 @@ % \input{papers/kugel/preliminaries} \input{papers/kugel/spherical-harmonics} \input{papers/kugel/applications} +\input{papers/kugel/proofs} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/kugel/proofs.tex b/buch/papers/kugel/proofs.tex new file mode 100644 index 0000000..143caa8 --- /dev/null +++ b/buch/papers/kugel/proofs.tex @@ -0,0 +1,245 @@ +% vim:ts=2 sw=2 et spell tw=80: +\section{Proofs} + +\subsection{Legendre Functions} \label{kugel:sec:proofs:legendre} + +\kugeltodo{Fix theorem numbers to match, review text.} + +\begin{lemma} + The polynomial function + \begin{align*} + y_n(x)&=\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k}\\ + &= \frac{1}{n!2^n}\frac{d^n}{dx^n}(1-x^2)^n =: P_n(x), + \end{align*} + is a solution to the second order differential equation + \begin{equation}\label{kugel:eq:sol_leg} + (1-x^2)\frac{d^2y}{dx^2}-2x\frac{dy}{dx} + n(n+1)y=0, \quad \forall n>0. + \end{equation} +\end{lemma} +\begin{proof} + In order to find a solution to Eq.\eqref{eq:legendre}, the following Ansatz can be performed: + \begin{equation}\label{eq:ansatz} + y(x) = \sum_{k=0}^\infty a_k x^k. + \end{equation} + Given Eq.\eqref{eq:ansatz}, then + \begin{align*} + \frac{dy}{dx} &= \sum_{k=0}^\infty k a_k x^{k-1}, \\ + \frac{d^2y}{dx^2} &= \sum_{k=0}^\infty k (k-1) a_k x^{k-2}. + \end{align*} + Eq.\eqref{eq:legendre} can be therefore written as + \begin{align} + &(1-x^2)\sum_{k=0}^\infty k (k-1) a_k x^{k-2} - 2x\sum_{k=0}^\infty k a_k x^{k-1} + n(n+1)\sum_{k=0}^\infty a_k x^k=0 \label{eq:ansatz_in_legendre} \\ + &=\sum_{k=0}^\infty k (k-1) a_k x^{k-2} - \sum_{k=0}^\infty k (k-1) a_k x^{k} - 2x\sum_{k=0}^\infty k a_k x^{k-1} + n(n+1)\sum_{k=0}^\infty a_k x^k=0. \nonumber + \end{align} + If one consider the term + \begin{equation}\label{eq:term} + \sum_{k=0}^\infty k (k-1) a_k x^{k-2}, + \end{equation} + the substitution $\tilde{k}=k-2$ yields Eq.\eqref{eq:term} to + \begin{equation*} + \sum_{\tilde{k}=-2}^\infty (\tilde{k}+2) (\tilde{k}+1) a_{\tilde{k}+2} x^{\tilde{k}}=\sum_{\tilde{k}=0}^\infty (\tilde{k}+2) (\tilde{k}+1) a_{\tilde{k}} x^{\tilde{k}}. + \end{equation*} + This means that Eq.\eqref{eq:ansatz_in_legendre} becomes + \begin{align} + &\sum_{k=0}^\infty (k+1)(k+2) a_{k+2} x^{k} - \sum_{k=0}^\infty k (k-1) a_k x^{k} - 2\sum_{k=0}^\infty k a_k x^k + n(n+1)\sum_{k=0}^\infty a_k x^k \nonumber \\ + = &\sum_{k=0}^\infty \big[ (k+1)(k+2) a_{k+2} - k (k-1) a_k - 2 k a_k + n(n+1) a_k \big] x^k \stackrel{!}{=} 0. \label{eq:condition} + \end{align} + The condition in Eq.\eqref{eq:condition} is equivalent to + \begin{equation}\label{eq:condition_2} + (k+1)(k+2) a_{k+2} - k (k-1) a_k - 2 k a_k + n(n+1) a_k = 0. + \end{equation} + We can derive a recursion formula for $a_{k+2}$ from Eq.\eqref{eq:condition_2}, which can be expressed as + \begin{equation}\label{eq:recursion} + a_{k+2}= \frac{k (k-1) - 2 k + n(n+1)}{(k+1)(k+2)}a_k = \frac{(k-n)(k+n+1)}{(k+2)(k+1)}a_k. + \end{equation} + All coefficients can be calculated using the latter. + + Following Eq.\eqref{eq:recursion}, if we want to compute $a_6$ we would have + \begin{align*} + a_{6}= -\frac{(n-4)(n+5)}{6\cdot 5}a_4 &= -\frac{(n-4)(5+n)}{6 \cdot 5} -\frac{(n-2)(n+3)}{4 \cdot 3} a_2 \\ + &= -\frac{(n-4)(n+5)}{6 \cdot 5} -\frac{(n-2)(n+3)}{4 \cdot 3} -\frac{n(n+1)}{2 \cdot 1} a_0 \\ + &= -\frac{(n+5)(n+3)(n+1)n(n-2)(n-4)}{6!} a_0. + \end{align*} + One can generalize this relation for the $i^\text{th}$ even coefficient as + \begin{equation*} + a_{2k} = (-1)^k \frac{(n+(2k-1))(n+(2k-1)-2)\hdots (n-(2k-2)+2)(n-(2k-2))}{(2k)!}a_0 + \end{equation*} + where $i=2k$. + + A similar expression can be written for the odd coefficients $a_{2k-1}$. In this case, the equation starts from $a_1$ and to find the pattern we can write the recursion for an odd coefficient, $a_7$ for example + \begin{align*} + a_{7}= -\frac{(n-5)(n+6)}{7\cdot 6}a_5 &= - \frac{(n-5)(n+6)}{7\cdot 6} -\frac{(n-3)(n+4)}{5 \cdot 4} a_3 \\ + &= - \frac{(n-5)(n+6)}{7\cdot 6} -\frac{(n-3)(n+4)}{5 \cdot 4} -\frac{(n-1)(n+2)}{3 \cdot 2} a_1 \\ + &= -\frac{(n+6)(n+4)(n+2)(n-1)(n-3)(n-5)}{7!} a_1. + \end{align*} + As before, we can generalize this equation for the $i^\text{th}$ odd coefficient + \begin{equation*} + a_{2k+1} = (-1)^k \frac{(n + 2k)(n+2k-2)\hdots(n-(2k-1)+2)(n-(2k-1))}{(2k+1)!}a_1 + \end{equation*} + where $i=2k+1$. + + Let be + \begin{align*} + y_\text{e}^K(x) &:= \sum_{k=0}^K(-1)^k \frac{(n+(2k-1))(n+(2k-1)-2)\hdots \color{red}(n-(2k-2)+2)(n-(2k-2))}{(2k)!} x^{2k}, \\ + y_\text{o}^K(x) &:= \sum_{k=0}^K(-1)^k \frac{(n + 2k)(n+2k-2)\hdots \color{blue} (n-(2k-1)+2)(n-(2k-1))}{(2k+1)!} x^{2k+1}. + \end{align*} + The solution to the Eq.\eqref{eq:legendre} can be written as + \begin{equation}\label{eq:solution} + y(x) = \lim_{K \to \infty} \left[ a_0 y_\text{e}^K(x) + a_1 y_\text{o}^K(x) \right]. + \end{equation} + + The colored parts can be analyzed separately: + \begin{itemize} + \item[\textcolor{red}{\textbullet}] Suppose that $n=n_0$ is an even number. Then the red part, for a specific value of $k=k_0$, will follow the following relation: + \begin{equation*} + n_0-(2k_0-2)=0. + \end{equation*} + From that point on, given the recursive nature of Eq.\eqref{eq:recursion}, all the subsequent coefficients will also be 0, making the sum finite. + \begin{equation*} + a_{2k}=0 \iff y_{\text{o}}^{2k}(x)=y_{\text{o}}^{2k_0}(x), \quad \forall k>k_0 + \end{equation*} + \item[\textcolor{blue}{\textbullet}] Suppose that $n=n_0$ is an odd number. Then the blue part, for a specific value of $k=k_0$, will follow the following relation + \begin{equation*} + n_0-(2k_0-1)=0. + \end{equation*} + From that point on, for the same reason as before, all the subsequent coefficients will also be 0, making the sum finite. + \begin{equation*} + a_{2k+1}=0 \iff y_{\text{o}}^{2k+1}(x)=y_{\text{o}}^{2k_0+1}(x), \quad \forall k>k_0 + \end{equation*} + \end{itemize} + + There is the possibility of expressing the solution in Eq.\eqref{eq:solution} in a more compact form, combining the two solutions $y_\text{o}^K(x)$ and $y_\text{e}^K(x)$. They are both a polynomial of maximum degree $n$, assuming $n \in \mathbb{N}$. In the case where $n$ is even, the polynomial solution + \begin{equation*} + \lim_{K\to \infty} y_\text{e}^K(x) + \end{equation*} + will be a finite sum. If instead $n$ is odd, will be + \begin{equation*} + \lim_{K\to \infty} y_\text{o}^K(x) + \end{equation*} + to be a finite sum. + + Depending on the coefficient we start with, $a_1$ or $a_0$, we will obtain the odd or even polynomial respectively. Starting with the last coefficient $a_n$ and, recursively, calculating all the others in descending order, we can express the two parts $y_\text{o}^K(x)$ and $y_\text{e}^K(x)$ with a single sum. Hence, because we start with the last coefficient, the choice concerning $a_1$ and $a_0$ will be at the end of the sum, and not at the beginning. To compact Eq.\eqref{eq:solution}, Eq.\eqref{eq:recursion} can be reconsidered to calculate the coefficient $a_{k-2}$, using $a_k$ + \begin{equation*} + a_{k-2} = -\frac{(k+2)(k+1)}{(k-n)(k+n+1)}a_k + \end{equation*} + Now the game is to find a pattern, as before. Remember that $n$ is a fixed parameter of Eq.\eqref{eq:legendre}. + \begin{align*} + a_{n-2} &= -\frac{n(n-1)}{2(2n-1)}a_n, \\ + a_{n-4} &= -\frac{(n-2)(n-3)}{4(2n-3)}a_{n-2} \\ + &= -\frac{(n-2)(n-3)}{4(2n-3)}-\frac{n(n-1)}{2(2n-1)}a_n. + \end{align*} + In general + \begin{equation}\label{eq:general_recursion} + a_{n-2k} = (-1)^k \frac{n(n-1)(n-2)(n-3) \hdots (n-2k+1)}{2\cdot4\hdots 2k(2n-1)(2n-3)\hdots(2n-2k+1)}a_n + \end{equation} + The whole solution can now be written as + \begin{align} + y(x) &= a_n x^n + a_{n-2} x^{n-2} + a_{n-4} x^{n-4} + a_{n-6} x^{n-6} + \hdots + \begin{cases} + a_1 x, \quad &\text{if } n \text{ odd} \\ + a_0, \quad &\text{if } n \text{ even} + \end{cases} \nonumber \\ + &= \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} a_{n-2k}x^{n-2k} \label{eq:solution_2} + \end{align} + By considering + \begin{align} + (2n-1)(2n-3)\hdots (2n-2k+1)&=\frac{2n(2n-1)(2n-2)(2n-3)\hdots(2n-2k+1)} + {2n(2n-2)(2n-4)(2n-6)\hdots(2n-2k+2)} \nonumber \\ + &=\frac{\frac{(2n)!}{(2n-2k)!}} + {2^kn(n-1)(n-2)(n-3)\hdots(n-k+1)} \nonumber \\ + &=\frac{\frac{(2n)!}{(2n-2k)!}} + {2^k\frac{n!}{(n-k)!}}=\frac{(n-k)!(2n)!}{n!(2n-2k)!2^k} \label{eq:1_sub_recursion}, \\ + 2 \cdot 4 \hdots 2k &= 2^r 1\cdot2 \hdots r = 2^r r!\label{eq:2_sub_recursion}, \\ + n(n-1)(n-2)(n-3) \hdots (n-2k+1) &= \frac{n!}{(n-2k)!}\label{eq:3_sub_recursion}. + \end{align} + Eq.\eqref{eq:solution_2} can be rewritten as + \begin{equation}\label{eq:solution_3} + y(x)=a_n \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{n!^2(2n-2k)!}{k!(n-2k)!(n-k)!(2n)!} x^{n-2k}. + \end{equation} + Eq.\eqref{eq:solution_3} is defined for any $a_n$. By letting $a_n$ be declared as + \begin{equation*} + a_{n} := \frac{(2n)!}{2^n n!^2}, + \end{equation*} + the so called \emph{Legendre polynomial} emerges + \begin{equation}\label{eq:leg_poly} + P_n(x):=\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k} + \end{equation} +\end{proof} + + +\begin{lemma} + If $Z_n(z)$ is a solution of the Legendre equation \eqref{kugel:eqn:legendre}, + then + \begin{equation*} + P^m_n(z) = (1 - z^2)^{m/2} \frac{d^m}{dz^m}Z_n(z) + \end{equation*} + solves the associated Legendre equation \eqref{kugel:eqn:associated-legendre}. +\end{lemma} +% \begin{proof} [TODO: modificare la $m$ (è già usata come costante di separazione) o forse è giusta (?)] +\begin{proof} + To begin, we can start by differentiating $m$ times Eq.\eqref{kugel:eq:leg_eq} (which is staisfied by $y(x)$), obtaining + \begin{equation}\label{eq:lagrange_mderiv} + \frac{d^m}{dx^m}\left[ (1-x^2)\frac{d^2y}{dx^2} \right] -2 \frac{d^m}{dx^m}\left[ x\frac{dy}{dx} \right] + n(n+1)\frac{d^m}{dx^m}y=0. + \end{equation} + \emph{Leibniz's theorem} says, that if we want to differentiate $m$ times a multiplication of two functions, we can use the binomial coefficients to build up a sum. This allows us to be more compact, obtaining + \begin{equation}\label{eq:leibniz} + \frac{d^m}{dx^m}[u(x)v(x)] = \sum_{i=0}^m \binom{n}{i} \frac{d^{m-i}u}{dx^{m-1}} \frac{d^{i}v}{dx^i}. + \end{equation} + Using Eq.\eqref{eq:leibniz} in Eq.\eqref{eq:lagrange_mderiv}, we have + \begin{align} + (1-x^2)\frac{d^{m+2}y}{dx^{m+2}} &+ m \frac{d}{dx}(1-x^2)\frac{d^{m+1}y}{dx^{m+1}} + \frac{m(m-1)}{2}\frac{d^{2}}{dx^{2}}(1-x^2)\frac{d^{m}y}{dx^{m}} + n(n+1)\frac{d^m{}y}{dx^{m}} \nonumber \\ + &-2\left(x\frac{d^{m+1}y}{dx^{m+1}} + m\frac{d}{dx}x\frac{d^{m}y}{dx^{m}} \right) \nonumber \\ + &= (1-x^2)\frac{d^{m+2}y}{dx^{m+2}} -2x(m+1)\frac{d^{m+1}y}{dx^{m+1}}+(n(n+1)-m(m-1)-2m)\frac{d^{m}y}{dx^{m}}=0. \label{eq:aux_3} + \end{align} + To make the notation easier to follow, a new function can be defined + \begin{equation*} + \frac{d^{m}y}{dx^{m}} := y_m. + \end{equation*} + Eq.\eqref{eq:aux_3} now becomes + \begin{equation}\label{eq:1st_subs} + (1-x^2)\frac{d^{2}y_m}{dx^{2}} -2x(m+1)\frac{dy_m}{dx}+(n(n+1)-m(m+1))y_m=0 + \end{equation} + A second function can be further defined as + \begin{equation*} + (1-x^2)^{\frac{m}{2}}\frac{d^{m}y}{dx^{m}} = (1-x^2)^{\frac{m}{2}}y_m := \hat{y}_m, + \end{equation*} + allowing to write Eq.\eqref{eq:1st_subs} as + \begin{equation}\label{eq:2st_subs} + (1-x^2)\frac{d^2}{dx^2}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] -2(m+1)x\frac{d}{dx}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] + (n(n+1)-m(m+1))\hat{y}_m(1-x^2)^{-\frac{m}{2}}=0. + \end{equation} + The goal now is to compute the two terms + \begin{align*} + \frac{d^2}{dx^2}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] &= \frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} + \frac{d\hat{y}_m}{dx}\frac{m}{2}(1-x^2)^{-\frac{m}{2}-1}2x \\ + &+ m\left( \frac{d\hat{y}_m}{dx} x (1-x^2)^{-\frac{m}{2}-1} + \hat{y}_m (1-x^2)^{-\frac{m}{2}-1} - \hat{y}_m x (-\frac{m}{2}-1)(1-x^2)^{-\frac{m}{2}} 2x\right) \\ + &= \frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} + \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-\frac{m}{2}-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-\frac{m}{2}-1}\\ + &+ m\hat{y}_m (1-x^2)^{-\frac{m}{2}-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-\frac{m}{2}-2} + \end{align*} + and + \begin{align*} + \frac{d}{dx}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] &= \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_m\frac{m}{2}(1-x^2)^{-\frac{m}{2}-1}2x \\ + &= \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_mm(1-x^2)^{-\frac{m}{2}-1}x, + \end{align*} + to use them in Eq.\eqref{eq:2st_subs}, obtaining + \begin{align*} + (1-x^2)\biggl[\frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} &+ \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-\frac{m}{2}-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-\frac{m}{2}-1} \\ + &+ m\hat{y}_m (1-x^2)^{-\frac{m}{2}-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-\frac{m}{2}-2}\biggr] \\ + &-2(m+1)x\left[ \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_mm(1-x^2)^{-\frac{m}{2}-1}x \right] \\ + &+ (n(n+1)-m(m+1))\hat{y}_m(1-x^2)^{-\frac{m}{2}}=0.\\ + \end{align*} + We can now divide by $(1-x^2)^{-\frac{m}{2}}$, obtaining + \begin{align*} + (1-x^2)\biggl[\frac{d^2\hat{y}_m}{dx^2} &+ \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-1} + m\hat{y}_m (1-x^2)^{-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-2}\biggr] \\ + &-2(m+1)x\left[ \frac{d\hat{y}_m}{dx} + \hat{y}_mm(1-x^2)^{-1}x \right] + (n(n+1)-m(m+1))\hat{y}_m\\ + &= \frac{d^2\hat{y}_m}{dx^2} + \frac{d\hat{y}_m}{dx}mx + m\frac{d\hat{y}_m}{dx}x + m\hat{y}_m + m\hat{y}_m x^2(m+2)(1-x^2)^{-1} \\ + &-2(m+1)x\left[ \frac{d\hat{y}_m}{dx} + \hat{y}_mm(1-x^2)^{-1}x \right] + (n(n+1)-m(m+1))\hat{y}_m\\ + \end{align*} + and collecting some terms + \begin{equation*} + (1-x^2)\frac{d^2\hat{y}_m}{dx^2} - 2x\frac{d\hat{y}_m}{dx} + \left( -x^2 \frac{m^2}{1-x^2} + m+n(n+1)-m(m+1)\right)\hat{y}_m=0. + \end{equation*} + Showing that + \begin{align*} + -x^2 \frac{m^2}{1-x^2} + m+n(n+1)-m(m+1) &= n(n+1)- m^2 -x^2 \frac{m^2}{1-x^2} \\ + &= n(n+1)- \frac{m}{1-x^2} + \end{align*} + implies $\hat{y}_m(x)$ being a solution of Eq.\eqref{kugel:eq:associated_leg_eq} +\end{proof} diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex index 70657c9..5645941 100644 --- a/buch/papers/kugel/spherical-harmonics.tex +++ b/buch/papers/kugel/spherical-harmonics.tex @@ -1,6 +1,6 @@ % vim:ts=2 sw=2 et spell tw=80: -\section{Spherical Harmonics} +\section{Construction of the Spherical Harmonics} \if 0 \kugeltodo{Rewrite this section if the preliminaries become an addendum} @@ -111,7 +111,7 @@ that satisfy the equation \surflaplacian f = -\lambda f. \end{equation} Perhaps it may not be obvious at first glance, but we are in fact dealing with a -partial differential equation (PDE). If we unpack the notation of the operator +partial differential equation (PDE) \kugeltodo{Boundary conditions?}. If we unpack the notation of the operator $\nabla^2_{\partial S}$ according to definition \ref{kugel:def:surface-laplacian}, we get: \begin{equation} \label{kugel:eqn:eigen-pde} @@ -126,7 +126,7 @@ Since all functions satisfying \eqref{kugel:eqn:eigen-pde} are the The task may seem very difficult but we can simplify it with a well-known technique: \emph{the separation Ansatz}. It consists in assuming that the function $f(\vartheta, \varphi)$ can be factorized in the following form: -\begin{equation} \label{kugel:eqn:sep-ansatz:0} +\begin{equation} f(\vartheta, \varphi) = \Theta(\vartheta)\Phi(\varphi). \end{equation} In other words, we are saying that the effect of the two independent variables @@ -135,34 +135,34 @@ effect separately. This separation process was already presented in section \ref{buch:pde:section:kugel}, but we will briefly rehearse it here for convenience. If we substitute this assumption in \eqref{kugel:eqn:eigen-pde}, we have: -\begin{equation} \label{kugel:eqn:sep-ansatz:1} +\begin{equation*} \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial \Theta(\vartheta)}{\partial\vartheta} \right) \Phi(\varphi) + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 \Phi(\varphi)}{\partial\varphi^2} \Theta(\vartheta) + \lambda \Theta(\vartheta)\Phi(\varphi) = 0. -\end{equation} +\end{equation*} Dividing by $\Theta(\vartheta)\Phi(\varphi)$ and introducing an auxiliary -variable $m$, the separation constant, yields: +variable $m^2$, the separation constant, yields: \begin{equation*} \frac{1}{\Theta(\vartheta)}\sin \vartheta \frac{d}{d \vartheta} \left( \sin \vartheta \frac{d \Theta}{d \vartheta} \right) + \lambda \sin^2 \vartheta = -\frac{1}{\Phi(\varphi)} \frac{d^2\Phi(\varphi)}{d\varphi^2} - = m, + = m^2, \end{equation*} which is equivalent to the following system of 2 first order differential equations (ODEs): \begin{subequations} \begin{gather} - \frac{d^2\Phi(\varphi)}{d\varphi^2} = -m \Phi(\varphi), + \frac{d^2\Phi(\varphi)}{d\varphi^2} = -m^2 \Phi(\varphi), \label{kugel:eqn:ode-phi} \\ \sin \vartheta \frac{d}{d \vartheta} \left( \sin \vartheta \frac{d \Theta}{d \vartheta} \right) - + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right) + + \left( \lambda - \frac{m^2}{\sin^2 \vartheta} \right) \Theta(\vartheta) = 0 \label{kugel:eqn:ode-theta}. \end{gather} @@ -174,291 +174,141 @@ write the solutions \Phi(\varphi) = e^{i m \varphi}, \quad m \in \mathbb{Z}. \end{equation} The restriction that the separation constant $m$ needs to be an integer arises -from the fact that we require a $2\pi$-periodicity in $\varphi$ since -$\Phi(\varphi + 2\pi) = \Phi(\varphi)$. Unfortunately, solving -\eqref{kugel:eqn:ode-theta} is not so straightforward. Actually it is quite -difficult, and the process is so involved that it will require a dedicated -section of its own. +from the fact that we require a $2\pi$-periodicity in $\varphi$ since the +coordinate systems requires that $\Phi(\varphi + 2\pi) = \Phi(\varphi)$. +Unfortunately, solving \eqref{kugel:eqn:ode-theta} is as straightforward, +actually, it is quite difficult, and the process is so involved that it will +require a dedicated section of its own. \subsection{Legendre Functions} -To solve \eqref{kugel:eqn:ode-theta} -We can begin by considering the substitution $x = \cos \vartheta$. The operator $\frac{d}{d \vartheta}$ will be: -\begin{align*} - \frac{d}{d \vartheta} = \frac{dx}{d \vartheta}\frac{d}{dx} &= -\sin \vartheta \frac{d}{dx} \\ - &= -\sqrt{1-x^2} \frac{d}{dx}. -\end{align*} -Eq.