From e69e3df9a1e10de9e3122d694da2e923dad711a2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 5 Jul 2022 18:04:48 +0200 Subject: elliptic stuff complete --- buch/chapters/110-elliptisch/dglsol.tex | 7 +- buch/chapters/110-elliptisch/elltrigo.tex | 63 +++- buch/chapters/110-elliptisch/lemniskate.tex | 12 +- buch/chapters/110-elliptisch/mathpendel.tex | 323 +++++++++++++-------- buch/chapters/110-elliptisch/uebungsaufgaben/1.tex | 1 + buch/chapters/part1.tex | 1 + buch/chapters/references.bib | 17 +- 7 files changed, 286 insertions(+), 138 deletions(-) diff --git a/buch/chapters/110-elliptisch/dglsol.tex b/buch/chapters/110-elliptisch/dglsol.tex index 8a638a7..613f130 100644 --- a/buch/chapters/110-elliptisch/dglsol.tex +++ b/buch/chapters/110-elliptisch/dglsol.tex @@ -343,7 +343,8 @@ der unvollständigen elliptischen Integrale. % % Numerische Berechnung mit dem arithmetisch-geometrischen Mittel % -\subsubsection{Numerische Berechnung mit dem arithmetisch-geometrischen Mittel} +\subsubsection{Numerische Berechnung mit dem arithmetisch-geometrischen Mittel +\label{buch:elliptisch:jacobi:agm}} \begin{table} \centering \begin{tikzpicture}[>=latex,thick] @@ -685,3 +686,7 @@ x(t) = a\operatorname{zn}(b(t-t_0)), wobei die Funktion $\operatorname{zn}(u,k)$ auf Grund der Vorzeichen von $A$, $B$ und $C$ gewählt werden müssen. +Die Übungsaufgaben~\ref{buch:elliptisch:aufgabe:1} ist als +Lernaufgabe konzipiert, mit der die Lösung der Differentialgleichung +des harmonischen Oszillators beispielhaft durchgearbeitet +werden kann. diff --git a/buch/chapters/110-elliptisch/elltrigo.tex b/buch/chapters/110-elliptisch/elltrigo.tex index 0ff9cdb..49e6686 100644 --- a/buch/chapters/110-elliptisch/elltrigo.tex +++ b/buch/chapters/110-elliptisch/elltrigo.tex @@ -27,6 +27,11 @@ Funktionen $\operatorname{sn}(u,k)$, $\operatorname{cn}(u,k)$ und $\operatorname{dn}(u,k)$, die ähnliche Eigenschaften haben wie die trigonometrischen Funktionen. +Die nachstehende Darstellung ist stark inspiriert von William Schwalms +sehr zielorientierten Einführung +\cite{buch:schwalm}, welche auch als Youtube-Videovorlesung +\cite{buch:schwalm-youtube} zur Verfügung steht. + % % Geometrie einer Ellipse % @@ -1012,10 +1017,60 @@ finden. Man beachte, dass in jeder Identität alle Funktionen den gleichen zweiten Buchstaben haben. -\subsubsection{TODO} -XXX algebraische Beziehungen \\ -XXX Additionstheoreme \\ -XXX Perioden +\subsubsection{Weitere Beziehungen} +Für die Jacobischen elliptischen Funktionen lässt sich eine grosse +Zahl weiterer Eigenschaften und Identitäten beweisen. +Zum Beispiel gibt es Aditionstheoreme, die im Grenzfall $k\to 0$ zu +den Additionstheoremen für die trigonometrischen Funktionen werden. +\index{Additionstheorem}% +Ebenso kann man weitere algebraische Identitäten finden. +So lässt sich zum Beispiel die einzige reelle Nullstelle von $x^5+x=w$ +mit Jacobischen elliptischen Funktionen darstellen, während es +nicht möglich ist, diese Lösung als Wurzelausdruck zu schreiben. + +Die Jacobischen elliptischen Funktionen lassen sich statt auf dem +hier gewählten trigonometrischen Weg auch mit Hilfe der Jacobischen +Theta-Funktionen definieren, die Lösungen einer Wärmeleitungsgleichung +\index{Theta-Funktionen}