(\ref{kugel:eq:ODE_2}) will then become. +To solve \eqref{kugel:eqn:ode-theta} we start with the substitution $z = \cos +\vartheta$ \kugeltodo{Explain geometric origin with picture}. The operator +$\frac{d}{d \vartheta}$ becomes +\begin{equation*} + \frac{d}{d \vartheta} + = \frac{dz}{d \vartheta}\frac{d}{dz} + = -\sin \vartheta \frac{d}{dz} + = -\sqrt{1-z^2} \frac{d}{dz}, +\end{equation*} +since $\sin \vartheta = \sqrt{1 - \cos^2 \vartheta} = \sqrt{1 - z^2}$, and +then \eqref{kugel:eqn:ode-theta} becomes \begin{align*} - \frac{-\sqrt{1-x^2}}{\sqrt{1-x^2}} \frac{d}{dx} \left( \left(\sqrt{1-x^2}\right) \left(-\sqrt{1-x^2}\right) \frac{d \Theta}{dx} \right) + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right)\Theta(\vartheta) &= 0 \\ - \frac{d}{dx} \left( (1-x^2) \frac{d \Theta}{dx} \right) + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right)\Theta(\vartheta) &= 0 \\ - (1-x^2)\frac{d^2 \Theta}{dx} - 2x\frac{d \Theta}{dx} + \left( \lambda - \frac{m}{\sin^2 \vartheta} \right)\Theta(\vartheta) &= 0 \\ - (1-x^2)\frac{d^2 \Theta}{dx} - 2x\frac{d \Theta}{dx} + \left( \lambda - \frac{m}{1-x^2} \right)\Theta(\vartheta) &= 0 + \frac{-\sqrt{1-z^2}}{\sqrt{1-z^2}} \frac{d}{dz} \left[ + \left(\sqrt{1-z^2}\right) \left(-\sqrt{1-z^2}\right) \frac{d \Theta}{dz} + \right] + + \left( \lambda - \frac{m^2}{1 - z^2} \right)\Theta(\vartheta) &= 0, + \\ + \frac{d}{dz} \left[ (1-z^2) \frac{d \Theta}{dz} \right] + + \left( \lambda - \frac{m^2}{1 - z^2} \right)\Theta(\vartheta) &= 0, + \\ + (1-z^2)\frac{d^2 \Theta}{dz} - 2z\frac{d \Theta}{dz} + + \left( \lambda - \frac{m^2}{1 - z^2} \right)\Theta(\vartheta) &= 0. \end{align*} -By making two final cosmetic substitutions, namely $\Theta(\vartheta)=\Theta(\cos^{-1}x):=y(x)$ and $\lambda=n(n+1)$, we will be able to define the \emph{Associated Legendre Equation} in its standard and most familiar form -\begin{definition}{Associated Legendre Equation} - \begin{equation}\label{kugel:eq:associated_leg_eq} - (1-x^2)\frac{d^2 y}{dx} - 2x\frac{d y}{dx} + \left( n(n+1) - \frac{m}{1-x^2} \right)y(x) = 0. - \end{equation} -\end{definition} -Our new goal then became solving Eq.(\ref{kugel:eq:asssociated_leg_eq}). After that we can fit the solution into Eq.(\ref{kugel:eq:sep_ansatz_0}), obtaining $f(\vartheta, \varphi)$, the solution of the eigenvalue problem. \newline -We simplified the problem somewhat but the task still remains very difficult. We can rely on a lemma to continue but first we need to define an additional equation, namely the \emph{Legendre Equation} -\begin{definition}{Legendre equation}\newline - Setting $m=0$ in Eq.(\ref{kugel:eq:asssociated_leg_eq}), we get - \begin{equation}\label{kugel:eq:leg_eq} - (1-x^2)\frac{d^2 y}{dx} - 2x\frac{d y}{dx} + n(n+1)y(x) = 0, - \end{equation} - also known as \emph{Legendre Equation}. -\end{definition} -Now we can continue with the lemma -\begin{lemma}\label{kugel:lemma_1} - If $y_n(x)$ is a solution of Eq.(\ref{kugel:eq:leg_eq}), then the function - \begin{equation*} - y_{m,n}(x) = (1-x^2)^{\frac{m}{2}}\frac{d^m}{dx^m}y_n(x) - \end{equation*} - satisfies Eq.(\ref{kugel:eq:associated_leg_eq}) +By making two final cosmetic substitutions, namely $Z(z) = \Theta(\cos^{-1}z)$ +and $\lambda = n(n+1)$, we obtain what is known in the literature as the +\emph{associated Legendre equation of order $m$}: +\nocite{olver_introduction_2013} +\begin{equation} \label{kugel:eqn:associated-legendre} + (1 - z^2)\frac{d^2 Z}{dz} + - 2z\frac{d Z}{dz} + + \left( n(n + 1) - \frac{m^2}{1 - z^2} \right) Z(z) = 0, + \quad + z \in [-1; 1], m \in \mathbb{Z}. +\end{equation} + +Our new goal has therefore become to solve +\eqref{kugel:eqn:associated-legendre}, since if we find a solution for $Z(z)$ we +can perform the substitution backwards and get back to our eigenvalue problem. +However, the associated Legendre equation is not any easier, so to attack the +problem we will look for the solutions in the easier special case when $m = 0$. +This reduces the problem because it removes the double pole, which is always +tricky to deal with. In fact, the reduced problem when $m = 0$ is known as the +\emph{Legendre equation}: +\begin{equation} \label{kugel:eqn:legendre} + (1 - z^2)\frac{d^2 Z}{dz} + - 2z\frac{d Z}{dz} + + n(n + 1) Z(z) = 0, + \quad + z \in [-1; 1]. +\end{equation} + +The Legendre equation is a second order differential equation, and therefore it +has 2 independent solutions, which are known as \emph{Legendre functions} of the +first and second kind. For the scope of this text we will only derive a special +case of the former that is known known as the \emph{Legendre polynomials}, since +we only need a solution between $-1$ and $1$. + +\begin{lemma}[Legendre polynomials] + \label{kugel:lem:legendre-poly} + The polynomial function + \[ + P_n(z) = \sum^{\lfloor n/2 \rfloor}_{k=0} + \frac{(-1)^k}{2^n s^k!} \frac{(2n - 2k)!}{(n - k)! (n-2k)!} z^{n - 2k} + \] + is the only finite solution of the Legendre equation + \eqref{kugel:eqn:legendre} when $n \in \mathbb{Z}$ and $z \in [-1; 1]$. \end{lemma} -\begin{proof} [TODO: modificare la $m$ (è già usata come costante di separazione) o forse è giusta (?)] - To begin, we can start by differentiating $m$ times Eq.\eqref{kugel:eq:leg_eq} (which is staisfied by $y(x)$), obtaining - \begin{equation}\label{eq:lagrange_mderiv} - \frac{d^m}{dx^m}\left[ (1-x^2)\frac{d^2y}{dx^2} \right] -2 \frac{d^m}{dx^m}\left[ x\frac{dy}{dx} \right] + n(n+1)\frac{d^m}{dx^m}y=0. - \end{equation} - \emph{Leibniz's theorem} says, that if we want to differentiate $m$ times a multiplication of two functions, we can use the binomial coefficients to build up a sum. This allows us to be more compact, obtaining - \begin{equation}\label{eq:leibniz} - \frac{d^m}{dx^m}[u(x)v(x)] = \sum_{i=0}^m \binom{n}{i} \frac{d^{m-i}u}{dx^{m-1}} \frac{d^{i}v}{dx^i}. - \end{equation} - Using Eq.\eqref{eq:leibniz} in Eq.\eqref{eq:lagrange_mderiv}, we have - \begin{align} - (1-x^2)\frac{d^{m+2}y}{dx^{m+2}} &+ m \frac{d}{dx}(1-x^2)\frac{d^{m+1}y}{dx^{m+1}} + \frac{m(m-1)}{2}\frac{d^{2}}{dx^{2}}(1-x^2)\frac{d^{m}y}{dx^{m}} + n(n+1)\frac{d^m{}y}{dx^{m}} \nonumber \\ - &-2\left(x\frac{d^{m+1}y}{dx^{m+1}} + m\frac{d}{dx}x\frac{d^{m}y}{dx^{m}} \right) \nonumber \\ - &= (1-x^2)\frac{d^{m+2}y}{dx^{m+2}} -2x(m+1)\frac{d^{m+1}y}{dx^{m+1}}+(n(n+1)-m(m-1)-2m)\frac{d^{m}y}{dx^{m}}=0. \label{eq:aux_3} - \end{align} - To make the notation easier to follow, a new function can be defined - \begin{equation*} - \frac{d^{m}y}{dx^{m}} := y_m. - \end{equation*} - Eq.\eqref{eq:aux_3} now becomes - \begin{equation}\label{eq:1st_subs} - (1-x^2)\frac{d^{2}y_m}{dx^{2}} -2x(m+1)\frac{dy_m}{dx}+(n(n+1)-m(m+1))y_m=0 - \end{equation} - A second function can be further defined as - \begin{equation*} - (1-x^2)^{\frac{m}{2}}\frac{d^{m}y}{dx^{m}} = (1-x^2)^{\frac{m}{2}}y_m := \hat{y}_m, - \end{equation*} - allowing to write Eq.\eqref{eq:1st_subs} as - \begin{equation}\label{eq:2st_subs} - (1-x^2)\frac{d^2}{dx^2}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] -2(m+1)x\frac{d}{dx}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] + (n(n+1)-m(m+1))\hat{y}_m(1-x^2)^{-\frac{m}{2}}=0. - \end{equation} - The goal now is to compute the two terms - \begin{align*} - \frac{d^2}{dx^2}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] &= \frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} + \frac{d\hat{y}_m}{dx}\frac{m}{2}(1-x^2)^{-\frac{m}{2}-1}2x \\ - &+ m\left( \frac{d\hat{y}_m}{dx} x (1-x^2)^{-\frac{m}{2}-1} + \hat{y}_m (1-x^2)^{-\frac{m}{2}-1} - \hat{y}_m x (-\frac{m}{2}-1)(1-x^2)^{-\frac{m}{2}} 2x\right) \\ - &= \frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} + \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-\frac{m}{2}-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-\frac{m}{2}-1}\\ - &+ m\hat{y}_m (1-x^2)^{-\frac{m}{2}-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-\frac{m}{2}-2} - \end{align*} - and - \begin{align*} - \frac{d}{dx}[\hat{y}_m(1-x^2)^{-\frac{m}{2}}] &= \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_m\frac{m}{2}(1-x^2)^{-\frac{m}{2}-1}2x \\ - &= \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_mm(1-x^2)^{-\frac{m}{2}-1}x, - \end{align*} - to use them in Eq.\eqref{eq:2st_subs}, obtaining - \begin{align*} - (1-x^2)\biggl[\frac{d^2\hat{y}_m}{dx^2} (1-x^2)^{-\frac{m}{2}} &+ \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-\frac{m}{2}-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-\frac{m}{2}-1} \\ - &+ m\hat{y}_m (1-x^2)^{-\frac{m}{2}-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-\frac{m}{2}-2}\biggr] \\ - &-2(m+1)x\left[ \frac{d\hat{y}_m}{dx}(1-x^2)^{-\frac{m}{2}} + \hat{y}_mm(1-x^2)^{-\frac{m}{2}-1}x \right] \\ - &+ (n(n+1)-m(m+1))\hat{y}_m(1-x^2)^{-\frac{m}{2}}=0.\\ - \end{align*} - We can now divide by $(1-x^2)^{-\frac{m}{2}}$, obtaining - \begin{align*} - (1-x^2)\biggl[\frac{d^2\hat{y}_m}{dx^2} &+ \frac{d\hat{y}_m}{dx}mx (1-x^2)^{-1} + m\frac{d\hat{y}_m}{dx}x (1-x^2)^{-1} + m\hat{y}_m (1-x^2)^{-1} + m\hat{y}_m x^2(m+2)(1-x^2)^{-2}\biggr] \\ - &-2(m+1)x\left[ \frac{d\hat{y}_m}{dx} + \hat{y}_mm(1-x^2)^{-1}x \right] + (n(n+1)-m(m+1))\hat{y}_m\\ - &= \frac{d^2\hat{y}_m}{dx^2} + \frac{d\hat{y}_m}{dx}mx + m\frac{d\hat{y}_m}{dx}x + m\hat{y}_m + m\hat{y}_m x^2(m+2)(1-x^2)^{-1} \\ - &-2(m+1)x\left[ \frac{d\hat{y}_m}{dx} + \hat{y}_mm(1-x^2)^{-1}x \right] + (n(n+1)-m(m+1))\hat{y}_m\\ - \end{align*} - and collecting some terms - \begin{equation*} - (1-x^2)\frac{d^2\hat{y}_m}{dx^2} - 2x\frac{d\hat{y}_m}{dx} + \left( -x^2 \frac{m^2}{1-x^2} + m+n(n+1)-m(m+1)\right)\hat{y}_m=0. - \end{equation*} - Showing that - \begin{align*} - -x^2 \frac{m^2}{1-x^2} + m+n(n+1)-m(m+1) &= n(n+1)- m^2 -x^2 \frac{m^2}{1-x^2} \\ - &= n(n+1)- \frac{m}{1-x^2} - \end{align*} - implies $\hat{y}_m(x)$ being a solution of Eq.\eqref{kugel:eq:associated_leg_eq} +\begin{proof} + This results is derived in section \ref{kugel:sec:proofs:legendre}. \end{proof} -In simpler words, if we find a solution to Eq.\eqref{kugel:eq:leg_eq}, we can extend the latter according to the Lemma \ref{kugel:lemma_1} obtaining the solution of Eq.\eqref{kugel:eq:associated_leg_eq}.\newline -We can say that we are going in the right direction, as the problem to be solved is decreasing in difficulty. We moved from having to find a solution to Eq.\eqref{kugel:eq:associated_leg_eq} to finding a solution to Eq.\eqref{kugel:eq:leg_eq}, which is much more approachable as a problem. Luckily for us, the lemma we will present below will help us extensively, which is something of an euphemism, since it will give us the solution directly. -\begin{lemma} - The polynomial function - \begin{align*} - y_n(x)&=\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k}\\ - &= \frac{1}{n!2^n}\frac{d^n}{dx^n}(1-x^2)^n =: P_n(x), - \end{align*} - is a solution to the second order differential equation - \begin{equation}\label{kugel:eq:sol_leg} - (1-x^2)\frac{d^2y}{dx^2}-2x\frac{dy}{dx} + n(n+1)y=0, \quad \forall n>0. - \end{equation} + +Since the Legendre \emph{polynomials} are indeed polynomials, they can also be +expressed using the hypergeometric functions described in section +\ref{buch:rekursion:section:hypergeometrische-funktion}, so in fact +\begin{equation} + P_n(z) = {}_2F_1 \left( \begin{matrix} + n + 1, & -n \\ \multicolumn{2}{c}{1} + \end{matrix} ; \frac{1 - z}{2} \right). +\end{equation} +Further, there are a few more interesting but not very relevant forms to write +$P_n(z)$ such as \emph{Rodrigues' formula} and \emph{Laplace's integral +representation} which are +\begin{equation*} + P_n(z) = \frac{1}{2^n} \frac{d^n}{dz^n} (x^2 - 1)^n, + \qquad \text{and} \qquad + P_n(z) = \frac{1}{\pi} \int_0^\pi \left( + z + \cos\vartheta \sqrt{z^2 - 1} + \right) \, d\vartheta +\end{equation*} +respectively, both of which we will not prove (see chapter 3 of +\cite{bell_special_2004} for a proof). Now that we have a solution for the +Legendre equation, we can make use of the following lemma patch the solutions +such that they also become solutions of the associated Legendre equation +\eqref{kugel:eqn:associated-legendre}. + +\begin{lemma} \label{kugel:lem:extend-legendre} + If $Z_n(z)$ is a solution of the Legendre equation \eqref{kugel:eqn:legendre}, + then + \begin{equation*} + Z^m_n(z) = (1 - z^2)^{m/2} \frac{d^m}{dz^m}Z_n(z) + \end{equation*} + solves the associated Legendre equation \eqref{kugel:eqn:associated-legendre}. + \nocite{bell_special_2004} \end{lemma} \begin{proof} - In order to find a solution to Eq.\eqref{eq:legendre}, the following Ansatz can be performed: - \begin{equation}\label{eq:ansatz} - y(x) = \sum_{k=0}^\infty a_k x^k. - \end{equation} - Given Eq.\eqref{eq:ansatz}, then - \begin{align*} - \frac{dy}{dx} &= \sum_{k=0}^\infty k a_k x^{k-1}, \\ - \frac{d^2y}{dx^2} &= \sum_{k=0}^\infty k (k-1) a_k x^{k-2}. - \end{align*} - Eq.\eqref{eq:legendre} can be therefore written as - \begin{align} - &(1-x^2)\sum_{k=0}^\infty k (k-1) a_k x^{k-2} - 2x\sum_{k=0}^\infty k a_k x^{k-1} + n(n+1)\sum_{k=0}^\infty a_k x^k=0 \label{eq:ansatz_in_legendre} \\ - &=\sum_{k=0}^\infty k (k-1) a_k x^{k-2} - \sum_{k=0}^\infty k (k-1) a_k x^{k} - 2x\sum_{k=0}^\infty k a_k x^{k-1} + n(n+1)\sum_{k=0}^\infty a_k x^k=0. \nonumber - \end{align} - If one consider the term - \begin{equation}\label{eq:term} - \sum_{k=0}^\infty k (k-1) a_k x^{k-2}, - \end{equation} - the substitution $\tilde{k}=k-2$ yields Eq.\eqref{eq:term} to - \begin{equation*} - \sum_{\tilde{k}=-2}^\infty (\tilde{k}+2) (\tilde{k}+1) a_{\tilde{k}+2} x^{\tilde{k}}=\sum_{\tilde{k}=0}^\infty (\tilde{k}+2) (\tilde{k}+1) a_{\tilde{k}} x^{\tilde{k}}. - \end{equation*} - This means that Eq.\eqref{eq:ansatz_in_legendre} becomes - \begin{align} - &\sum_{k=0}^\infty (k+1)(k+2) a_{k+2} x^{k} - \sum_{k=0}^\infty k (k-1) a_k x^{k} - 2\sum_{k=0}^\infty k a_k x^k + n(n+1)\sum_{k=0}^\infty a_k x^k \nonumber \\ - = &\sum_{k=0}^\infty \big[ (k+1)(k+2) a_{k+2} - k (k-1) a_k - 2 k a_k + n(n+1) a_k \big] x^k \stackrel{!}{=} 0. \label{eq:condition} - \end{align} - The condition in Eq.\eqref{eq:condition} is equivalent to - \begin{equation}\label{eq:condition_2} - (k+1)(k+2) a_{k+2} - k (k-1) a_k - 2 k a_k + n(n+1) a_k = 0. - \end{equation} - We can derive a recursion formula for $a_{k+2}$ from Eq.\eqref{eq:condition_2}, which can be expressed as - \begin{equation}\label{eq:recursion} - a_{k+2}= \frac{k (k-1) - 2 k + n(n+1)}{(k+1)(k+2)}a_k = \frac{(k-n)(k+n+1)}{(k+2)(k+1)}a_k. - \end{equation} - All coefficients can be calculated using the latter. - - Following Eq.\eqref{eq:recursion}, if we want to compute $a_6$ we would have - \begin{align*} - a_{6}= -\frac{(n-4)(n+5)}{6\cdot 5}a_4 &= -\frac{(n-4)(5+n)}{6 \cdot 5} -\frac{(n-2)(n+3)}{4 \cdot 3} a_2 \\ - &= -\frac{(n-4)(n+5)}{6 \cdot 5} -\frac{(n-2)(n+3)}{4 \cdot 3} -\frac{n(n+1)}{2 \cdot 1} a_0 \\ - &= -\frac{(n+5)(n+3)(n+1)n(n-2)(n-4)}{6!} a_0. - \end{align*} - One can generalize this relation for the $i^\text{th}$ even coefficient as - \begin{equation*} - a_{2k} = (-1)^k \frac{(n+(2k-1))(n+(2k-1)-2)\hdots (n-(2k-2)+2)(n-(2k-2))}{(2k)!}a_0 - \end{equation*} - where $i=2k$. - - A similar expression can be written for the odd coefficients $a_{2k-1}$. In this case, the equation starts from $a_1$ and to find the pattern we can write the recursion for an odd coefficient, $a_7$ for example - \begin{align*} - a_{7}= -\frac{(n-5)(n+6)}{7\cdot 6}a_5 &= - \frac{(n-5)(n+6)}{7\cdot 6} -\frac{(n-3)(n+4)}{5 \cdot 4} a_3 \\ - &= - \frac{(n-5)(n+6)}{7\cdot 6} -\frac{(n-3)(n+4)}{5 \cdot 4} -\frac{(n-1)(n+2)}{3 \cdot 2} a_1 \\ - &= -\frac{(n+6)(n+4)(n+2)(n-1)(n-3)(n-5)}{7!} a_1. - \end{align*} - As before, we can generalize this equation for the $i^\text{th}$ odd coefficient - \begin{equation*} - a_{2k+1} = (-1)^k \frac{(n + 2k)(n+2k-2)\hdots(n-(2k-1)+2)(n-(2k-1))}{(2k+1)!}a_1 - \end{equation*} - where $i=2k+1$. - - Let be - \begin{align*} - y_\text{e}^K(x) &:= \sum_{k=0}^K(-1)^k \frac{(n+(2k-1))(n+(2k-1)-2)\hdots \color{red}(n-(2k-2)+2)(n-(2k-2))}{(2k)!} x^{2k}, \\ - y_\text{o}^K(x) &:= \sum_{k=0}^K(-1)^k \frac{(n + 2k)(n+2k-2)\hdots \color{blue} (n-(2k-1)+2)(n-(2k-1))}{(2k+1)!} x^{2k+1}. - \end{align*} - The solution to the Eq.\eqref{eq:legendre} can be written as - \begin{equation}\label{eq:solution} - y(x) = \lim_{K \to \infty} \left[ a_0 y_\text{e}^K(x) + a_1 y_\text{o}^K(x) \right]. - \end{equation} - - The colored parts can be analyzed separately: - \begin{itemize} - \item[\textcolor{red}{\textbullet}] Suppose that $n=n_0$ is an even number. Then the red part, for a specific value of $k=k_0$, will follow the following relation: - \begin{equation*} - n_0-(2k_0-2)=0. - \end{equation*} - From that point on, given the recursive nature of Eq.\eqref{eq:recursion}, all the subsequent coefficients will also be 0, making the sum finite. - \begin{equation*} - a_{2k}=0 \iff y_{\text{o}}^{2k}(x)=y_{\text{o}}^{2k_0}(x), \quad \forall k>k_0 - \end{equation*} - \item[\textcolor{blue}{\textbullet}] Suppose that $n=n_0$ is an odd number. Then the blue part, for a specific value of $k=k_0$, will follow the following relation - \begin{equation*} - n_0-(2k_0-1)=0. - \end{equation*} - From that point on, for the same reason as before, all the subsequent coefficients will also be 0, making the sum finite. - \begin{equation*} - a_{2k+1}=0 \iff y_{\text{o}}^{2k+1}(x)=y_{\text{o}}^{2k_0+1}(x), \quad \forall k>k_0 - \end{equation*} - \end{itemize} - - There is the possibility of expressing the solution in Eq.\eqref{eq:solution} in a more compact form, combining the two solutions $y_\text{o}^K(x)$ and $y_\text{e}^K(x)$. They are both a polynomial of maximum degree $n$, assuming $n \in \mathbb{N}$. In the case where $n$ is even, the polynomial solution - \begin{equation*} - \lim_{K\to \infty} y_\text{e}^K(x) - \end{equation*} - will be a finite sum. If instead $n$ is odd, will be - \begin{equation*} - \lim_{K\to \infty} y_\text{o}^K(x) - \end{equation*} - to be a finite sum. - - Depending on the coefficient we start with, $a_1$ or $a_0$, we will obtain the odd or even polynomial respectively. Starting with the last coefficient $a_n$ and, recursively, calculating all the others in descending order, we can express the two parts $y_\text{o}^K(x)$ and $y_\text{e}^K(x)$ with a single sum. Hence, because we start with the last coefficient, the choice concerning $a_1$ and $a_0$ will be at the end of the sum, and not at the beginning. To compact Eq.\eqref{eq:solution}, Eq.\eqref{eq:recursion} can be reconsidered to calculate the coefficient $a_{k-2}$, using $a_k$ - \begin{equation*} - a_{k-2} = -\frac{(k+2)(k+1)}{(k-n)(k+n+1)}a_k - \end{equation*} - Now the game is to find a pattern, as before. Remember that $n$ is a fixed parameter of Eq.\eqref{eq:legendre}. - \begin{align*} - a_{n-2} &= -\frac{n(n-1)}{2(2n-1)}a_n, \\ - a_{n-4} &= -\frac{(n-2)(n-3)}{4(2n-3)}a_{n-2} \\ - &= -\frac{(n-2)(n-3)}{4(2n-3)}-\frac{n(n-1)}{2(2n-1)}a_n. - \end{align*} - In general - \begin{equation}\label{eq:general_recursion} - a_{n-2k} = (-1)^k \frac{n(n-1)(n-2)(n-3) \hdots (n-2k+1)}{2\cdot4\hdots 2k(2n-1)(2n-3)\hdots(2n-2k+1)}a_n - \end{equation} - The whole solution can now be written as - \begin{align} - y(x) &= a_n x^n + a_{n-2} x^{n-2} + a_{n-4} x^{n-4} + a_{n-6} x^{n-6} + \hdots + \begin{cases} - a_1 x, \quad &\text{if } n \text{ odd} \\ - a_0, \quad &\text{if } n \text{ even} - \end{cases} \nonumber \\ - &= \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} a_{n-2k}x^{n-2k} \label{eq:solution_2} - \end{align} - By considering - \begin{align} - (2n-1)(2n-3)\hdots (2n-2k+1)&=\frac{2n(2n-1)(2n-2)(2n-3)\hdots(2n-2k+1)} - {2n(2n-2)(2n-4)(2n-6)\hdots(2n-2k+2)} \nonumber \\ - &=\frac{\frac{(2n)!}{(2n-2k)!}} - {2^kn(n-1)(n-2)(n-3)\hdots(n-k+1)} \nonumber \\ - &=\frac{\frac{(2n)!}{(2n-2k)!}} - {2^k\frac{n!}{(n-k)!}}=\frac{(n-k)!(2n)!}{n!(2n-2k)!2^k} \label{eq:1_sub_recursion}, \\ - 2 \cdot 4 \hdots 2k &= 2^r 1\cdot2 \hdots r = 2^r r!\label{eq:2_sub_recursion}, \\ - n(n-1)(n-2)(n-3) \hdots (n-2k+1) &= \frac{n!}{(n-2k)!}\label{eq:3_sub_recursion}. - \end{align} - Eq.\eqref{eq:solution_2} can be rewritten as - \begin{equation}\label{eq:solution_3} - y(x)=a_n \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{n!^2(2n-2k)!}{k!(n-2k)!(n-k)!(2n)!} x^{n-2k}. - \end{equation} - Eq.\eqref{eq:solution_3} is defined for any $a_n$. By letting $a_n$ be declared as - \begin{equation*} - a_{n} := \frac{(2n)!}{2^n n!^2}, - \end{equation*} - the so called \emph{Legendre polynomial} emerges - \begin{equation}\label{eq:leg_poly} - P_n(x):=\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)!(n-2k)!} x^{n-2k} - \end{equation} + See section \ref{kugel:sec:proofs:legendre}. \end{proof} -As can be seen, the solution is a $n$-dependent power series, traditionally denoted as $P_n(x)$. This set of polynomials are called \emph{Legendre Polynomials}, because precisely they are polynomials satisfying the Legendre equation.\newline -Now that we have a solution to Eq.\eqref{kugel:eq:leg_eq}, we can then extend Eq.\eqref{kugel:eq:sol_leg}, as stated in Lemma \ref{kugel:lemma_1}. We will then have -\begin{align*} -y_{m,n}(x) &= (1-x^2)^{\frac{m}{2}}\frac{d^m}{dx^m}P_n(x) \\ -&= \frac{1}{n!2^n}(1-x^2)^{\frac{m}{2}}\frac{d^{m+n}}{dx^{m+n}}(1-x^2)^n -\end{align*} -This set of functions are defined as \emph{Associated Legendre functions}, because similarly to before, they solve the Associated Legendre equation, defined in Eq.\eqref{kugel:eq:eq_leg}. -\begin{definition}{Associated Legendre Functions} -\begin{equation}\label{kugel:eq:associated_leg_func} -P_{m,n}(x) := \frac{1}{n!2^n}(1-x^2)^{\frac{m}{2}}\frac{d^{m+n}}{dx^{m+n}}(1-x^2)^n -\end{equation} + +What is happening in lemma \ref{kugel:lem:extend-legendre}, is that we are +essentially inserting a square root function in the solution in order to be able +to reach the parts of the domain near the poles at $\pm 1$ of the associated +Legendre equation, which is not possible only using power series +\kugeltodo{Reference book theory on extended power series method.}. Now, since +we have a solution in our domain, namely $P_n(z)$, we can insert it in the lemma +obtain the \emph{associated Legendre functions}. + +\begin{definition}[Ferrers or Associated Legendre functions] + The functions + \begin{equation}\label{kugel:eq:associated_leg_func} + P^m_n (z) = \frac{1}{n!2^n}(1-z^2)^{\frac{m}{2}}\frac{d^{m}}{dz^{m}} P_n(z) + = \frac{1}{n!2^n}(1-z^2)^{\frac{m}{2}}\frac{d^{m+n}}{dz^{m+n}}(1-z^2)^n + \end{equation} + are known as Ferrers or associated Legendre functions. \end{definition} + +\subsection{Spherical Harmonics} + As you may recall, previously we performed the substitution $x=\cos \vartheta$. Now we need to return to the old domain, which can be done straightforwardly: \begin{equation*} \Theta(\vartheta) = P_{m,n}(\cos \vartheta), @@ -512,6 +362,10 @@ Ora, visto che la soluzione dell'eigenfunction problem è formata dalla moltipli \subsection{Recurrence Relations} -\section{Series Expansions in \(C(S^2)\)} +\section{Series Expansions in $C(S^2)$} -\nocite{olver_introduction_2013} +\subsection{Orthogonality of $P_n$, $P^m_n$ and $Y^m_n$} + +\subsection{Series Expansion} + +\subsection{Fourier on $S^2$} -- cgit v1.2.1 From d0c30778c51d0940b93b488183f50ec8aa5fa0f0 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 17 Aug 2022 16:30:46 +0200 Subject: kugel: Add povray images --- buch/papers/kugel/figures/povray/curvature.jpg | Bin 0 -> 265649 bytes buch/papers/kugel/figures/povray/curvature.png | Bin 0 -> 590402 bytes buch/papers/kugel/figures/povray/spherecurve.jpg | Bin 0 -> 171287 bytes buch/papers/kugel/figures/povray/spherecurve.png | Bin 0 -> 423490 bytes 4 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 buch/papers/kugel/figures/povray/curvature.jpg create mode 100644 buch/papers/kugel/figures/povray/curvature.png create mode 100644 buch/papers/kugel/figures/povray/spherecurve.jpg create mode 100644 buch/papers/kugel/figures/povray/spherecurve.png diff --git a/buch/papers/kugel/figures/povray/curvature.jpg b/buch/papers/kugel/figures/povray/curvature.jpg new file mode 100644 index 0000000..6448966 Binary files /dev/null and b/buch/papers/kugel/figures/povray/curvature.jpg differ diff --git a/buch/papers/kugel/figures/povray/curvature.png b/buch/papers/kugel/figures/povray/curvature.png new file mode 100644 index 0000000..20268f2 Binary files /dev/null and b/buch/papers/kugel/figures/povray/curvature.png differ diff --git a/buch/papers/kugel/figures/povray/spherecurve.jpg b/buch/papers/kugel/figures/povray/spherecurve.jpg new file mode 100644 index 0000000..cd2e7c8 Binary files /dev/null and b/buch/papers/kugel/figures/povray/spherecurve.jpg differ diff --git a/buch/papers/kugel/figures/povray/spherecurve.png b/buch/papers/kugel/figures/povray/spherecurve.png new file mode 100644 index 0000000..ff24371 Binary files /dev/null and b/buch/papers/kugel/figures/povray/spherecurve.png differ -- cgit v1.2.1 From 494636b6d00b0697bda4c5840a3666b0867f22e8 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 17 Aug 2022 17:18:13 +0200 Subject: kugel: Minor changes --- buch/papers/kugel/main.tex | 2 +- buch/papers/kugel/packages.tex | 5 ++ buch/papers/kugel/preliminaries.tex | 8 +-- buch/papers/kugel/spherical-harmonics.tex | 87 ++++++++++++++++++++++--------- 4 files changed, 73 insertions(+), 29 deletions(-) diff --git a/buch/papers/kugel/main.tex b/buch/papers/kugel/main.tex index ad19178..d063f87 100644 --- a/buch/papers/kugel/main.tex +++ b/buch/papers/kugel/main.tex @@ -11,7 +11,7 @@ \chapterauthor{Manuel Cattaneo, Naoki Pross} \input{papers/kugel/introduction} -% \input{papers/kugel/preliminaries} +\input{papers/kugel/preliminaries} \input{papers/kugel/spherical-harmonics} \input{papers/kugel/applications} \input{papers/kugel/proofs} diff --git a/buch/papers/kugel/packages.tex b/buch/papers/kugel/packages.tex index b0e1f61..ead7653 100644 --- a/buch/papers/kugel/packages.tex +++ b/buch/papers/kugel/packages.tex @@ -1,3 +1,4 @@ +% vim:ts=2 sw=2 et: % % packages.tex -- packages required by the paper kugel % @@ -10,6 +11,10 @@ \usepackage{cases} \newcommand{\kugeltodo}[1]{\textcolor{red!70!black}{\texttt{[TODO: #1]}}} +\newcommand{\kugelplaceholderfig}[2]{ \begin{tikzpicture}% + \fill[lightgray!20] (0, 0) rectangle (#1, #2);% + \node[gray, anchor = center] at ({#1 / 2}, {#2 / 2}) {\Huge \ttfamily \bfseries TODO}; + \end{tikzpicture}} \DeclareMathOperator{\sphlaplacian}{\nabla^2_{\mathit{S}}} \DeclareMathOperator{\surflaplacian}{\nabla^2_{\partial \mathit{S}}} diff --git a/buch/papers/kugel/preliminaries.tex b/buch/papers/kugel/preliminaries.tex index 03cd421..e48abe4 100644 --- a/buch/papers/kugel/preliminaries.tex +++ b/buch/papers/kugel/preliminaries.tex @@ -44,23 +44,23 @@ numbers \(\mathbb{R}\). \) \end{definition} -\texttt{TODO: Text here.} +\kugeltodo{Text here.} \begin{definition}[Span] \end{definition} -\texttt{TODO: Text here.} +\kugeltodo{Text here.} \begin{definition}[Linear independence] \end{definition} -\texttt{TODO: Text here.} +\kugeltodo{Text here.} \begin{definition}[Basis] \end{definition} -\texttt{TODO: Text here.} +\kugeltodo{Text here.} \begin{definition}[Inner product] \label{kugel:def:inner-product} \nocite{axler_linear_2014} diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex index 5645941..2ded50b 100644 --- a/buch/papers/kugel/spherical-harmonics.tex +++ b/buch/papers/kugel/spherical-harmonics.tex @@ -2,8 +2,8 @@ \section{Construction of the Spherical Harmonics} -\if 0 -\kugeltodo{Rewrite this section if the preliminaries become an addendum} +\kugeltodo{Review text, or rewrite if preliminaries becomes an addendum} + We finally arrived at the main section, which gives our chapter its name. The idea is to discuss spherical harmonics, their mathematical derivation and some of their properties and applications. @@ -29,9 +29,9 @@ created with the previous sections, concluding that Fourier is just a specific case of the application of the concept of orthogonality. Our hope is that after reading this section you will appreciate the beauty and power of generalization that mathematics offers us. -\fi \subsection{Eigenvalue Problem} +\label{kugel:sec:construction:eigenvalue} \begin{figure} \centering @@ -111,8 +111,9 @@ that satisfy the equation \surflaplacian f = -\lambda f. \end{equation} Perhaps it may not be obvious at first glance, but we are in fact dealing with a -partial differential equation (PDE) \kugeltodo{Boundary conditions?}. If we unpack the notation of the operator -$\nabla^2_{\partial S}$ according to definition +partial differential equation (PDE) \kugeltodo{Boundary conditions?}. If we +unpack the notation of the operator $\nabla^2_{\partial S}$ according to +definition \ref{kugel:def:surface-laplacian}, we get: \begin{equation} \label{kugel:eqn:eigen-pde} \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( @@ -139,7 +140,8 @@ convenience. If we substitute this assumption in \frac{1}{\sin\vartheta} \frac{\partial}{\partial \vartheta} \left( \sin\vartheta \frac{\partial \Theta(\vartheta)}{\partial\vartheta} \right) \Phi(\varphi) - + \frac{1}{\sin^2 \vartheta} \frac{\partial^2 \Phi(\varphi)}{\partial\varphi^2} + + \frac{1}{\sin^2 \vartheta} + \frac{\partial^2 \Phi(\varphi)}{\partial\varphi^2} \Theta(\vartheta) + \lambda \Theta(\vartheta)\Phi(\varphi) = 0. \end{equation*} @@ -182,6 +184,14 @@ require a dedicated section of its own. \subsection{Legendre Functions} +\begin{figure} + \centering + \kugelplaceholderfig{.8\textwidth}{5cm} + \caption{ + \kugeltodo{Why $z = \cos \vartheta$.} + } +\end{figure} + To solve \eqref{kugel:eqn:ode-theta} we start with the substitution $z = \cos \vartheta$ \kugeltodo{Explain geometric origin with picture}. The operator $\frac{d}{d \vartheta}$ becomes @@ -298,26 +308,19 @@ Legendre equation, which is not possible only using power series we have a solution in our domain, namely $P_n(z)$, we can insert it in the lemma obtain the \emph{associated Legendre functions}. -\begin{definition}[Ferrers or Associated Legendre functions] +\begin{definition}[Ferrers or associated Legendre functions] + \label{kugel:def:ferrers-functions} The functions - \begin{equation}\label{kugel:eq:associated_leg_func} + \begin{equation} P^m_n (z) = \frac{1}{n!2^n}(1-z^2)^{\frac{m}{2}}\frac{d^{m}}{dz^{m}} P_n(z) = \frac{1}{n!2^n}(1-z^2)^{\frac{m}{2}}\frac{d^{m+n}}{dz^{m+n}}(1-z^2)^n \end{equation} are known as Ferrers or associated Legendre functions. \end{definition} -\subsection{Spherical Harmonics} +\kugeltodo{Discuss $|m| \leq n$.} -As you may recall, previously we performed the substitution $x=\cos \vartheta$. Now we need to return to the old domain, which can be done straightforwardly: -\begin{equation*} - \Theta(\vartheta) = P_{m,n}(\cos \vartheta), -\end{equation*} -obtaining the much sought function $\Theta(\vartheta)$. \newline -So we finally reached the end of this tortuous path. Now we just need to put together all the information we have to construct $f(\vartheta, \varphi)$ in the following way: -\begin{equation}\label{kugel:eq:sph_harm_0} - f(\vartheta, \varphi) = \Theta(\vartheta)\Phi(\varphi) = P_{m,n}(\cos \vartheta)e^{jm\varphi}, \quad |m|\leq n. -\end{equation} +\if 0 The constraint $|m| Date: Wed, 17 Aug 2022 20:37:05 +0200 Subject: remove superfluous file --- buch/SeminarSpezielleFunktionen.pdf | Bin 22768314 -> 0 bytes 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 buch/SeminarSpezielleFunktionen.pdf diff --git a/buch/SeminarSpezielleFunktionen.pdf b/buch/SeminarSpezielleFunktionen.pdf deleted file mode 100644 index 36b612f..0000000 Binary files a/buch/SeminarSpezielleFunktionen.pdf and /dev/null differ -- cgit v1.2.1 From c32bd2a662c56007f6e0be7899ffca982bb00e80 Mon Sep 17 00:00:00 2001 From: Alain Date: Wed, 17 Aug 2022 20:53:48 +0200 Subject: korrekturen --- buch/papers/parzyl/references.bib | 9 +++ buch/papers/parzyl/teil0.tex | 2 +- buch/papers/parzyl/teil1.tex | 115 +++++++++++++++++++++++++------------- 3 files changed, 85 insertions(+), 41 deletions(-) diff --git a/buch/papers/parzyl/references.bib b/buch/papers/parzyl/references.bib index 40be69a..390d5ed 100644 --- a/buch/papers/parzyl/references.bib +++ b/buch/papers/parzyl/references.bib @@ -56,4 +56,13 @@ timestamp = {2008-06-25T06:25:58.000+0200}, title = {Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables}, year = 1972 +} + +@online{parzyl:coordinates, + title = {Parabolic cylindrical coordinates}, + url = {https://en.wikipedia.org/wiki/Parabolic_cylindrical_coordinates}, + date = {2022-08-17}, + year = {2022}, + month = {8}, + day = {17} } \ No newline at end of file diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index 4a6f8f4..f24a5c1 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -65,7 +65,7 @@ in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der %An ladungsfreien Stellen ist der rechte Teil der Gleichung $0$. \subsection{Parabolische Zylinderkoordinaten \label{parzyl:subsection:finibus}} -Im parabolischen Zylinderkoordinatensystem bilden parabolische Zylinder die Koordinatenflächen. +Im parabolischen Zylinderkoordinatensystem \cite{parzyl:coordinates} bilden parabolische Zylinder die Koordinatenflächen. Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit \begin{align} x & = \sigma \tau \\ diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index 673fa7f..a4253b8 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -25,63 +25,92 @@ Die Lösung ist somit Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} werden in \cite{parzyl:whittaker} mit Hilfe der Whittaker Gleichung gelöst. \begin{definition} - Die Funktion + Die Funktionen \begin{equation*} - W_{k,m}(z) = + M_{k,m}(z) = e^{-z/2} z^{m+1/2} \, {}_{1} F_{1} ( {\textstyle \frac{1}{2}} + m - k, 1 + 2m; z) \end{equation*} - heisst Whittaker Funktion und ist eine Lösung + und + \begin{equation*} + W_{k,m}(z) = \frac{ + \Gamma \left( -2m\right) + }{ + \Gamma \left( {\textstyle \frac{1}{2}} - m - k\right) + } + M_{-k, m} \left(z\right) + + + \frac{ + \Gamma \left( 2m\right) + }{ + \Gamma \left( {\textstyle \frac{1}{2}} + m - k\right) + } + M_{k, -m} \left(z\right) + \end{equation*} + gehören zu den Whittaker Funktionen und sind die Lösungen von der Whittaker Differentialgleichung \begin{equation} \frac{d^2W}{d z^2} + \left(-\frac{1}{4} + \frac{k}{z} + \frac{\frac{1}{4} - m^2}{z^2} \right) W = 0. \label{parzyl:eq:whitDiffEq} \end{equation} + \end{definition} Es wird nun die Differentialgleichung bestimmt, welche \begin{equation} w = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right) \end{equation} als Lösung hat. -Dafür wird $w$ in \eqref{parzyl:eq:whitDiffEq} eingesetzt woraus +Dafür wird $w$ in \eqref{parzyl:eq:whitDiffEq} eingesetzt, woraus \begin{equation} \frac{d^2 w}{dz^2} - \left(\frac{1}{4} z^2 - 2k\right) w = 0 \label{parzyl:eq:weberDiffEq} \end{equation} -resultiert. DIese Differentialgleichung ist dieselbe wie +resultiert. Diese Differentialgleichung ist dieselbe wie \eqref{parzyl:sep_dgl_2} und \eqref{parzyl:sep_dgl_2}, welche somit $w$ als Lösung haben. -Da es sich um eine Differentialgleichung zweiter Ordnung handelt, hat sie nicht nur -eine sondern zwei Lösungen. -Die zweite Lösung der Whittaker-Gleichung ist $W_{k,-m} (z)$. -Somit hat \eqref{parzyl:eq:weberDiffEq} -\begin{align} - w_1(k, z) & = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right)\\ - w_2(k, z) & = z^{-1/2} W_{k,1/4} \left({\textstyle \frac{1}{2}} z^2\right) -\end{align} -als Lösungen. -Mit der Hypergeometrischen Funktion ausgeschrieben ergeben sich die Lösungen -\begin{align} - \label{parzyl:eq:solution_dgl} - w_1(k,z) &= e^{-z^2/4} \, - {}_{1} F_{1} - ( - {\textstyle \frac{1}{4}} - - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) \\ - w_2(k,z) & = z e^{-z^2/4} \, - {}_{1} F_{1} - ({\textstyle \frac{3}{4}} - - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2). -\end{align} -In der Literatur gibt es verschiedene Standartlösungen für $w(k,z)$ präsentiert. -Whittaker und Watson zeigen in \cite{parzyl:whittaker} eine Lösung +%Da es sich um eine Differentialgleichung zweiter Ordnung handelt, hat sie nicht nur +%eine sondern zwei Lösungen. +%Die zweite Lösung der Whittaker-Gleichung ist $W_{k,-m} (z)$. +%Somit hat \eqref{parzyl:eq:weberDiffEq} +%\begin{align} +% w_1(k, z) & = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right)\\ +% w_2(k, z) & = z^{-1/2} W_{k,1/4} \left({\textstyle \frac{1}{2}} z^2\right) +%\end{align} +%als Lösungen. +%Mit der Hypergeometrischen Funktion ausgeschrieben ergeben sich die Lösungen +%\begin{align} +% \label{parzyl:eq:solution_dgl} +% w_1(k,z) &= e^{-z^2/4} \, +% {}_{1} F_{1} +% ( +% {\textstyle \frac{1}{4}} +% - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) \\ +% w_2(k,z) & = z e^{-z^2/4} \, +% {}_{1} F_{1} +% ({\textstyle \frac{3}{4}} +% - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2). +%\end{align} + +In der Literatur gibt es verschiedene Standartlösungen für +\eqref{parzyl:eq:weberDiffEq} präsentiert, wobei die Differentialgleichung jeweils +unterschiedlich geschrieben wird. +Whittaker und Watson zeigen in \cite{parzyl:whittaker} die Lösung +\begin{equation} + D_n(z) = 2^{\frac{1}{2}n + \frac{1}{2}} z^{-\frac{1}{2}} W_{n/2 + 1/4, -1/4}\left(\frac{1}{2}z^2\right) +\end{equation} +welche die Differentialgleichung +\begin{equation} + \frac{d^2D_n(z)}{dz^2} + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right)D_n(z) = 0 +\end{equation} +löst. +Mit $M_{k,m}(z)$ geschrieben resultiert \begin{equation} D_n(z) = \frac{ - \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{2}} z^{-\frac{1}{2}} + \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} z^{-\frac{1}{2}} }{ \Gamma \left( {\textstyle \frac{1}{2}} \right) - {\textstyle \frac{1}{2}} n) } @@ -92,14 +121,8 @@ Whittaker und Watson zeigen in \cite{parzyl:whittaker} eine Lösung }{ \Gamma\left(- {\textstyle \frac{1}{2}} n\right) } - M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}z^2\right) + M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}z^2\right). \end{equation} -welche die Differentialgleichung -\begin{equation} - \frac{d^2D_n(z)}{dz^2} + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right)D_n(z) = 0 -\end{equation} -löst. - In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, z)$ und $V(a,z)$ \begin{align} U(a,z) &= @@ -115,11 +138,22 @@ mit Y_1 &= \frac{1}{\sqrt{\pi}} \frac{\Gamma\left({\textstyle \frac{1}{4} - {\textstyle \frac{1}{2}}a}\right)} - {2^{\frac{1}{2} a + \frac{1}{4}}} w_1\\ + {2^{\frac{1}{2} a + \frac{1}{4}}} + e^{-z^2/4} + {}_{1} F_{1} + \left({\textstyle \frac{1}{2}}a + {\textstyle \frac{1}{4}}, + {\textstyle \frac{1}{2}} ; + {\textstyle \frac{1}{2}}z^2\right) + \\ Y_2 &= \frac{1}{\sqrt{\pi}} \frac{\Gamma\left({\textstyle \frac{3}{4} - {\textstyle \frac{1}{2}}a}\right)} - {2^{\frac{1}{2} a - \frac{1}{4}}} w_2 + {2^{\frac{1}{2} a - \frac{1}{4}}} + z e^{-z^2/4} + {}_{1} F_{1} + \left({\textstyle \frac{1}{2}}a + {\textstyle \frac{3}{4}}, + {\textstyle \frac{3}{2}} ; + {\textstyle \frac{1}{2}}z^2\right) \end{align} der Differentialgleichung \begin{equation} @@ -132,7 +166,8 @@ ausgedrückt werden V(a,z) &= \frac{\Gamma \left({\textstyle \frac{1}{2}} + a\right)}{\pi} \left[\sin\left(\pi a\right) D_{-a-1/2}(z) + D_{-a-1/2}(-x)\right]. \end{align} -TODO Plot +In den Abbildungen \ref{parzyl:fig:dnz} und \ref{parzyl:fig:Vnz} sind +die Funktionen $D_a(z)$ und $V(a,z)$ mit verschiedenen Werten für $a$ abgebildet. \begin{figure} \centering \includegraphics[scale=0.3]{papers/parzyl/img/D_plot.png} -- cgit v1.2.1 From 9d52cc84df44e8479cafdd7b0d7f264aeb0c8a10 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Wed, 17 Aug 2022 21:38:44 +0200 Subject: letzte Korrektur --- buch/papers/0f1/teil2.tex | 18 +++++++++--------- buch/papers/0f1/teil3.tex | 4 ++-- 2 files changed, 11 insertions(+), 11 deletions(-) diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 64f8d83..fdcb0fc 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -41,13 +41,13 @@ a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}}, in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind. \subsubsection{Rekursionsbeziehungen und Kettenbrüche} -Will man einen Kettenbruch für das Verhältnis $\frac{f_i(z)}{f_{i-1}(z)}$ finden, braucht man dazu eine Relation der analytischer Funktion $f_i(z)$. -Nimmt man die Gleichung \cite{0f1:wiki-fraction}: +Wenn es eine Relation analytischer Funktion $f_i(z)$ hat, dann gibt es einen Kettenbruch für das Verhältnis $\frac{f_i(z)}{f_{i-1}(z)}$ \cite{0f1:wiki-fraction}. +Nimmt man die Gleichung \begin{equation*} f_{i-1} - f_i = k_i z f_{i+1}, \end{equation*} wo $f_i$ analytische Funktionen sind und $i > 0$ ist, sowie $k_i$ konstant. -Ergibt sich folgender Zusammenhang: +Ergibt sich der Zusammenhang \begin{equation*} \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}}. \end{equation*} @@ -55,7 +55,7 @@ Geht man einen Schritt weiter und nimmt für $g_i = \frac{f_i}{f_{i-1}}$ an, kom \begin{equation*} g_i = \cfrac{1}{1+k_izg_{i+1}}. \end{equation*} -Setzt man dies nun für $g_1$ in den Bruch ein, ergibt sich folgendes: +Setzt man dies nun für $g_1$ in den Bruch ein, ergibt sich \begin{equation*} g_1 = \cfrac{f_1}{f_0} = \cfrac{1}{1+k_izg_2} = \cfrac{1}{1+\cfrac{k_1z}{1+k_2zg_3}} = \cdots \end{equation*} @@ -76,19 +76,19 @@ kann durch Substitution bewiesen werden, dass \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z) \end{equation*} eine Relation dazu ist. -Wenn man für $f_i$ und $k_i$ folgende Annahme trifft: +Wenn man für $f_i$ und $k_i$ die Annahme \begin{align*} f_i =& \mathstrut_0F_1(;c+i;z)\\ k_i =& \frac{1}{(c+i)(c+i-1)} \end{align*} -und in die Formel \eqref{0f1:math:rekursion:eq} einsetzt, erhält man: +trifft und in die Formel \eqref{0f1:math:rekursion:eq} einsetzt, erhält man: \begin{equation*} \cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{\cfrac{z}{(c+2)(c+3)}}{\cdots}}}}. \end{equation*} \subsubsection{Algorithmus} Da mit obigen Formeln nur ein Verhältnis zwischen $ \frac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)}$ berechnet wurde, braucht es weitere Relationen um $\mathstrut_0F_1(;c;z)$ zu erhalten. -So ergeben ähnliche Relationen nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch +So ergeben ähnliche Relationen nach Wolfram Alpha \cite{0f1:wolfram-0f1} den Kettenbruch \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}}, @@ -112,7 +112,7 @@ lässt sich zu \cfrac{A_k}{B_k} = \cfrac{b_{k+1}}{a_{k+1} + \cfrac{p}{q}} = \frac{b_{k+1} \cdot q}{a_{k+1} \cdot q + p} \end{align*} umformen. -Dies lässt sich auch durch die folgende Matrizenschreibweise +Dies lässt sich auch durch die Matrizenschreibweise \begin{equation*} \begin{pmatrix} A_k\\ @@ -137,7 +137,7 @@ Wendet man dies nun auf den Kettenbruch in der Form \begin{equation*} \frac{A_k}{B_k} = a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{k-1}}{a_{k-1} + \cfrac{b_k}{a_k}}}}} \end{equation*} -an, ergibt sich folgende Matrixdarstellungen: +an, ergibt sich die Matrixdarstellungen: \begin{align*} \begin{pmatrix} diff --git a/buch/papers/0f1/teil3.tex b/buch/papers/0f1/teil3.tex index 2afc34b..147668a 100644 --- a/buch/papers/0f1/teil3.tex +++ b/buch/papers/0f1/teil3.tex @@ -15,9 +15,9 @@ Ebenso kann festgestellt werden, dass je grösser der Wert $z$ in $\mathstrut_0F \label{0f1:subsection:konvergenz}} Es zeigt sich in Abbildung \ref{0f1:ausblick:plot:airy:konvergenz}, dass nach drei Iterationen ($k = 3$) die Funktionen genaue Resultate im Bereich von $-2$ bis $2$ liefert. Ebenso kann festgestellt werden, dass der Kettenbruch schneller konvergiert und im positiven Bereich mit der Referenzfunktion $\operatorname{Ai}(x)$ übereinstimmt. Da die Rekursionsformel eine Abwandlung des Kettenbruches ist, verhalten sich die Funktionen in diesem Fall gleich. -Erst wenn mehrerer Iterationen gerechnet werden, ist wie Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen. Bei der Rekursionsformel muss beachtet werden, dass sie zwar erst nach 35 Approximationen gänzlich konvergiert, allerdings nach 27 Iterationen sich nicht mehr gross verändert. +Erst wenn mehrerer Iterationen gerechnet werden, ist wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:positiv} dargestellt, der Kettenbruch den anderen zwei Algorithmen bezüglich Konvergenz überlegen. Bei der Rekursionsformel muss beachtet werden, dass sie zwar erst nach 35 Approximationen gänzlich konvergiert, allerdings nach 27 Iterationen sich nicht mehr gross verändert. -Ist $z$ negativ wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies zu aufgrund des Vorzeichens zu alternierenden Termen. So steigt bei allen Algorithmen zuerst die Differenz zum erwarteten Endwert. Erst nach genügend Iterationen sind die Terme so klein, dass sie das Endresultat nicht mehr signifikant beeinflussen. Während die Potenzreihe zusammen mit dem Kettenbruch nach 34 Approximationen konvergiert, braucht die Rekursionsformel noch zwei Iterationen mehr. +Ist $z$ negativ, wie in Abbildung \ref{0f1:ausblick:plot:konvergenz:negativ}, führt dies aufgrund des Vorzeichens zu alternierenden Termen. So steigt bei allen Algorithmen zuerst die Differenz zum erwarteten Endwert. Erst nach genügend Iterationen sind die Terme so klein, dass sie das Endresultat nicht mehr signifikant beeinflussen. Während die Potenzreihe zusammen mit dem Kettenbruch nach 34 Approximationen konvergiert, braucht die Rekursionsformel noch zwei Iterationen mehr. \subsection{Stabilität -- cgit v1.2.1 From 8faafd84edbd5dc53a693513d970fe5ab67d8b5c Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 17 Aug 2022 23:20:35 +0200 Subject: Tim ist kein Zeichner --- buch/papers/kreismembran/Makefile | 4 +- buch/papers/kreismembran/images/TikzSaite.pdf | Bin 0 -> 17625 bytes buch/papers/kreismembran/images/TikzSaite.tex | 57 ++++++++++++++++++++++++++ buch/papers/kreismembran/teil0.tex | 3 +- 4 files changed, 61 insertions(+), 3 deletions(-) create mode 100644 buch/papers/kreismembran/images/TikzSaite.pdf create mode 100644 buch/papers/kreismembran/images/TikzSaite.tex diff --git a/buch/papers/kreismembran/Makefile b/buch/papers/kreismembran/Makefile index ce3c89f..a13f2cf 100644 --- a/buch/papers/kreismembran/Makefile +++ b/buch/papers/kreismembran/Makefile @@ -4,6 +4,6 @@ # (c) 2020 Prof Dr Andreas Mueller # -images: - @echo "no images to be created in kreismembran" +images/TikzSaite.pdf: images/TikzSaite.tex + cd images && pdflatex TikzSaite.tex diff --git a/buch/papers/kreismembran/images/TikzSaite.pdf b/buch/papers/kreismembran/images/TikzSaite.pdf new file mode 100644 index 0000000..f95ceb9 Binary files /dev/null and b/buch/papers/kreismembran/images/TikzSaite.pdf differ diff --git a/buch/papers/kreismembran/images/TikzSaite.tex b/buch/papers/kreismembran/images/TikzSaite.tex new file mode 100644 index 0000000..bf3d8f6 --- /dev/null +++ b/buch/papers/kreismembran/images/TikzSaite.tex @@ -0,0 +1,57 @@ +% vim: ts=2 sw=2 et : +\documentclass[tikz, border=2mm]{standalone} + +\usepackage{times} +\usepackage{txfonts} + +\begin{document} + \begin{tikzpicture}[ + axis/.style = {very thick, -latex}, + axis tick/.style = { + draw, draw = black, fill = black, rectangle, + inner sep = 0pt, + minimum height = 2mm, + minimum width = 1pt, + }, + string/.style = { + ultra thick, draw = black, + }, + string end/.style = { + string, circle, fill = gray, + inner sep = 0pt, minimum size = 1mm, + }, + force/.style = { + very thick, draw = gray, -latex, + }, + ] + + % axes + \draw[axis] (0, 0) -- (8cm, 0) node[right] {$x$}; + \draw[axis] (0, 0) -- (0, 5cm) node[above] {$u(x, t)$}; + + % axes ticks + \node[axis tick, label = {-90:$x_0$}] at (2cm, 0) {}; + \node[axis tick, label = {-90:$x_0 + dx$}] at (6cm, 0) {}; + + % string + \coordinate (A) at (2cm, 2cm); + \coordinate (B) at (6cm, 4cm); + + \draw[string] (A) to[out = 40, in = 200] (B); + + \draw[force] (A) -- ++(220:15mm) node[gray, below right] {$T_1$}; + \draw[force] (B) -- ++(20:15mm) node[gray, above left] {$T_2$}; + + \draw[dashed, gray, thick] (A) -- ++(-15mm, 0); + \draw[gray, thick] (A) ++ (-7mm,0) arc (180:220:7mm) + node[midway, left] {$\alpha$}; + + \draw[dashed, gray, thick] (B) -- ++(15mm, 0); + \draw[gray, thick] (B) ++ (7mm,0) arc (0:20:7mm) + node[pos = 0, below] {$\beta$}; + + \node[string end, label={110:$P_1$}] at (A) {}; + \node[string end, label={110:$P_2$}] at (B) {}; + + \end{tikzpicture} +\end{document} diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index 27c6f0f..e962aab 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -42,7 +42,8 @@ Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man s \begin{figure} \begin{center} - \includegraphics[width=5cm,angle=-90]{papers/kreismembran/images/Saite.pdf} + % \includegraphics[width=5cm,angle=-90]{papers/kreismembran/images/Saite.pdf} + \includegraphics[]{papers/kreismembran/images/TikzSaite.pdf} \caption{Infinitesimales Stück einer Saite} \label{kreismembran:im:Saite} \end{center} -- cgit v1.2.1 From a8b82aafff82dbff739714d7009419a0015eebcf Mon Sep 17 00:00:00 2001 From: Alain Date: Wed, 17 Aug 2022 23:41:00 +0200 Subject: =?UTF-8?q?n=C3=B6d=20ganz?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/parzyl/img/D_plot.png | Bin 712446 -> 704810 bytes buch/papers/parzyl/teil1.tex | 16 +++++++++------- buch/papers/parzyl/teil3.tex | 39 ++++++++++++++++++++++---------------- 3 files changed, 32 insertions(+), 23 deletions(-) diff --git a/buch/papers/parzyl/img/D_plot.png b/buch/papers/parzyl/img/D_plot.png index f76e35b..94b483b 100644 Binary files a/buch/papers/parzyl/img/D_plot.png and b/buch/papers/parzyl/img/D_plot.png differ diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index a4253b8..c5ece66 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -112,7 +112,7 @@ Mit $M_{k,m}(z)$ geschrieben resultiert D_n(z) = \frac{ \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} z^{-\frac{1}{2}} }{ - \Gamma \left( {\textstyle \frac{1}{2}} \right) - {\textstyle \frac{1}{2}} n) + \Gamma \left( {\textstyle \frac{1}{2}} - {\textstyle \frac{1}{2}} n \right) } M_{\frac{1}{2} n + \frac{1}{4}, - \frac{1}{4}} \left(\frac{1}{2}z^2\right) + @@ -127,11 +127,14 @@ In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, z)$ und $V(a,z)$ \begin{align} U(a,z) &= \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 - - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \\ + - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 + \label{parzyl:eq:Uaz} + \\ V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \right\} + \label{parzyl:eq:Vaz} \end{align} mit \begin{align} @@ -143,9 +146,8 @@ mit {}_{1} F_{1} \left({\textstyle \frac{1}{2}}a + {\textstyle \frac{1}{4}}, {\textstyle \frac{1}{2}} ; - {\textstyle \frac{1}{2}}z^2\right) - \\ - Y_2 &= \frac{1}{\sqrt{\pi}} + {\textstyle \frac{1}{2}}z^2\right)\\ + Y_2 &= \frac{1}{\sqrt{\pi}} \frac{\Gamma\left({\textstyle \frac{3}{4} - {\textstyle \frac{1}{2}}a}\right)} {2^{\frac{1}{2} a - \frac{1}{4}}} @@ -167,11 +169,11 @@ ausgedrückt werden \left[\sin\left(\pi a\right) D_{-a-1/2}(z) + D_{-a-1/2}(-x)\right]. \end{align} In den Abbildungen \ref{parzyl:fig:dnz} und \ref{parzyl:fig:Vnz} sind -die Funktionen $D_a(z)$ und $V(a,z)$ mit verschiedenen Werten für $a$ abgebildet. +die Funktionen $D_n(z)$ und $V(a,z)$ mit verschiedenen Werten für $a$ abgebildet. \begin{figure} \centering \includegraphics[scale=0.3]{papers/parzyl/img/D_plot.png} - \caption{$D_a(z)$ mit unterschiedlichen Werten für $a$.} + \caption{$D_n(z)$ mit unterschiedlichen Werten für $n$.} \label{parzyl:fig:dnz} \end{figure} \begin{figure} diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 972fd33..78950e1 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -9,41 +9,45 @@ \subsection{Potenzreihenentwicklung \label{parzyl:potenz}} -Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, können auch als Potenzreihen geschrieben werden +%Die parabolischen Zylinderfunktionen, welche in Gleichung \ref{parzyl:eq:solution_dgl} gegeben sind, +%können auch als Potenzreihen geschrieben werden +Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. +Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. +Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, z)$ +und einem ungeraden Teil $w_2(\alpha, z)$, welche als Potenzreihe \begin{align} - w_1(k,z) + w_1(\alpha,z) &= e^{-z^2/4} \, {}_{1} F_{1} ( - {\textstyle \frac{1}{4}} - - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) + \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) = e^{-\frac{z^2}{4}} \sum^{\infty}_{n=0} - \frac{\left ( \frac{1}{4} - k \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} + \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ &= e^{-\frac{z^2}{4}} \left ( 1 + - \left ( \frac{1}{2} - 2k \right )\frac{z^2}{2!} + \left ( 2\alpha \right )\frac{z^2}{2!} + - \left ( \frac{1}{2} - 2k \right )\left ( \frac{5}{2} - 2k \right )\frac{z^4}{4!} + \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{z^4}{4!} + \dots \right ) \end{align} und \begin{align} - w_2(k,z) + w_2(\alpha,z) &= ze^{-z^2/4} \, {}_{1} F_{1} ( - {\textstyle \frac{3}{4}} - - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) + {\textstyle \frac{1}{2}} + + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) = ze^{-\frac{z^2}{4}} \sum^{\infty}_{n=0} @@ -54,20 +58,23 @@ und \left ( z + - \left ( \frac{3}{2} - 2k \right )\frac{z^3}{3!} + \left ( 1 + 2\alpha \right )\frac{z^3}{3!} + - \left ( \frac{3}{2} - 2k \right )\left ( \frac{7}{2} - 2k \right )\frac{z^5}{5!} + \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{z^5}{5!} + \dots \right ). \end{align} -Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. Es gibt allerdings die Möglichkeit für bestimmte k das die Terme in der Klammer gleich null werden und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(k,z)$ falls +sind. +Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. +Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden +und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(\alpha,z)$ falls \begin{equation} - k = \frac{1}{4} + n \qquad n \in \mathbb{N}_0 + \alpha = -n \qquad n \in \mathbb{N}_0 \end{equation} -und bei $w_2(k,z)$ falls +und bei $w_2(\alpha,z)$ falls \begin{equation} - k = \frac{3}{4} + n \qquad n \in \mathbb{N}_0. + \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. \end{equation} \subsection{Ableitung} -- cgit v1.2.1 From a5bf03e77ac18012b8608ba6b3c46c301d66528c Mon Sep 17 00:00:00 2001 From: Alain Date: Thu, 18 Aug 2022 09:47:52 +0200 Subject: ableitung --- buch/papers/parzyl/teil3.tex | 21 ++++++++++++++++----- 1 file changed, 16 insertions(+), 5 deletions(-) diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index 78950e1..b68229f 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -78,13 +78,24 @@ und bei $w_2(\alpha,z)$ falls \end{equation} \subsection{Ableitung} -Es kann gezeigt werden, dass die Ableitungen $\frac{\partial w_1(z,k)}{\partial z}$ und $\frac{\partial w_2(z,k)}{\partial z}$ einen Zusammenhang zwischen $w_1(z,k)$ und $w_2(z,k)$ zeigen. Die Ableitung von $w_1(z,k)$ nach $z$ kann über die Produktregel berechnet werden und ist gegeben als +Die Ableitungen $\frac{\partial w_1(z,k)}{\partial z}$ und $\frac{\partial w_2(z,k)}{\partial z}$ +können mit den Eigenschaften der hypergeometrischen Funktionen in Abschnitt +\ref{buch:rekursion:hypergeometrisch:stammableitung} berechnet werden. +Zusammen mit der Produktregel ergeben sich die Ableitungen \begin{equation} - \frac{\partial w_1(z,k)}{\partial z} = \left (\frac{1}{2} - 2k \right ) w_2(z, k -\frac{1}{2}) - \frac{1}{2} z w_1(z,k), + \frac{\partial w_1(\alpha,z)}{\partial z} = 2\alpha w_2(\alpha + \frac{1}{2}, z) - \frac{1}{2} z w_1(\alpha, z), \end{equation} -und die Ableitung von $w_2(z,k)$ als +und +%\begin{equation} +% \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k). +%\end{equation} \begin{equation} - \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k). + \frac{\partial w_2(\alpha,z)}{\partial z} = e^{-z^2/4} \left( + z^{-1} w_2(\alpha, z) - \frac{z}{2} w_2(\alpha, z) + 2 z^2 \left(\frac{\alpha + 1}{3}\right) + {}_{1} F_{1} ( + {\textstyle \frac{3}{2}} + + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}z^2) + \right) \end{equation} -Über diese Eigenschaft können einfach weitere Ableitungen berechnet werden. +Nach dem selben Vorgehen können weitere Ableitungen berechnet werden. -- cgit v1.2.1 From 7cdb2904f851c326a4fd72b58491f3b8199620df Mon Sep 17 00:00:00 2001 From: Alain Date: Thu, 18 Aug 2022 11:46:08 +0200 Subject: verbesserungen --- buch/papers/parzyl/img/D_plot.png | Bin 704810 -> 746370 bytes buch/papers/parzyl/img/v_plot.png | Bin 637451 -> 648430 bytes buch/papers/parzyl/teil0.tex | 32 +++++++++-------- buch/papers/parzyl/teil1.tex | 74 +++++++++++++++++++------------------- buch/papers/parzyl/teil2.tex | 29 +++++++-------- buch/papers/parzyl/teil3.tex | 61 ++++++++++++++++--------------- 6 files changed, 102 insertions(+), 94 deletions(-) diff --git a/buch/papers/parzyl/img/D_plot.png b/buch/papers/parzyl/img/D_plot.png index 94b483b..6c61eea 100644 Binary files a/buch/papers/parzyl/img/D_plot.png and b/buch/papers/parzyl/img/D_plot.png differ diff --git a/buch/papers/parzyl/img/v_plot.png b/buch/papers/parzyl/img/v_plot.png index b8c803e..7cd5455 100644 Binary files a/buch/papers/parzyl/img/v_plot.png and b/buch/papers/parzyl/img/v_plot.png differ diff --git a/buch/papers/parzyl/teil0.tex b/buch/papers/parzyl/teil0.tex index f24a5c1..8be936d 100644 --- a/buch/papers/parzyl/teil0.tex +++ b/buch/papers/parzyl/teil0.tex @@ -9,15 +9,18 @@ %Mit ihr lässt sich zum Beispiel das elektrische Feld in einem ladungsfreien Raum bestimmen. %In diesem Kapitel wird die Lösung der Laplace-Gleichung im %parabolischen Zylinderkoordinatensystem genauer untersucht. -Die Helmholtz-Gleichung ist eine wichtige Gleichung in der Physik. Mit ihr lässt sich zum Beispiel das Verhalten von elektromagnetischen Wellen beschreiben. -In diesem Kapitel wird die Lösung der Helmholtz-Gleichung im parabolischen Zylinderkoordinatensystem, die parabolischen Zylinderfunktionen, genauer untersucht. +Die Helmholtz-Gleichung ist eine wichtige Gleichung in der Physik. +Mit ihr lässt sich zum Beispiel das Verhalten von elektromagnetischen Wellen beschreiben. +In diesem Kapitel werden die Lösungen der Helmholtz-Gleichung im parabolischen Zylinderkoordinatensystem, +die parabolischen Zylinderfunktionen, genauer untersucht. \subsection{Helmholtz-Gleichung} Die partielle Differentialgleichung \begin{equation} - \nabla f = \lambda f + \Delta f = \lambda f \end{equation} -ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwert Problem für den Laplace-Operator. Sie ist eine der Gleichungen welche auftritt wenn die Wellengleichung +ist als Helmholtz-Gleichung bekannt und beschreibt das Eigenwert Problem für den Laplace-Operator. +Sie ist eine der Gleichungen welche auftritt wenn die Wellengleichung \begin{equation} \left ( \nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right ) u(\textbf{r},t) = @@ -27,7 +30,8 @@ mit Hilfe von Separation \begin{equation} u(\textbf{r},t) = A(\textbf{r})T(t) \end{equation} -in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der Teil, welcher Zeit unabhängig ist +in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der Teil, +welcher zeitunabhängig ist \begin{equation} \nabla^2 A(\textbf{r}) = \lambda A(\textbf{r}). \end{equation} @@ -65,7 +69,8 @@ in zwei Differentialgleichungen aufgeteilt wird. Die Helmholtz-Gleichung ist der %An ladungsfreien Stellen ist der rechte Teil der Gleichung $0$. \subsection{Parabolische Zylinderkoordinaten \label{parzyl:subsection:finibus}} -Im parabolischen Zylinderkoordinatensystem \cite{parzyl:coordinates} bilden parabolische Zylinder die Koordinatenflächen. +Das parabolischen Zylinderkoordinatensystem \cite{parzyl:coordinates} ist ein krummliniges Koordinatensystem, +bei dem parabolische Zylinder die Koordinatenflächen bilden. Die Koordinate $(\sigma, \tau, z)$ sind in kartesischen Koordinaten ausgedrückt mit \begin{align} x & = \sigma \tau \\ @@ -97,15 +102,15 @@ Ebene gezogen werden. Um in diesem Koordinatensystem integrieren und differenzieren zu können braucht es die Skalierungsfaktoren $h_{\tau}$, $h_{\sigma}$ und $h_{z}$. -Wird eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten betrachtet -kann dies im kartesischen Koordinatensystem mit +Eine infinitessimal kleine Distanz $ds$ zwischen zwei Punkten +kann im kartesischen Koordinatensystem mit \begin{equation} \left(ds\right)^2 = \left(dx\right)^2 + \left(dy\right)^2 + \left(dz\right)^2 \label{parzyl:eq:ds} \end{equation} ausgedrückt werden. -Die Skalierungsfaktoren werden so bestimmt, dass +Die Skalierungsfaktoren werden in einem orthogonalen Koordinatensystem so bestimmt, dass \begin{equation} \left(ds\right)^2 = \left(h_{\sigma}d\sigma\right)^2 + \left(h_{\tau}d\tau\right)^2 + \left(h_z dz\right)^2 @@ -145,16 +150,16 @@ Daraus ergeben sich die Skalierungsfaktoren \end{align} \subsection{Differentialgleichung} Möchte man eine Differentialgleichung im parabolischen -Zylinderkoordinatensystem aufstellen müssen die Skalierungsfaktoren +Zylinderkoordinatensystem aufstellen, müssen die Skalierungsfaktoren mitgerechnet werden. -Der Laplace Operator ist dadurch gegeben als +Der Laplace Operator wird dadurch zu \begin{equation} \Delta f = \frac{1}{\sigma^2 + \tau^2} \left( \frac{\partial^2 f}{\partial \sigma ^2} + \frac{\partial^2 f}{\partial \tau ^2} \right) - + \frac{\partial^2 f}{\partial z}. + + \frac{\partial^2 f}{\partial z^2}. \label{parzyl:eq:laplaceInParZylCor} \end{equation} \subsubsection{Lösung der Helmholtz-Gleichung im parabolischen Zylinderfunktion} @@ -201,8 +206,7 @@ Diese partielle Differentialgleichung kann mit Hilfe von Separation gelöst werd \begin{equation} f(\sigma,\tau,z) = g(\sigma)h(\tau)i(z) \end{equation} -gesetzt. -Was dann schlussendlich zu den Differentialgleichungen +gesetzt, was dann schlussendlich zu den Differentialgleichungen \begin{equation}\label{parzyl:sep_dgl_1} g''(\sigma) - diff --git a/buch/papers/parzyl/teil1.tex b/buch/papers/parzyl/teil1.tex index c5ece66..13d8109 100644 --- a/buch/papers/parzyl/teil1.tex +++ b/buch/papers/parzyl/teil1.tex @@ -27,50 +27,50 @@ mit Hilfe der Whittaker Gleichung gelöst. \begin{definition} Die Funktionen \begin{equation*} - M_{k,m}(z) = - e^{-z/2} z^{m+1/2} \, + M_{k,m}(x) = + e^{-x/2} x^{m+1/2} \, {}_{1} F_{1} ( {\textstyle \frac{1}{2}} - + m - k, 1 + 2m; z) + + m - k, 1 + 2m; x) \qquad x \in \mathbb{C} \end{equation*} und \begin{equation*} - W_{k,m}(z) = \frac{ + W_{k,m}(x) = \frac{ \Gamma \left( -2m\right) }{ \Gamma \left( {\textstyle \frac{1}{2}} - m - k\right) } - M_{-k, m} \left(z\right) + M_{-k, m} \left(x\right) + \frac{ \Gamma \left( 2m\right) }{ \Gamma \left( {\textstyle \frac{1}{2}} + m - k\right) } - M_{k, -m} \left(z\right) + M_{k, -m} \left(x\right) \end{equation*} - gehören zu den Whittaker Funktionen und sind die Lösungen + gehören zu den Whittaker Funktionen und sind Lösungen von der Whittaker Differentialgleichung \begin{equation} - \frac{d^2W}{d z^2} + - \left(-\frac{1}{4} + \frac{k}{z} + \frac{\frac{1}{4} - m^2}{z^2} \right) W = 0. + \frac{d^2W}{d x^2} + + \biggl( -\frac{1}{4} + \frac{k}{x} + \frac{\frac{1}{4} - m^2}{x^2} \biggr) W = 0. \label{parzyl:eq:whitDiffEq} \end{equation} \end{definition} Es wird nun die Differentialgleichung bestimmt, welche \begin{equation} - w = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right) + w = x^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} x^2\right) \end{equation} als Lösung hat. Dafür wird $w$ in \eqref{parzyl:eq:whitDiffEq} eingesetzt, woraus \begin{equation} - \frac{d^2 w}{dz^2} - \left(\frac{1}{4} z^2 - 2k\right) w = 0 + \frac{d^2 w}{dx^2} - \left(\frac{1}{4} x^2 - 2k\right) w = 0 \label{parzyl:eq:weberDiffEq} \end{equation} resultiert. Diese Differentialgleichung ist dieselbe wie -\eqref{parzyl:sep_dgl_2} und \eqref{parzyl:sep_dgl_2}, welche somit +\eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2}, welche somit $w$ als Lösung haben. %Da es sich um eine Differentialgleichung zweiter Ordnung handelt, hat sie nicht nur %eine sondern zwei Lösungen. @@ -96,41 +96,41 @@ $w$ als Lösung haben. %\end{align} In der Literatur gibt es verschiedene Standartlösungen für -\eqref{parzyl:eq:weberDiffEq} präsentiert, wobei die Differentialgleichung jeweils +\eqref{parzyl:eq:weberDiffEq}, wobei die Differentialgleichung jeweils unterschiedlich geschrieben wird. Whittaker und Watson zeigen in \cite{parzyl:whittaker} die Lösung \begin{equation} - D_n(z) = 2^{\frac{1}{2}n + \frac{1}{2}} z^{-\frac{1}{2}} W_{n/2 + 1/4, -1/4}\left(\frac{1}{2}z^2\right) + D_n(x) = 2^{\frac{1}{2}n + \frac{1}{2}} x^{-\frac{1}{2}} W_{n/2 + 1/4, -1/4}\left(\frac{1}{2}x^2\right), \end{equation} welche die Differentialgleichung \begin{equation} - \frac{d^2D_n(z)}{dz^2} + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right)D_n(z) = 0 + \frac{d^2D_n(x)}{dx^2} + \left(n + \frac{1}{2} - \frac{1}{4} x^2\right)D_n(x) = 0 \end{equation} löst. -Mit $M_{k,m}(z)$ geschrieben resultiert +Mit $M_{k,m}(x)$ geschrieben resultiert \begin{equation} - D_n(z) = \frac{ - \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} z^{-\frac{1}{2}} + D_n(x) = \frac{ + \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} x^{-\frac{1}{2}} }{ \Gamma \left( {\textstyle \frac{1}{2}} - {\textstyle \frac{1}{2}} n \right) } - M_{\frac{1}{2} n + \frac{1}{4}, - \frac{1}{4}} \left(\frac{1}{2}z^2\right) + M_{\frac{1}{2} n + \frac{1}{4}, - \frac{1}{4}} \left(\frac{1}{2}x^2\right) + \frac{ - \Gamma\left(-{\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} z^{-\frac{1}{2}} + \Gamma\left(-{\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{4}} x^{-\frac{1}{2}} }{ \Gamma\left(- {\textstyle \frac{1}{2}} n\right) } - M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}z^2\right). + M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}x^2\right). \end{equation} -In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, z)$ und $V(a,z)$ +In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, x)$ und $V(a,x)$ \begin{align} - U(a,z) &= + U(a,x) &= \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \label{parzyl:eq:Uaz} \\ - V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ + V(a,x) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \right\} @@ -142,43 +142,43 @@ mit \frac{\Gamma\left({\textstyle \frac{1}{4} - {\textstyle \frac{1}{2}}a}\right)} {2^{\frac{1}{2} a + \frac{1}{4}}} - e^{-z^2/4} + e^{-x^2/4} {}_{1} F_{1} \left({\textstyle \frac{1}{2}}a + {\textstyle \frac{1}{4}}, {\textstyle \frac{1}{2}} ; - {\textstyle \frac{1}{2}}z^2\right)\\ + {\textstyle \frac{1}{2}}x^2\right)\\ Y_2 &= \frac{1}{\sqrt{\pi}} \frac{\Gamma\left({\textstyle \frac{3}{4} - {\textstyle \frac{1}{2}}a}\right)} {2^{\frac{1}{2} a - \frac{1}{4}}} - z e^{-z^2/4} + x e^{-x^2/4} {}_{1} F_{1} \left({\textstyle \frac{1}{2}}a + {\textstyle \frac{3}{4}}, {\textstyle \frac{3}{2}} ; - {\textstyle \frac{1}{2}}z^2\right) + {\textstyle \frac{1}{2}}x^2\right) \end{align} der Differentialgleichung \begin{equation} - \frac{d^2 y}{d z^2} - \left(\frac{1}{4} z^2 + a\right) y = 0 + \frac{d^2 y}{d x^2} - \left(\frac{1}{4} x^2 + a\right) y = 0 \end{equation} beschrieben. Die Lösungen $U(a,z)$ und $V(a, z)$ können auch mit $D_n(z)$ ausgedrückt werden \begin{align} - U(a,z) &= D_{-a-1/2}(z) \\ - V(a,z) &= \frac{\Gamma \left({\textstyle \frac{1}{2}} + a\right)}{\pi} - \left[\sin\left(\pi a\right) D_{-a-1/2}(z) + D_{-a-1/2}(-x)\right]. + U(a,x) &= D_{-a-1/2}(x) \\ + V(a,x) &= \frac{\Gamma \left({\textstyle \frac{1}{2}} + a\right)}{\pi} + \left[\sin\left(\pi a\right) D_{-a-1/2}(x) + D_{-a-1/2}(-x)\right]. \end{align} In den Abbildungen \ref{parzyl:fig:dnz} und \ref{parzyl:fig:Vnz} sind -die Funktionen $D_n(z)$ und $V(a,z)$ mit verschiedenen Werten für $a$ abgebildet. +die Funktionen $D_n(x)$ und $V(a,x)$ mit verschiedenen Werten für $a$ abgebildet. \begin{figure} \centering - \includegraphics[scale=0.3]{papers/parzyl/img/D_plot.png} - \caption{$D_n(z)$ mit unterschiedlichen Werten für $n$.} + \includegraphics[scale=0.35]{papers/parzyl/img/D_plot.png} + \caption{$D_n(x)$ mit unterschiedlichen Werten für $n$.} \label{parzyl:fig:dnz} \end{figure} \begin{figure} \centering - \includegraphics[scale=0.3]{papers/parzyl/img/v_plot.png} - \caption{$V(a,z)$ mit unterschiedlichen Werten für $a$.} + \includegraphics[scale=0.35]{papers/parzyl/img/v_plot.png} + \caption{$V(a,x)$ mit unterschiedlichen Werten für $a$.} \label{parzyl:fig:Vnz} \end{figure} \ No newline at end of file diff --git a/buch/papers/parzyl/teil2.tex b/buch/papers/parzyl/teil2.tex index 4af6860..573432a 100644 --- a/buch/papers/parzyl/teil2.tex +++ b/buch/papers/parzyl/teil2.tex @@ -19,7 +19,7 @@ Jede komplexe Funktion $F(z)$ kann geschrieben werden als \begin{equation} F(s) = U(x,y) + iV(x,y) \qquad s \in \mathbb{C}; x,y \in \mathbb{R}. \end{equation} -Dabei muss gelten, falls die Funktion differenzierbar ist, dass +Dabei müssen, falls die Funktion differenzierbar ist, die Cauchy-Riemann Differentialgleichungen \begin{equation} \frac{\partial U(x,y)}{\partial x} = @@ -27,8 +27,9 @@ Dabei muss gelten, falls die Funktion differenzierbar ist, dass \qquad \frac{\partial V(x,y)}{\partial x} = - -\frac{\partial U(x,y)}{\partial y}. + -\frac{\partial U(x,y)}{\partial y} \end{equation} +gelten. Aus dieser Bedingung folgt \begin{equation} \label{parzyl_e_feld_zweite_ab} @@ -53,7 +54,7 @@ Der Zusammenhang zum elektrischen Feld ist jetzt, dass das Potential an einem qu \begin{equation} \nabla^2\phi(x,y) = 0. \end{equation} -Dies ist eine Bedingung welche differenzierbare Funktionen, wie in Gleichung \ref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. +Dies ist eine Bedingung welche differenzierbare Funktionen, wie in Gleichung \eqref{parzyl_e_feld_zweite_ab} gezeigt wird, bereits besitzen. Nun kann zum Beispiel $U(x,y)$ als das Potential angeschaut werden \begin{equation} \phi(x,y) = U(x,y). @@ -62,7 +63,8 @@ Orthogonal zum Potential ist das elektrische Feld \begin{equation} E(x,y) = V(x,y). \end{equation} -Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete komplexe Funktion $F(s)$ gefunden werden, +Um nun zu den parabolische Zylinderkoordinaten zu gelangen muss nur noch eine geeignete +komplexe Funktion $F(s)$ gefunden werden, welche eine semi-infinite Platte beschreiben kann. Die gesuchte Funktion in diesem Fall ist \begin{equation} @@ -81,23 +83,22 @@ Dies kann umgeformt werden zu i\underbrace{\sqrt{\frac{\sqrt{x^2+y^2} - x}{2}}}_{V(x,y)} . \end{equation} -Die Äquipotentialflächen können nun betrachtet werden, indem man die Funktion welche das Potential beschreibt gleich eine Konstante setzt, +Die Äquipotentialflächen können nun betrachtet werden, +indem man die Funktion, welche das Potential beschreibt, gleich eine Konstante setzt, \begin{equation} - \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}, + \sigma = U(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} + x}{2}}. \end{equation} -und die Flächen mit der gleichen elektrischen Feldstärke können als +Die Flächen mit der gleichen elektrischen Feldstärke können als \begin{equation} \tau = V(x,y) = \sqrt{\frac{\sqrt{x^2+y^2} - x}{2}} \end{equation} -beschrieben werden. Diese zwei Gleichungen zeigen nun wie man vom kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. Werden diese Formeln nun nach x und y aufgelöst so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann +beschrieben werden. Diese zwei Gleichungen zeigen nun, wie man vom +kartesischen Koordinatensystem ins parabolische Zylinderkoordinatensystem kommt. +Werden diese Formeln nun nach $x$ und $y$ aufgelöst \begin{equation} x = \sigma \tau, \end{equation} \begin{equation} - y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ) + y = \frac{1}{2}\left ( \tau^2 - \sigma^2 \right ), \end{equation} - - - - - +so beschreibe sie, wie man aus dem parabolischen Zylinderkoordinatensystem zurück ins kartesische rechnen kann. \ No newline at end of file diff --git a/buch/papers/parzyl/teil3.tex b/buch/papers/parzyl/teil3.tex index b68229f..166eebf 100644 --- a/buch/papers/parzyl/teil3.tex +++ b/buch/papers/parzyl/teil3.tex @@ -13,88 +13,91 @@ %können auch als Potenzreihen geschrieben werden Die parabolischen Zylinderfunktionen können auch als Potenzreihen geschrieben werden. Im folgenden Abschnitt werden die Terme welche nur von $n$ oder $a$ abhängig sind vernachlässigt. -Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, z)$ -und einem ungeraden Teil $w_2(\alpha, z)$, welche als Potenzreihe +Die parabolischen Zylinderfunktionen sind Linearkombinationen aus einem geraden Teil $w_1(\alpha, x)$ +und einem ungeraden Teil $w_2(\alpha, x)$, welche als Potenzreihe \begin{align} - w_1(\alpha,z) + w_1(\alpha,x) &= - e^{-z^2/4} \, + e^{-x^2/4} \, {}_{1} F_{1} ( - \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) + \alpha, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}x^2) = - e^{-\frac{z^2}{4}} + e^{-\frac{x^2}{4}} \sum^{\infty}_{n=0} \frac{\left ( \alpha \right )_{n}}{\left ( \frac{1}{2}\right )_{n}} - \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ + \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ &= - e^{-\frac{z^2}{4}} + e^{-\frac{x^2}{4}} \left ( 1 + - \left ( 2\alpha \right )\frac{z^2}{2!} + \left ( 2\alpha \right )\frac{x^2}{2!} + - \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{z^4}{4!} + \left ( 2\alpha \right )\left ( 2 + 2\alpha \right )\frac{x^4}{4!} + \dots \right ) \end{align} und \begin{align} - w_2(\alpha,z) + w_2(\alpha,x) &= - ze^{-z^2/4} \, + xe^{-x^2/4} \, {}_{1} F_{1} ( {\textstyle \frac{1}{2}} - + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2) + + \alpha, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}x^2) = - ze^{-\frac{z^2}{4}} + xe^{-\frac{x^2}{4}} \sum^{\infty}_{n=0} \frac{\left ( \frac{3}{4} - k \right )_{n}}{\left ( \frac{3}{2}\right )_{n}} - \frac{\left ( \frac{1}{2} z^2\right )^n}{n!} \\ + \frac{\left ( \frac{1}{2} x^2\right )^n}{n!} \\ &= - e^{-\frac{z^2}{4}} + e^{-\frac{x^2}{4}} \left ( - z + x + - \left ( 1 + 2\alpha \right )\frac{z^3}{3!} + \left ( 1 + 2\alpha \right )\frac{x^3}{3!} + - \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{z^5}{5!} + \left ( 1 + 2\alpha \right )\left ( 3 + 2\alpha \right )\frac{x^5}{5!} + \dots - \right ). + \right ) \end{align} sind. -Bei den Potenzreihen sieht man gut, dass die Ordnung des Polynoms im generellen ins unendliche geht. +Die Potenzreihen sind in der regel unendliche Reihen. Es gibt allerdings die Möglichkeit für bestimmte $\alpha$ das die Terme in der Klammer gleich null werden -und das Polynom somit eine endliche Ordnung $n$ hat. Dies geschieht bei $w_1(\alpha,z)$ falls +und die Reihe somit eine endliche Anzahl $n$ Summanden hat. +Dies geschieht bei $w_1(\alpha,x)$ falls \begin{equation} \alpha = -n \qquad n \in \mathbb{N}_0 \end{equation} -und bei $w_2(\alpha,z)$ falls +und bei $w_2(\alpha,x)$ falls \begin{equation} \alpha = -\frac{1}{2} - n \qquad n \in \mathbb{N}_0. \end{equation} - +Der Wert des von $\alpha$ ist abhängig, ob man $D_n(x)$ oder $U(a,x)$ / $V(a,x)$ verwendet. +Bei $D_n(x)$ gilt $\alpha = -{\textstyle \frac{1}{2}} n$ und bei $U(a,z)$ oder $V(a,x)$ gilt +$\alpha = {\textstyle \frac{1}{2}} a + {\textstyle \frac{1}{4}}$. \subsection{Ableitung} -Die Ableitungen $\frac{\partial w_1(z,k)}{\partial z}$ und $\frac{\partial w_2(z,k)}{\partial z}$ +Die Ableitungen $\frac{\partial w_1(\alpha, x)}{\partial x}$ und $\frac{\partial w_2(\alpha, x)}{\partial x}$ können mit den Eigenschaften der hypergeometrischen Funktionen in Abschnitt \ref{buch:rekursion:hypergeometrisch:stammableitung} berechnet werden. Zusammen mit der Produktregel ergeben sich die Ableitungen \begin{equation} - \frac{\partial w_1(\alpha,z)}{\partial z} = 2\alpha w_2(\alpha + \frac{1}{2}, z) - \frac{1}{2} z w_1(\alpha, z), + \frac{\partial w_1(\alpha,x)}{\partial x} = 2\alpha w_2(\alpha + \frac{1}{2}, x) - \frac{1}{2} x w_1(\alpha, x), \end{equation} und %\begin{equation} % \frac{\partial w_2(z,k)}{\partial z} = w_1(z, k -\frac{1}{2}) - \frac{1}{2} z w_2(z,k). %\end{equation} \begin{equation} - \frac{\partial w_2(\alpha,z)}{\partial z} = e^{-z^2/4} \left( - z^{-1} w_2(\alpha, z) - \frac{z}{2} w_2(\alpha, z) + 2 z^2 \left(\frac{\alpha + 1}{3}\right) + \frac{\partial w_2(\alpha,x)}{\partial x} = e^{-x^2/4} \left( + x^{-1} w_2(\alpha, x) - \frac{x}{2} w_2(\alpha, x) + 2 x^2 \left(\frac{\alpha + 1}{3}\right) {}_{1} F_{1} ( {\textstyle \frac{3}{2}} - + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}z^2) + + \alpha, {\textstyle \frac{5}{2}} ; {\textstyle \frac{1}{2}}x^2) \right) \end{equation} Nach dem selben Vorgehen können weitere Ableitungen berechnet werden. -- cgit v1.2.1 From 3d0b6bf8410b37fd6d68a83ef08c6794cfdad8cd Mon Sep 17 00:00:00 2001 From: haddoucher Date: Thu, 18 Aug 2022 11:49:37 +0200 Subject: Korrektur Einleitung Alles korrigiert --- buch/papers/sturmliouville/einleitung.tex | 53 +++++++++++++++++-------------- 1 file changed, 29 insertions(+), 24 deletions(-) diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 78c1800..163f033 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -5,25 +5,36 @@ % \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Einleitung} -Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischer Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischer Mathematiker Joseph Liouville. -Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewohnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. -Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mit Hilfe einiger Methoden in mehrere gewöhnliche Differentialgleichungen umwandeln, wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. +Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischen Mathematiker Joseph Liouville. +Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt und gilt für die Lösung von gewöhnlichen Differentialgleichungen, jedoch verwendet man die Theorie öfters bei der Lösung von partiellen Differentialgleichungen. +Normalerweise betrachtet man für das Strum-Liouville-Problem eine gewöhnliche Differentialgleichung 2. Ordnung, und wenn es sich um eine partielle Differentialgleichung handelt, kann man sie in mehrere gewöhnliche Differentialgleichungen umwandeln. Wie z. B. den Separationsansatz, die partielle Differentialgleichung mit mehreren Variablen. \begin{definition} \index{Sturm-Liouville-Gleichung}% -Angenommen man hat die lineare homogene Differentialgleichung +Wenn die lineare homogene Differentialgleichung \begin{equation} \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 \end{equation} -und schreibt die Gleichung um in: +als \begin{equation} \label{eq:sturm-liouville-equation} \frac{d}{dx}\lbrack p(x) \frac{dy}{dx} \rbrack + \lbrack q(x) + \lambda w(x) \rbrack y = 0 \end{equation} -, diese Gleichung wird dann Sturm-Liouville-Gleichung bezeichnet. +geschrieben werden kann, dann wird diese Gleichung als Sturm-Liouville-Gleichung bezeichnet. \end{definition} +Alle homogene 2. Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. + +\subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}} +Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also +\begin{equation} + y(a) = y(b) = 0 +\end{equation} +, so spricht man von einer Dirichlet-Randbedingung\footnote{Die Dirichlet-Randbedingung oder auch Randbedingung des ersten Typs genannt ist nach dem deutschen Mathematiker Peter Gstav Lejeune Dirichlet benannt. Sie findet Anwendung auf gewöhnliche oder patielle Differentialgleichungen und gibt mit der Bedingung die Werte an, die für die abgeleitete Lösung innerhalb der Domänengrenze gelten.}, und von einer Neumann-Randbedingung\footnote{Die Neumann-Randbedingung oder auch Randbedingung des zweiten Typs genannt, ist nach dem deutschen Mathematiker Carl Neumann benannt. Sie legt die Werte fest, die eine Lösung entlang der Domänengrenze annehmen muss, wenn eine gewöhnliche oder partielle Differentialgleichung gestellt wird.} spricht man, wenn +\begin{equation} + y'(a) = y'(b) = 0 +\end{equation} +ergibt. -Alle homogene 2.Ordnung lineare gewöhnliche Differentialgleichungen können in die Form der Gleichung \ref{eq:sturm-liouville-equation} umgeformt werden. Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung mit den homogenen Randbedingungen des dritten Typs\footnote{Die Randbedingung des dritten Typs, oder Robin-Randbedingungen (benannt nach dem französischen mathematischen Analytiker und angewandten Mathematiker Victor Gustave Robin), wird genannt, wenn sie einer gewöhnlichen oder partiellen Differentialgleichung auferlegt wird, so sind die Spezifikationen einer Linearkombination der Werte einer Funktion sowie die Werte ihrer Ableitung am Rande des Bereichs} \begin{equation} \begin{aligned} @@ -32,17 +43,10 @@ Die Sturm-Liouville-Theorie besagt, dass, wenn man die Sturm-Liouville-Gleichung k_b y(b) + h_b p(b) y'(b) &= 0 \end{aligned} \end{equation} -kombiniert, wie schon im Kapitel \ref{sub:differentailgleichung} erwähnt, auf dem Intervall (a,b), dann bekommt man das klassische Sturm-Liouville-Problem. -Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also -\begin{equation} - y(a) = y(b) = 0 -\end{equation} -, so spricht man von einer Dirichlet-Randbedingung, und von einer Neumann-Randbedingung spricht man, wenn -\begin{equation} - y'(a) = y'(b) = 0 -\end{equation} -ergibt - die Existenz und Eindeutigkeit der Lösung kann mit den zwei Randbedingungen sichergestellt werden. -Lösungen die nicht Null sind, werden nicht betrachtet und diese zwei Gleichungen (\ref{eq:sturm-liouville-equation} und \ref{eq:randbedingungen}) kombiniert, nennt man Eigenfunktionen. +kombiniert, dann bekommt man das klassische Sturm-Liouville-Problem. + +\subsection{Eigenwertproblem} +Die Gleichungen \ref{eq:sturm-liouville-equation} hat die Form eines Eigenwertproblems Wenn bei der Sturm-Liouville-Gleichung \ref{eq:sturm-liouville-equation} alles konstant bleibt, aber der Wert von $\lambda$ sich ändert, erhält man eine andere Eigenfunktion, weil man eine andere gewöhnliche Differentialgleichung löst; der Parameter $\lambda$ wird als Eigenwert bezeichnet. Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben andere Eigenvektoren. @@ -59,6 +63,7 @@ Somit ergibt die Gleichung \int_{a}^{b} w(x)y_m y_n = 0 \end{equation}. +\subsection{Koeffizientenfunktionen} Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. Es gibt zwei verschiedene Sturm-Liouville-Probleme: das reguläre Sturm-Liouville-Problem und das singuläre Sturm-Liouville-Problem. @@ -76,12 +81,12 @@ Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: \begin{itemize} \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein. - \item sowie müssen in einem Endlichen Intervall $[ \ a,b] \ $ integrierbar sein. - \item $p(x)^{-1}$ und $w(x)$ sind $>0$. + \item sowie müssen in einem endlichen Intervall $[a,b]$ integrierbar sein. + \item $p(x)$ und $w(x)$ sind $>0$. \item Es gelten die Randbedingungen \ref{eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} -Bei einem regulären Sturm-Liouville-Problem geht es darum, ohne genaue Kenntnis der Eigenfunktionen diese dennoch beschreiben zu können. +Bei einem regulären Sturm-Liouville-Problem geht es darum, wichtige Eigenschaften der Eigenfunktionen beschreiben zu können, ohne sie genau zu kennen. % @@ -111,7 +116,7 @@ Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich be \end{aligned} \end{equation} ist kein reguläres Sturm-Liouville-Problem. - Weil wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. + Wenn man die Gleichung in die Sturm-Liouville Form umformen, dann ergeben die Koeffizientenfunktionen $p(x) = w(x) = x$ und $q(x) = -m^2/x$. Schaut man jetzt die Bedingungen im Kapitel \ref{sub:reguläre_sturm_liouville_problem} an und vergleicht diese unseren Koeffizientenfunktionen, so erkennt man einige Probleme: \begin{itemize} \item $p(x)$ und $w(x)$ sind nicht positiv, wenn $x = 0$ ist. @@ -121,9 +126,9 @@ Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich be \end{beispiel} Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung fundierte Ergebnisse hat. -Es ist schwierig, bestehende Kriterien anzuwenden, da die Formulierungen z.B. in der Lösungsfunktion liegen. +Es ist schwierig, Kriterien anzuwenden, da die Formulierungen z. B. in der Lösungsfunktion liegen. Das Spektrum besteht im singulärem Problem nicht mehr nur aus Eigenwerte, sondern kann auch einen stetigen Anteil enthalten. -Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin eine verallgemeinerte Eigenfunktionen. +Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin verallgemeinerte Eigenfunktionen. -- cgit v1.2.1 From e420016ee745615b7abc8879559f2fef7a0f978b Mon Sep 17 00:00:00 2001 From: LordMcFungus Date: Thu, 18 Aug 2022 11:51:34 +0200 Subject: Delete SeminarSpezielleFunktionen.pdf --- buch/SeminarSpezielleFunktionen.pdf | Bin 22768314 -> 0 bytes 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 buch/SeminarSpezielleFunktionen.pdf diff --git a/buch/SeminarSpezielleFunktionen.pdf b/buch/SeminarSpezielleFunktionen.pdf deleted file mode 100644 index 36b612f..0000000 Binary files a/buch/SeminarSpezielleFunktionen.pdf and /dev/null differ -- cgit v1.2.1 From 354d497301c69137fd00566b42868370d2bd46a3 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Thu, 18 Aug 2022 11:57:07 +0200 Subject: einleitung fertig korrigiert --- buch/papers/sturmliouville/einleitung.tex | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 163f033..700ea1d 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -125,9 +125,8 @@ Allerdings kann nur eine der Bedingungen nicht erfüllt sein, so dass es sich be \end{itemize} \end{beispiel} -Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung fundierte Ergebnisse hat. +Verwendet man das reguläre Sturm-Liouville-Problem, obwohl eine oder beide Bedingungen nicht erfüllt sind, dann ist es schwierig zu sagen, ob die Lösung eindeutige Ergebnisse hat. Es ist schwierig, Kriterien anzuwenden, da die Formulierungen z. B. in der Lösungsfunktion liegen. -Das Spektrum besteht im singulärem Problem nicht mehr nur aus Eigenwerte, sondern kann auch einen stetigen Anteil enthalten. Ähnlich wie bei der Fourier-Reihe gegenüber der Fourier-Transformation gibt es immer noch eine zugehörige Eigenfunktionsentwicklung, und zwar die Integraltransformation sowie gibt es weiterhin verallgemeinerte Eigenfunktionen. -- cgit v1.2.1 From b3611aa8b6f2c56c8940c18c582de0fd3dd205f2 Mon Sep 17 00:00:00 2001 From: haddoucher Date: Thu, 18 Aug 2022 12:31:12 +0200 Subject: tschebyscheff kapitel fertig geschrieben --- buch/papers/sturmliouville/einleitung.tex | 13 ++++----- .../sturmliouville/tschebyscheff_beispiel.tex | 31 +++++++++++++++------- 2 files changed, 28 insertions(+), 16 deletions(-) diff --git a/buch/papers/sturmliouville/einleitung.tex b/buch/papers/sturmliouville/einleitung.tex index 700ea1d..d497622 100644 --- a/buch/papers/sturmliouville/einleitung.tex +++ b/buch/papers/sturmliouville/einleitung.tex @@ -27,9 +27,9 @@ Alle homogene 2. Ordnung lineare gewöhnliche Differentialgleichungen können in \subsection{Randbedingungen\label{sub:was-ist-das-slp-randbedingungen}} Wenn von der Funktion $y(x)$ die Werte $x$ des jeweiligen Randes des Definitionsbereiches anzunehmen sind, also \begin{equation} - y(a) = y(b) = 0 + y(a) = y(b) = 0, \end{equation} -, so spricht man von einer Dirichlet-Randbedingung\footnote{Die Dirichlet-Randbedingung oder auch Randbedingung des ersten Typs genannt ist nach dem deutschen Mathematiker Peter Gstav Lejeune Dirichlet benannt. Sie findet Anwendung auf gewöhnliche oder patielle Differentialgleichungen und gibt mit der Bedingung die Werte an, die für die abgeleitete Lösung innerhalb der Domänengrenze gelten.}, und von einer Neumann-Randbedingung\footnote{Die Neumann-Randbedingung oder auch Randbedingung des zweiten Typs genannt, ist nach dem deutschen Mathematiker Carl Neumann benannt. Sie legt die Werte fest, die eine Lösung entlang der Domänengrenze annehmen muss, wenn eine gewöhnliche oder partielle Differentialgleichung gestellt wird.} spricht man, wenn +so spricht man von einer Dirichlet-Randbedingung\footnote{Die Dirichlet-Randbedingung oder auch Randbedingung des ersten Typs genannt ist nach dem deutschen Mathematiker Peter Gstav Lejeune Dirichlet benannt. Sie findet Anwendung auf gewöhnliche oder patielle Differentialgleichungen und gibt mit der Bedingung die Werte an, die für die abgeleitete Lösung innerhalb der Domänengrenze gelten.}, und von einer Neumann-Randbedingung\footnote{Die Neumann-Randbedingung oder auch Randbedingung des zweiten Typs genannt, ist nach dem deutschen Mathematiker Carl Neumann benannt. Sie legt die Werte fest, die eine Lösung entlang der Domänengrenze annehmen muss, wenn eine gewöhnliche oder partielle Differentialgleichung gestellt wird.} spricht man, wenn \begin{equation} y'(a) = y'(b) = 0 \end{equation} @@ -53,15 +53,16 @@ Es ist genau das gleiche Prinzip wie bei den Matrizen, andere Eigenwerte ergeben Es besteht eine Korrespondenz zwischen den Eigenwerten und den Eigenvektoren. Das gleiche gilt auch beim Sturm-Liouville-Problem, und zwar \begin{equation} - \lambda \overset{Korrespondenz}\leftrightarrow y -\end{equation}. + \lambda \overset{Korrespondenz}\leftrightarrow y. +\end{equation} Die Theorie besagt, wenn $y_m$, $y_n$ Eigenfuktionen des Sturm-Liouville-Problems sind, die verschiedene Eigenwerte $\lambda_m$, $\lambda_n$ ($\lambda_m \neq \lambda_n$) entsprechen, so sind $y_m$, $y_n$ orthogonal zu y - dies gilt für das Intervall (a,b). Somit ergibt die Gleichung \begin{equation} - \int_{a}^{b} w(x)y_m y_n = 0 -\end{equation}. + \label{eq:skalar-sturm-liouville} + \int_{a}^{b} w(x)y_m y_n = 0. +\end{equation} \subsection{Koeffizientenfunktionen} Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen mit ihren freien Variablen $x$ bezeichnet. diff --git a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex index a18684f..3817dc0 100644 --- a/buch/papers/sturmliouville/tschebyscheff_beispiel.tex +++ b/buch/papers/sturmliouville/tschebyscheff_beispiel.tex @@ -4,8 +4,9 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\subsection{Tschebyscheff-Polynome\label{sub:tschebyscheff-polynome}} -Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen die man braucht schon aufgeliste, und zwar mit +\subsection{Sind Tschebyscheff-Polynome orthogonal zueinander?\label{sub:tschebyscheff-polynome}} +\subsubsection*{Definition der Koeffizientenfunktion} +Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen, die man braucht, schon aufgeliste, und zwar mit \begin{align*} w(x) &= \frac{1}{\sqrt{1-x^2}} \\ p(x) &= \sqrt{1-x^2} \\ @@ -14,10 +15,12 @@ Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfun Da die Sturm-Liouville-Gleichung \begin{equation} \label{eq:sturm-liouville-equation-tscheby} - \frac{d}{dx}\lbrack \sqrt{1-x^2} \frac{dy}{dx} \rbrack + \lbrack 0 + \lambda \frac{1}{\sqrt{1-x^2}} \rbrack y = 0 + \frac{d}{dx} (\sqrt{1-x^2} \frac{dy}{dx}) + (0 + \lambda \frac{1}{\sqrt{1-x^2}}) y = 0 \end{equation} nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. -Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein - und sie sind es auch. + +\subsubsection*{regulär oder singulär?} +Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein --- und sie sind es auch. Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen \begin{equation} T_n(x) = \cos n (\arccos x) @@ -28,22 +31,23 @@ Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right. \end{equation}, jedoch ist die Orthogonalität nur auf dem Intervall $[ -1, 1]$ sichergestellt. -Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^{-1}$ und $w(x)>0$ sein müssen. +Die nächste Bedingung beinhaltet, dass die Funktion $p(x)$ und $w(x)>0$ sein müssen. Die Funktion \begin{equation*} p(x)^{-1} = \frac{1}{\sqrt{1-x^2}} \end{equation*} -ist die gleiche wie $w(x)$. +ist die gleiche wie $w(x)$ und erfüllt die Bedingung. +\subsubsection*{Randwertproblem} Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man \begin{equation} \begin{aligned} k_a y(-1) + h_a y'(-1) &= 0 - k_b y(-1) + h_b y'(-1) &= 0 + k_b y(-1) + h_b y'(-1) &= 0. \end{aligned} -\end{equation}. +\end{equation} Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \label{sub:definiton_der_tschebyscheff-Polynome}). Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$. Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}). @@ -52,12 +56,19 @@ Somit erhält man \begin{equation} \begin{aligned} k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\ - k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0 + k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0. \end{aligned} -\end{equation}. +\end{equation} Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab kann man, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, können beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auf die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind. +\begin{beispiel} + Die Gleichung \ref{eq:skalar-sturm-liouville} mit $y_m = T_1(x)$ und $y_n(x) = T_2(x)$ eingesetzt sowie $a=-1$ und $b = 1$ ergibt + \[ + \int_{-1}^{1} w(x) x (2x^2-1) dx = 0. + \] +\end{beispiel} + -- cgit v1.2.1 From d17d215c1fbfa384dd8edcc772df865f5819c1ab Mon Sep 17 00:00:00 2001 From: Marc Benz Date: Thu, 18 Aug 2022 20:07:48 +0200 Subject: first commit (without teil4) --- buch/papers/transfer/main.tex | 4 +- buch/papers/transfer/packages.tex | 5 + buch/papers/transfer/teil0.tex | 224 +++++++++++++++++++++++++++++++++++++- buch/papers/transfer/teil1.tex | 89 +++++++-------- buch/papers/transfer/teil2.tex | 66 +++++++++-- buch/papers/transfer/teil3.tex | 37 +++---- 6 files changed, 352 insertions(+), 73 deletions(-) diff --git a/buch/papers/transfer/main.tex b/buch/papers/transfer/main.tex index ed16998..60f8230 100644 --- a/buch/papers/transfer/main.tex +++ b/buch/papers/transfer/main.tex @@ -3,7 +3,7 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Transferfunktionen\label{chapter:transfer}} +\chapter{Transferfunktion Tangens hyperbolicus\label{chapter:transfer}} \lhead{Thema} \begin{refsection} \chapterauthor{Marc Benz} @@ -12,6 +12,8 @@ \input{papers/transfer/teil1.tex} \input{papers/transfer/teil2.tex} \input{papers/transfer/teil3.tex} +%\input{papers/transfer/teil4.tex} + \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/transfer/packages.tex b/buch/papers/transfer/packages.tex index ee51b71..98329d3 100644 --- a/buch/papers/transfer/packages.tex +++ b/buch/papers/transfer/packages.tex @@ -8,3 +8,8 @@ % following example %\usepackage{packagename} +\usetikzlibrary{positioning} +\usetikzlibrary{arrows} +\usetikzlibrary{fit} +\usetikzlibrary{shapes.geometric} +\usepackage{subcaption} diff --git a/buch/papers/transfer/teil0.tex b/buch/papers/transfer/teil0.tex index 4bec5bd..f8c8cb4 100644 --- a/buch/papers/transfer/teil0.tex +++ b/buch/papers/transfer/teil0.tex @@ -3,9 +3,231 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Einleitung\label{transfer:section:teil0}} +\section{Motivation\label{transfer:section:teil0}} \rhead{Einleitung} +Die Transferfunktion ist einer der wichtigsten Bestandteile moderner neuraler Netzwerke. Sie verleiht ihnen die nicht Linearität, die benötigt wird um komplexere Aufgaben zu lösen. Dabei kann theoretisch jede nicht lineare Funktion eingesetzt werden. In der Praxis tauchen aber nur sehr wenige Funktionen mit ähnlichen Eigenschaften auf. Einige davon sind in der Tabelle \ref{tab:aktfkt} zu sehen. In der heutigen Zeit sind vor allem die Variationen der ReLu Funktion beliebt. Der Tangens hyperbolicus wird aber dank dem Aufkommen der Recurrent Neural Networks, zum Beispiel dem Long short term memory Netzwerk, das aus Zellen wie in \ref{motivation:figure:LSTM} gezeigt bestehen, wieder vermehrt eingesetzt. +Die klassische Berechnung ist aber sehr aufwendig und basiert auf Gleitkommaoperationen und relativ komplizierten Funktionen. Diese benötigen einen grossen Rechenaufwand. Vor allem auf Systemen die keine Gleitkommaarithmetik Hardware besitzen wie das zum Beispiel bei gewissen Mikrocontrollern der Fall ist. +\begin{table}[h] + \centering + \begin{tabular}{llll} + \hline + \multicolumn{1}{l}{Name} & \multicolumn{1}{l}{Function} & \multicolumn{1}{l}{Figure} \\ + \hline + Sigmoid & $\sigma(x)=\frac{1}{1+e^{-x}}$ & + \begin{tikzpicture}[baseline={(0,0.2)}] + \draw (-1,0) -- (1,0); + \draw (0,0) -- (0,1); + \draw[red] plot[domain=-1:1,variable=\x] ({\x},{1/(1+exp(-4*\x))}); + \end{tikzpicture}\\ + ReLU & $f(x) =\begin{cases} + 0 & ~\text{if}~ x<0 \\ + x & ~\text{if}~x \geq 0. + \end{cases}$ & + \begin{tikzpicture}[baseline={(0,0.5)}] + \draw (-1,0) -- (1,0); + \draw (0,0) -- (0,1); + \draw[red] plot[domain=-1:1,variable=\x] ({\x},{ifthenelse(\x<0,0,\x)}); + \end{tikzpicture}\\ + Leaky ReLu & $f(x) =\begin{cases} + 0 & ~\text{if}~ x<0 \\ + x & ~\text{if}~x \geq a \cdot x. + \end{cases}$ & + \begin{tikzpicture}[baseline={(0,0.5)}] + \draw (-1,0) -- (1,0); + \draw (0,0) -- (0,1); + \draw[red] plot[domain=-1:1,variable=\x] ({\x},{ifthenelse(\x<0,0.1*\x,\x)}); + \end{tikzpicture} + \end{tabular} + \caption{Transferfunktionen} + \label{tab:aktfkt} +\end{table} + +\begin{figure} +\centering +\begin{tikzpicture} + \begin{axis}[ + xmin=-2.5, xmax=2.5, + ymin=-1.5, ymax=1.5, + axis lines=center, + axis on top=true, + domain=-2.5:2.5, + ylabel=$y$, + xlabel=$x$, + ] + + \addplot [mark=none,draw=red,ultra thick] {tanh(\x)}; + \node [right, red] at (axis cs: 1,0.7) {$\tanh(x)$}; + + %% Add the asymptotes + \draw [blue, dotted, thick] (axis cs:-2.5,-1)-- (axis cs:0,-1); + \draw [blue, dotted, thick] (axis cs:+2.5,+1)-- (axis cs:0,+1); + \end{axis} +\end{tikzpicture} +\caption{Tangens hyperbolicus +\label{anleitung:figure:tanhyp}} +\end{figure} + +\begin{figure} +\centering +\tikzset{ + every node/.style={ + font=\scriptsize + }, + decision/.style={ + shape=rectangle, + minimum height=1cm, + text width=3cm, + text centered, + rounded corners=1ex, + draw, + label={[yshift=0.2cm]left:ja}, + label={[yshift=0.2cm]right:nein}, + }, + outcome/.style={ + shape=ellipse, + fill=gray!15, + draw, + text width=1.5cm, + text centered + }, + decision tree/.style={ + edge from parent path={[-latex] (\tikzparentnode) -| (\tikzchildnode)}, + sibling distance=4cm, + level distance=1.5cm + } +} + +\begin{tikzpicture} + + \node [decision] { $x>k \cdot \frac{\ln 10}{2}$ } + [decision tree] + child { node [outcome] { $+1$ } } + child { node [decision] { $x<-k \cdot \frac{\ln 10}{2}$} + child { node [outcome] { $-1$ } } + child { node [decision] { $-0,1=LaTeX, + % Styles + cell/.style={% For the main box + rectangle, + rounded corners=5mm, + draw, + very thick, + }, + operator/.style={%For operators like + and x + circle, + draw, + inner sep=-0.5pt, + minimum height =.2cm, + }, + function/.style={%For functions + ellipse, + draw, + inner sep=1pt + }, + ct/.style={% For external inputs and outputs + circle, + draw, + line width = .75pt, + minimum width=1cm, + inner sep=1pt, + }, + gt/.style={% For internal inputs + rectangle, + draw, + minimum width=4mm, + minimum height=3mm, + inner sep=1pt + }, + mylabel/.style={% something new that I have learned + font=\scriptsize\sffamily + }, + ArrowC1/.style={% Arrows with rounded corners + rounded corners=.25cm, + thick, + }, + ArrowC2/.style={% Arrows with big rounded corners + rounded corners=.5cm, + thick, + }, + ] + + %Start drawing the thing... + % Draw the cell: + \node [cell, minimum height =4cm, minimum width=6cm] at (0,0){} ; + + % Draw inputs named ibox# + \node [gt] (ibox1) at (-2,-0.75) {$\sigma$}; + \node [gt] (ibox2) at (-1.5,-0.75) {$\sigma$}; + \node [function, draw=red!60, fill=red!5] (ibox3) at (-0.5,-0.75) {$\tanh$}; + \node [gt] (ibox4) at (0.5,-0.75) {$\sigma$}; + + % Draw opérators named mux# , add# and func# + \node [operator] (mux1) at (-2,1.5) {$\times$}; + \node [operator] (add1) at (-0.5,1.5) {+}; + \node [operator] (mux2) at (-0.5,0) {$\times$}; + \node [operator] (mux3) at (1.5,0) {$\times$}; + \node [function, draw=red!60, fill=red!5] (func1) at (1.5,0.75) {$\tanh$}; + + % Draw External inputs named as basis c,h,x + \node[ct, label={[mylabel]}] (c) at (-4,1.5) {\empt{c}{t-1}}; + \node[ct, label={[mylabel]}] (h) at (-4,-1.5) {\empt{h}{t-1}}; + \node[ct, label={[mylabel]}] (x) at (-2.5,-3) {\empt{x}{t}}; + + % Draw External outputs? named as basis c2,h2,x2 + \node[ct, label={[mylabel]}] (c2) at (4,1.5) {\empt{c}{t}}; + \node[ct, label={[mylabel]}] (h2) at (4,-1.5) {\empt{h}{t}}; + \node[ct, label={[mylabel]}] (x2) at (2.5,3) {\empt{h}{t}}; + + % Start connecting all. + %Intersections and displacements are used. + % Drawing arrows + \draw [ArrowC1] (c) -- (mux1) -- (add1) -- (c2); + + % Inputs + \draw [ArrowC2] (h) -| (ibox4); + \draw [ArrowC1] (h -| ibox1)++(-0.5,0) -| (ibox1); + \draw [ArrowC1] (h -| ibox2)++(-0.5,0) -| (ibox2); + \draw [ArrowC1] (h -| ibox3)++(-0.5,0) -| (ibox3); + \draw [ArrowC1] (x) -- (x |- h)-| (ibox3); + + % Internal + \draw [->, ArrowC2] (ibox1) -- (mux1); + \draw [->, ArrowC2] (ibox2) |- (mux2); + \draw [->, ArrowC2] (ibox3) -- (mux2); + \draw [->, ArrowC2] (ibox4) |- (mux3); + \draw [->, ArrowC2] (mux2) -- (add1); + \draw [->, ArrowC1] (add1 -| func1)++(-0.5,0) -| (func1); + \draw [->, ArrowC2] (func1) -- (mux3); + + %Outputs + \draw [-, ArrowC2] (mux3) |- (h2); + \draw (c2 -| x2) ++(0,-0.1) coordinate (i1); + \draw [-, ArrowC2] (h2 -| x2)++(-0.5,0) -| (i1); + \draw [-, ArrowC2] (i1)++(0,0.2) -- (x2); + +\end{tikzpicture} +\caption{Long short term memory cell +\label{motivation:figure:LSTM}} +\end{figure} + diff --git a/buch/papers/transfer/teil1.tex b/buch/papers/transfer/teil1.tex index 611e1ea..f117fc0 100644 --- a/buch/papers/transfer/teil1.tex +++ b/buch/papers/transfer/teil1.tex @@ -3,53 +3,54 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Padé-Approximation +\section{Taylorapproximation \label{transfer:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt +\subsection{Idee} +Die Taylorreihe kann eine glatte Funktion in einer Umgebung durch Polynome beliebig genau annähern. Beschränkt man sich auf einen bestimmten Grad dieser Polynome, spricht man von einer Taylorapproximation. Diese entwickelt sich immer um einen Punkt und kann über die Ableitungen berechnet werden. + +\subsection{Definition der Taylorreihe} +Sei $I \subset \mathbb{R}$ ein offenes Intervall, $f: I \rightarrow \mathbb{R}$ eine glatte Funktion und $a$ ein Element von $I$. Dann ist die unendliche Reihe \begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{transfer:equation1} + T_{f(x ; a)}=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{6}(x-a)^{3}+\ldots \end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{transfer:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. +eine Taylorreihe. -Et harum quidem rerum facilis est et expedita distinctio -\ref{transfer:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{transfer:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. +\subsection{Beispiel} +In diesem Beispiel wird die Taylorapproximation mit dem Grad 2 des Tangens hyperbolicus um den Punkt Null berechnet. +$$ + \tanh \approx T_{2} \tanh(x ; a)=\tanh(a)+\tanh^{\prime}(a) \cdot(x-a)+\frac{\tanh^{\prime \prime}(a) \cdot(x-a)^{2}}{2} +$$ +mit $a = 0$ folgt +$$ + T_{2} \tanh(x ; 0)=\tanh(0)+\tanh^{\prime}(0) \cdot(x)+\frac{\tanh^{\prime \prime}(0) \cdot(x)^{2}}{2} = 0 + x + 0 = x +$$ +\begin{figure} +\centering +\begin{tikzpicture} + \begin{axis}[ + xmin=-2.5, xmax=2.5, + ymin=-1.5, ymax=1.5, + axis lines=center, + axis on top=true, + domain=-2.5:2.5, + ylabel=$y$, + xlabel=$x$, + ] + + \addplot [mark=none,draw=red,thick] {tanh(\x)}; + \node [right, red] at (axis cs: 1.4,0.7) {$\tanh(x)$}; + \addplot [mark=none,draw=blue,ultra thick, samples=100, smooth] expression{x-(x^3)/3+ (2*x^5)/15-(17 * x^7)/315}; + \node [right, blue] at (axis cs: -1.8,0.7) {$Taylorapprox.$}; + + %% Add the asymptotes + \draw [blue, dotted, thick] (axis cs:-2.5,-1)-- (axis cs:0,-1); + \draw [blue, dotted, thick] (axis cs:+2.5,+1)-- (axis cs:0,+1); + \end{axis} +\end{tikzpicture} +\caption{Taylorapproximation des Grades 7 +\label{motivation:figure:Taylor}} +\end{figure} +\subsection{Problem} +Wie in Abbildung \ref{motivation:figure:Taylor} ersichtlich, ist der Approximationsfehler sogar bei Grad 7 des Polynoms sehr gross. Dies liegt ist unter anderem an der Unbeschränktheit, die solche Polynome besitzen. diff --git a/buch/papers/transfer/teil2.tex b/buch/papers/transfer/teil2.tex index d79d80c..aae81a7 100644 --- a/buch/papers/transfer/teil2.tex +++ b/buch/papers/transfer/teil2.tex @@ -1,18 +1,68 @@ % -% teil2.tex -- Beispiel-File für teil2 +% teil1.tex -- Beispiel-File für das Paper % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{MiniMax-Polinom +\section{Padé-Approximation \label{transfer:section:teil2}} -\rhead{MiniMax-Polinom} +\rhead{} +\subsection{Idee + \label{transfer:pade:idee}} +Die Taylorapproximation ist für den Gebrauch als Ersatz des Tangenshyperbolicus als Transferfunktion nicht brauchbar. Die Padé-Approximation kann die grössten Probleme aber entschärfen und dies mit sehr begrenztem zusätzlichen Rechenaufwand. Dafür wird die Taylorapproximation in einen Bruch von zwei Polynom zerlegt. +\subsection{Definition +\label{transfer:pade:definition}} +Sei +\begin{equation} + R(x)=\frac{\sum_{j=0}^{m} a_{j} x^{j}}{1+\sum_{k=1}^{n} b_{k} x^{k}}=\frac{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}}{1+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}} +\end{equation} +und gilt +\begin{gather*} + f(0) =R(0) \\ + f^{\prime}(0) =R^{\prime}(0) \\ + f^{\prime \prime}(0) =R^{\prime \prime}(0) \\ + \vdots \\ + f^{(m+n)}(0) =R^{(m+n)}(0), +\end{gather*} +so ist $R(x)$ die Padé-Approximation von $f(x)$. +\subsection{Beispiel + \label{transfer:pade:beispiel}} +Sei $f(x) = \tanh (x)$ und $T_{5} \tanh(x ; a) = x-\frac{x^{3}}{3}+\frac{2 x^{5}}{15}$, dann gilt +$$ + \begin{gathered} + [3 / 2]_{f}(x) = \frac{A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}}{B_{0}+B_{1} x+B_{2} x^{2}}=x-\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+O\left(x^{6}\right), B_{0} = 1,\\ + \Downarrow \\ + [3 / 2]_{f}(x) = \frac{15x+x^3}{15+6x^2} +\end{gathered} +$$ + +\begin{figure} +\centering +\begin{tikzpicture} + \begin{axis}[ + xmin=-3.5, xmax=3.5, + ymin=-1.5, ymax=1.5, + axis lines=center, + axis on top=true, + domain=-3.5:3.5, + ylabel=$y$, + xlabel=$x$, + ] + + \addplot [mark=none,draw=red,thick] {tanh(\x)}; + \node [right, red] at (axis cs: 1.4,0.7) {$\tanh(x)$}; + \addplot [mark=none,draw=blue,ultra thick, samples=100, smooth] expression{x*(15+x^2)/(15+6*x^2)}; + \node [right, blue] at (axis cs: -1.8,0.7) {$Padé$}; + + %% Add the asymptotes + \draw [blue, dotted, thick] (axis cs:-2.5,-1)-- (axis cs:0,-1); + \draw [blue, dotted, thick] (axis cs:+2.5,+1)-- (axis cs:0,+1); + \end{axis} +\end{tikzpicture} +\caption{$[3 / 2]_{f}(x)$ +\label{motivation:figure:Pade32}} +\end{figure} -\subsection{Problemstellung -\label{transfer:subsection:bonorum}} -\[ -\max _{a \leq x \leq b}|\operatorname{TanH}(x)-P(x)| -\] diff --git a/buch/papers/transfer/teil3.tex b/buch/papers/transfer/teil3.tex index 4464875..5bbe0c1 100644 --- a/buch/papers/transfer/teil3.tex +++ b/buch/papers/transfer/teil3.tex @@ -1,27 +1,26 @@ % -% teil3.tex -- Beispiel-File für Teil 3 +% teil2.tex -- Beispiel-File für teil2 % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{K-Tanh +\section{MiniMax-Polynom \label{transfer:section:teil3}} -\rhead{K-Tanh} +\rhead{MiniMax-Polynom} -\subsection{Algorithmus -\label{transfer:subsection:Ktanh-Algorithmus}} -\cite{transfer:DBLP:journals/corr/abs-1909-07729} -\subsubsection{Vereinfacht -\label{transfer:subsection:Ktanh-Algorithmus:Vereinfacht}} -Negative Werte werden nicht separat behandelt. Diese werden dank der Syymertrie um den Ursprung mit einem einfachen Vorzeichenwechsel aus den positiven berechnet. -Für $x < 0.25$ gilt $y = x$. -Ist $x > 3.75$ gitl $y = 1$. -Ist der Wert zwischen diesen Grenzen, werden über einen Lookuptable geeignete Werte gefunden um aus dem $x$ die Approximation des Tanh zu berechnen. -Dafür werden eine bestimmte Anzahl LSBs des Exponenten und MSBs der Mantisse zu einem Index $t$ zusammengestzt. Der dann die Stelle im Lookuptable zeigt. -Damit werden die richtigen Werte für $E_{t}, r_{t}, b_{t}$ aus der Tabelle, die im Vorhinein schon berechnet wurden, ausgelesen. -Damit hat man das $E$ bereits gefunden und mit der Formel -\[ - M_{o} \leftarrow\left(M_{i} \gg r\right)+b -\] -kann das neue $M$ berechnet werden. +\subsection{Idee +\label{transfer:subsection:idee}} +Finde das Polynom eines bestimmten Grades, welches eine Funktion in einem Intervall am besten approximiert. + + +\subsection{Definition + \label{transfer:subsection:definition}} +Das Polynom welches + $$ \max _{a \leq x \leq b}|f(x)-P(x)| , a \in \mathbb{R}, b \in \mathbb{R}.$$ +minimiert. +\subsection{Beispiel + \label{transfer:subsection:beispiel}} +Um ein MiniMax-Polynom zu berechnen, kann der Remez-Algorithmus verwendet werden. Dieser basiert im wesentlichen auf dem Alternantensatz von Tschebyschow. + + -- cgit v1.2.1 From 2180deab391444f58ce2a2f20d13f01c0cb69be7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 18 Aug 2022 20:09:42 +0200 Subject: new images --- .../070-orthogonalitaet/gaussquadratur.tex | 2 +- buch/chapters/070-orthogonalitaet/orthogonal.tex | 1 + buch/papers/parzyl/images/Makefile | 16 ++ buch/papers/parzyl/images/common.inc | 64 +++++++ buch/papers/parzyl/images/halfplane.jpg | Bin 0 -> 200681 bytes buch/papers/parzyl/images/halfplane.pdf | Bin 0 -> 208606 bytes buch/papers/parzyl/images/halfplane.png | Bin 0 -> 473623 bytes buch/papers/parzyl/images/halfplane.pov | 201 +++++++++++++++++++++ buch/papers/parzyl/images/halfplane.tex | 41 +++++ 9 files changed, 324 insertions(+), 1 deletion(-) create mode 100644 buch/papers/parzyl/images/Makefile create mode 100644 buch/papers/parzyl/images/common.inc create mode 100644 buch/papers/parzyl/images/halfplane.jpg create mode 100644 buch/papers/parzyl/images/halfplane.pdf create mode 100644 buch/papers/parzyl/images/halfplane.png create mode 100644 buch/papers/parzyl/images/halfplane.pov create mode 100644 buch/papers/parzyl/images/halfplane.tex diff --git a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex index a5af7d2..c7dfb31 100644 --- a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex +++ b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex @@ -20,7 +20,7 @@ Ein solches Polynom $p(x)$ hat $n+1$ Koeffizienten, die aus dem linearen Gleichungssystem der $n+1$ Gleichungen $p(x_i)=f(x_i)$ ermittelt werden können. -Das Interpolationspolynom $p(x)$ lässt sich abera uch direkt +Das Interpolationspolynom $p(x)$ lässt sich aber auch direkt angeben. Dazu konstruiert man zuerst die Polynome \[ diff --git a/buch/chapters/070-orthogonalitaet/orthogonal.tex b/buch/chapters/070-orthogonalitaet/orthogonal.tex index df04514..793b78d 100644 --- a/buch/chapters/070-orthogonalitaet/orthogonal.tex +++ b/buch/chapters/070-orthogonalitaet/orthogonal.tex @@ -641,6 +641,7 @@ H_w f\colon(a,b) \to \mathbb{R} \;\bigg|\; \int_a^b |f(x)|^2 w(x)\,dx +<\infty \biggr\}. \] Die Funktionen $f\in H_w$ haben folgende Eigenschaften diff --git a/buch/papers/parzyl/images/Makefile b/buch/papers/parzyl/images/Makefile new file mode 100644 index 0000000..4bd13ec --- /dev/null +++ b/buch/papers/parzyl/images/Makefile @@ -0,0 +1,16 @@ +# +# Makefile to build 3d images +# +# (c) 2022 Prof Dr Andreas Müller +# + +all: halfplane.pdf + +halfplane.pdf: halfplane.tex halfplane.jpg + pdflatex halfplane.tex +halfplane.png: halfplane.pov + povray +A0.1 -W1920 -H1080 -Ohalfplane.png halfplane.pov +halfplane.jpg: halfplane.png Makefile + convert -extract 1280x1080+340+0 halfplane.png \ + -density 300 -units PixelsPerInch halfplane.jpg + diff --git a/buch/papers/parzyl/images/common.inc b/buch/papers/parzyl/images/common.inc new file mode 100644 index 0000000..28aed2b --- /dev/null +++ b/buch/papers/parzyl/images/common.inc @@ -0,0 +1,64 @@ +// +// common.inc -- some common useful tools for drawing 3d images +// +// (c) 2018 Prof Dr Andreas Müller, Hochschule Rapperswil +// + +// +// draw a right angle quarter circle at point with legs and and +// color +// +#declare rechterwinkelradius = 0.5; +#declare rechterwinkelthickness = 0.01; +#macro rechterwinkel(o, v1, v2, c) +intersection { + sphere { o, rechterwinkelradius } + #declare rnormale = vnormalize(vcross(v1, v2)); + plane { rnormale, vdot(o, rnormale) + rechterwinkelthickness * rechterwinkelradius / 0.5 } + plane { -rnormale, -vdot(o, rnormale) + rechterwinkelthickness * rechterwinkelradius / 0.5 } + plane { -v1, -vdot(o, v1) } + plane { -v2, -vdot(o, v2) } + pigment { + color c + } +} +sphere { o + 0.45 * (vnormalize(v1) +vnormalize(v2)) * rechterwinkelradius, + 0.05 * rechterwinkelradius / 0.5 + pigment { + color c + } +} +#end + +// +// draw an arrow from to with thickness with +// color +// +#macro arrow(from, to, arrowthickness, c) + #declare arrowdirection = vnormalize(to - from); + #declare arrowlength = vlength(to - from); + union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } + } +#end + diff --git a/buch/papers/parzyl/images/halfplane.jpg b/buch/papers/parzyl/images/halfplane.jpg new file mode 100644 index 0000000..8cb5ae3 Binary files /dev/null and b/buch/papers/parzyl/images/halfplane.jpg differ diff --git a/buch/papers/parzyl/images/halfplane.pdf b/buch/papers/parzyl/images/halfplane.pdf new file mode 100644 index 0000000..7275810 Binary files /dev/null and b/buch/papers/parzyl/images/halfplane.pdf differ diff --git a/buch/papers/parzyl/images/halfplane.png b/buch/papers/parzyl/images/halfplane.png new file mode 100644 index 0000000..5beefa0 Binary files /dev/null and b/buch/papers/parzyl/images/halfplane.png differ diff --git a/buch/papers/parzyl/images/halfplane.pov b/buch/papers/parzyl/images/halfplane.pov new file mode 100644 index 0000000..419bb67 --- /dev/null +++ b/buch/papers/parzyl/images/halfplane.pov @@ -0,0 +1,201 @@ +// +// 3dimage.pov +// +// (c) 2022 Prof Dr Andreas Müller +// +#version 3.7; +#include "colors.inc" +#include "skies.inc" +#include "common.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.63; +#declare ar = 0.02; + +#declare Cameracenter = <5,3,-4>; +#declare Worldpoint = <0,-0.80, 0>; +#declare Lightsource = < 7,10,-3>; +#declare Lightdirection = vnormalize(Lightsource - Worldpoint); +#declare Lightaxis1 = vnormalize(vcross(Lightdirection, <0,1,0>)); +#declare Lightaxis2 = vnormalize(vcross(Lightaxis1, Lightdirection)); + +camera { + location Cameracenter + look_at Worldpoint + right 16/9 * x * imagescale + up y * imagescale +} + +light_source { + Lightsource color White + area_light Lightaxis1 Lightaxis2, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color White + } +} + +arrow( <-2.1, 0, 0 >, < 2.2, 0, 0 >, ar, White) +arrow( < 0, -1.1, 0 >, < 0, 1.3, 0 >, ar, White) +arrow( < 0, 0, -2 >, < 0, 0, 2.2 >, ar, White) + +#declare planecolor = rgb<0.2,0.6,1.0>; +#declare r = 0.01; + +#macro planebox() + box { <-2.1,-1.1,-2.1>, <0,1.1,2.1> } +#end + +intersection { + plane { <0, 0, 1>, 0.001 } + plane { <0, 0, -1>, 0.001 } + planebox() + pigment { + color planecolor transmit 0.3 + } + finish { + metallic + specular 0.95 + } +} + +#declare Xstep = 0.2; + +intersection { + union { + #declare X = 0; + #while (X > -2.5) + cylinder { , , r } + #declare X = X - Xstep; + #end + + #declare Y = Xstep; + #while (Y < 2.5) + cylinder { <-3, Y, 0>, <0, Y, 0>, r } + cylinder { <-3, -Y, 0>, <0, -Y, 0>, r } + #declare Y = Y + Xstep; + #end + } + planebox() + pigment { + color planecolor + } + finish { + metallic + specular 0.95 + } +} + +#declare parammin = -4; +#declare parammax = 4; +#declare paramsteps = 100; +#declare paramstep = (parammax - parammin) / paramsteps; + +#macro punkt(sigma, tau, Z) + < + 0.5 * (tau*tau - sigma*sigma) + Z, + sigma * tau, + > +#end + +#macro sigmasurface(sigma, farbe) + #declare taumin1 = 2/sigma; + #declare taumin2 = sqrt(4+sigma*sigma); + #if (taumin1 > taumin2) + #declare taumin = -taumin2; + #else + #declare taumin = -taumin1; + #end + + mesh { + #declare tau = taumin; + #declare taumax = -taumin; + #declare taustep = (taumax - taumin) / paramsteps; + #while (tau < taumax - taustep/2) + triangle { + punkt(sigma, tau, -1), + punkt(sigma, tau, 0), + punkt(sigma, tau + taustep, -1) + } + triangle { + punkt(sigma, tau + taustep, -1), + punkt(sigma, tau + taustep, 0), + punkt(sigma, tau, 0) + } + #declare tau = tau + taustep; + #end + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } + } + + union { + #declare tau = taumin; + #declare taumax = -taumin; + #declare taustep = (taumax - taumin) / paramsteps; + #while (tau < taumax - taustep/2) + sphere { punkt(sigma, tau, 0), r } + cylinder { + punkt(sigma, tau, 0), + punkt(sigma, tau + taustep, 0), + r + } + #declare tau = tau + taustep; + #end + sphere { punkt(sigma, tau, 0), r } + pigment { + color farbe + } + finish { + specular 0.9 + metallic + } + + } +#end + +#declare greensurfacecolor = rgb<0.6,1.0,0.6>; +#declare redsurfacecolor = rgb<1.0,0.6,0.6>; + +sigmasurface(0.25, greensurfacecolor) +sigmasurface(0.5, greensurfacecolor) +sigmasurface(0.75, greensurfacecolor) +sigmasurface(1, greensurfacecolor) +sigmasurface(1.25, greensurfacecolor) +sigmasurface(1.5, greensurfacecolor) +sigmasurface(1.75, greensurfacecolor) +sigmasurface(2, greensurfacecolor) + +union { + sigmasurface(0.25, redsurfacecolor) + sigmasurface(0.5, redsurfacecolor) + sigmasurface(0.75, redsurfacecolor) + sigmasurface(1.00, redsurfacecolor) + sigmasurface(1.25, redsurfacecolor) + sigmasurface(1.5, redsurfacecolor) + sigmasurface(1.75, redsurfacecolor) + sigmasurface(2, redsurfacecolor) + rotate <0, 180, 0> +} + +box { <-2,-1,-2>, <2,-0.99,2> + pigment { + color rgb<1.0,0.8,0.6> transmit 0.8 + } + finish { + specular 0.9 + metallic + } +} diff --git a/buch/papers/parzyl/images/halfplane.tex b/buch/papers/parzyl/images/halfplane.tex new file mode 100644 index 0000000..e470057 --- /dev/null +++ b/buch/papers/parzyl/images/halfplane.tex @@ -0,0 +1,41 @@ +% +% halfplane.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{5} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=10cm]{halfplane.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (0,3.7) {$z$}; +\node at (3.3,-0.3) {$x$}; +\node at (2.7,2.5) {$y$}; + +\end{tikzpicture} + +\end{document} + -- cgit v1.2.1 From 2ee9b8e8cff3bbcb688c24cc882a2c4db0a6d4f6 Mon Sep 17 00:00:00 2001 From: Marc Benz Date: Thu, 18 Aug 2022 20:22:16 +0200 Subject: teil4 --- buch/papers/transfer/teil4.tex | 218 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 218 insertions(+) create mode 100644 buch/papers/transfer/teil4.tex diff --git a/buch/papers/transfer/teil4.tex b/buch/papers/transfer/teil4.tex new file mode 100644 index 0000000..d652e2d --- /dev/null +++ b/buch/papers/transfer/teil4.tex @@ -0,0 +1,218 @@ +% +% teil4.tex +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{K-Tanh +\label{transfer:section:teil4}} +\rhead{K-Tanh} + +\subsection{Idee + \label{transfer:subsection:Ktanh-Idee}} +Um die Berechnung des Tangens hyperbolicus wirklich zu beschleunigen, braucht es einen Algorithmus, der ohne Gleitkommaoperationen auskommt. Um dies zu bewerkstelligen, ist eine Unterteilung der Funktion in mehrere Abschnitte nötig. Diese können dann linear approximiert werden. Die dazugehörigen Parameter können einmal berechnet werden und zu Rechenzeit aus einem LUT????? gelesen und danach mit integer Operationen verrechnet werden. + + +\subsection{Definitionen + \label{transfer:subsection:Ktanh-Definition}} + +\subsubsection{Gleitkommazahlen nach IEEE-754 + \label{transfer:subsection:Ktanh-Algorithmus:Gleitkommazahl}} +Da ein Computer nur mit binären Werten arbeiten kann, müssen Zahlen durch sogenannte Gleitkommazahlen approximiert werden. Dafür wird die Zahl in zwei Teile aufgeteilt, die Mantisse und den Exponenten. Die Zahl setzt sich dann wie folgt zusammen: +$$ +\begin{array}{|l|l|l|} + \hline S & E & M \\ + \hline +\end{array} +$$ +Aus dem sich die Dezimalzahl wie folgt berechnet +$$ +x=s \cdot m \cdot b^{e} +$$ +wobei +$$ +\begin{aligned} + &s=(-1)^{S} \\ + &e=E-B\\ + &B=2^{r-1}-1 + &m=1+M / 2^{p} +\end{aligned} +$$ +mit $r$ = Anzahl der Exponenten bits und p = Anzahl mantisse Bits. + + +\subsubsection{K-tanh Algorithmus +\label{transfer:subsection:Ktanh-Algorithmus}} +\cite{transfer:DBLP:journals/corr/abs-1909-07729} + +Negative Werte werden nicht separat behandelt. Diese werden dank der Symertrie um den Ursprung mit einem einfachen Vorzeichenwechsel aus den positiven berechnet. +Für $x < 0.25$ gilt $y = x$. +Ist $x > 3.75$ gitl $y = 1$. +Ist der Wert zwischen diesen Grenzen, werden über einen Lookuptable geeignete Werte gefunden um aus dem $x$ die Approximation des Tanh zu berechnen. +Dafür werden eine bestimmte Anzahl LSBs des Exponenten und MSBs der Mantisse zu einem Index $t$ zusammengestzt. Der dann die Stelle im Lookuptable zeigt. +Damit werden die richtigen Werte für $E_{t}, r_{t}, b_{t}$ aus der Tabelle, die im Vorhinein schon berechnet wurden, ausgelesen. +Damit hat man das $E$ bereits gefunden und mit der Formel +\[ + M_{o} \leftarrow\left(M_{i} \gg r\right)+b +\] + +kann das neue $M$ berechnet werden. + +\begin{figure} +\centering +\tikzset{ + every node/.style={ + font=\scriptsize + }, + decision/.style={ + shape=rectangle, + minimum height=1cm, + text width=3cm, + text centered, + rounded corners=1ex, + draw, + label={[yshift=0.2cm]left:ja}, + label={[yshift=0.2cm]right:nein}, + }, + outcome/.style={ + shape=ellipse, + fill=gray!15, + draw, + text width=1.5cm, + text centered + }, + decision tree/.style={ + edge from parent path={[-latex] (\tikzparentnode) -| (\tikzchildnode)}, + sibling distance=4cm, + level distance=1.5cm + } +} +\begin{tikzpicture} + + \node [decision] { $x<0.25$ } + [decision tree] + child { node [outcome] { $x$ } } + child { node [decision] { $x>3.75$} + child { node [outcome] { $1$ } } + child { node [outcome] { $K-tanh$ } } + }; + +\end{tikzpicture} +\caption{Gesamter Algorithmus +\label{motivation:figure:gesalgo}} +\end{figure} + +\begin{figure} +\centering +\begin{tikzpicture} + [>=stealth', auto, node distance=2cm, scale=1.2] + + \tikzstyle{dot} = [circle, draw, fill, inner sep=0.03cm] + + \tikzstyle{brace} = [decorate, decoration={brace,amplitude=4pt}] + + \begin{scope}[] + + \node[ minimum width=0.5cm] (s) at (0, 0) {$s$}; + \node[anchor=west, minimum width=1.5cm] (e) at (s.east) {$E_i$}; + \node[anchor=west, minimum width=1.5cm] (m) at (e.east) {$M_i$}; + \draw[blue] (e.north west) -- (e.south west) (e.north east) -- (e.south east); + \node[draw, green!50!black, rounded corners=0.1cm, fit=(s) (e) (m), inner sep = 0] (a) {}; + + \node[minimum width=0.5cm] (s) at (5, 0) {$s$}; + \node[anchor=west, minimum width=1.5cm] (e) at (s.east) {$E_o$}; + \node[anchor=west, minimum width=1.5cm] (m) at (e.east) {$M_o$}; + \draw[blue] (e.north west) -- (e.south west) (e.north east) -- (e.south east); + \node[draw, green!50!black, rounded corners=0.1cm, fit=(s) (e) (m), inner sep = 0] (b) {}; + + \draw[yshift=-0.4cm, decorate,decoration={brace,amplitude=4pt}] (a.south) ++(0, -0.2) +(0.5,0) -- +(-0.5,0 ); + + \node[draw=black, fill=black!20, minimum width=1.5cm, minimum height= 2cm, below=1cm of a] (lut) {}; + + \node[draw=blue, inner sep=0.2cm, right = 1.5cm of lut, align=left] (box) {$E_0 \gets E$ \\ $M_0 \gets (M_i \gg r) + b$}; + + \draw[->] (a.south) +(0, -0.5) -- (lut); + \draw[->] (lut) -- node[above]{$(E,r,b)$} (box); + \draw[->] (box) -| ([xshift=0.5cm, yshift=-0.3cm]b.south); + + \end{scope} + +\end{tikzpicture} +\caption{Ablauf der K-tanh Berechnung +\label{motivation:figure:Ktanhablauf}} +\end{figure} + + +\subsection{Beispiel +\label{transfer:subsection:Ktanh-Algorithmus:Beispiel}} + +%TODO + +In diesem Abschnitt wird das Verfahren am einem Beispiel mit dem BFloat16 erklärt. Das bedeutet die Gleitkommazahlen werden mit 8 Exponenten, 7 Mantisse und einem Vorzeichen bit dargestellt. + +\subsubsection{Algorithmus für die Bestimmung der Parameter + \label{transfer:subsection:Ktanh-Algorithmus:Algo}} + +\begin{enumerate} + \item Wir berechnen zuerst den Tanh für ein gegebenes x und finden die zugehörige BFloat16-Darstellung. + \[ + y_{i}=\operatorname{TanH}\left(x_{i}\right)=(-1)^{s} \cdot 2^{E_{i}} \cdot\left(1+M_{i} / 2^{q}\right) + \] + + \item Sollten die Exponenten in einem Intervall $t$ nicht gleich sein, muss ein gemeinsamer Exponent gefunden werden, so dass + $$ + \underset{E, \hat{M}_{i} \in \mathbb{Z}}{\operatorname{argmin}} \sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}, \quad \text { mit } \quad E \in\left\{E_{i}\right\}, \hat{M}_{i} \in[0,127] + $$ + minimiert wird. Was bedeutet, dass der Exponent mit welchem der kleinsten quadrierten und aufsummierten Fehler entsteht gewählt wird. + ?????We pick E from the set of exponents {Ei}. If E = Ej , + then, Mˆ + j = Mj , for all j. If E > Ej , then, Mˆ + j = 0. + Similarly, for E < Ej , Mˆ + j = 2q − 1. Store this E in the + parameter table TE.????? + \item Um den Verschiebungsparameter r und den Additionsterm b zu finden, muss das folgende Optimierungsproblem gelöst werden. Auch hier wird einfach der kleinste quadrierte und aufsummierte Fehler gesucht wird. + $$ + \begin{array}{ll} + & \underset{r, b \in \mathbb{Z}}{\operatorname{argmin}} \sum_{i}\left(\hat{M}_{i}-\left(m_{i} / 2^{r}+b\right)\right)^{2} \\ + \text { mit } & 0 \leq r \leq r_{\max } \leq p, \quad b_{\min } \leq b \leq b_{\max } + \end{array} + $$ + Dabei müssen $r_max$, $b_min$ und $b_max$ sorgfältig gewählt werden, so dass kein +\end{enumerate} + +\subsubsection{Numerisches Beispiel + \label{transfer:subsection:Ktanh-Algorithmus:Num}} +Zum Index $t = 00000$ gehört neben Anderen der Wert $x_i = 2$. Denn mit \ref{transfer:subsection:Ktanh-Algorithmus:Gleitkommazahl} folgt + +$$ +\begin{array}{|l|l|l|} + \hline S_i & E_{i} & M_{i} \\ + \hline 0 & 100000 \textbf{00} & \textbf{000} 0000 \\ + \hline +\end{array} +$$ +Der dazugehörige Tanh Wert ist +$y_i = \tanh{x_i}=0.96402758\ldots$. Es lässt sich die dazugehörige BFloat-16-Darstellung finden + +$$ +\begin{array}{|l|l|l|} + \hline S_{y_{i}} & E_{y_{i}} & M_{y_{i}} \\ + \hline 0 & 01111110 & 1110110 \\ + \hline +\end{array} +$$ +Nun müssen alle anderen Werte dieses Intervalls $t = 00000$ ausgewertet werden. Stimmen nicht alle Exponenten der $S_{y}$ überein, so muss noch ein gemeinsamer Exponent mit dem Optimierungproblem \ref{} gefunden werden. Danach kann der Verschiebe- und Additionsfaktor für das Intervall berechnet werden. +Es ergeben sich die Werte: +$$ +\begin{array}{c|ccc} + \text { Index } t & E_{t} & r_{t} & b_{t} \\ + \hline 00111 & 126 & 2 & 119 +\end{array} +$$ + + + + + + + -- cgit v1.2.1 From ba10db69df3698d33190384cfd95a73949741a5d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 18 Aug 2022 20:54:24 +0200 Subject: remove subcaption package --- buch/papers/transfer/packages.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/buch/papers/transfer/packages.tex b/buch/papers/transfer/packages.tex index 98329d3..fa7069a 100644 --- a/buch/papers/transfer/packages.tex +++ b/buch/papers/transfer/packages.tex @@ -12,4 +12,4 @@ \usetikzlibrary{arrows} \usetikzlibrary{fit} \usetikzlibrary{shapes.geometric} -\usepackage{subcaption} +%\usepackage{subcaption} -- cgit v1.2.1 From 53a728a31aadb4f583f733f47e3a60ac9c4191e0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 19 Aug 2022 08:44:47 +0200 Subject: typos --- cover/buchcover.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/cover/buchcover.tex b/cover/buchcover.tex index d6ad7ec..748fbeb 100644 --- a/cover/buchcover.tex +++ b/cover/buchcover.tex @@ -1,5 +1,5 @@ % -% buchcover.tex -- Cover für das Buch Numerik +% buchcover.tex -- Cover für das Buch Spezielle Funktionen % % (c) 2018 Prof Dr Andreas Müller, Hochschule Rapperswil % -- cgit v1.2.1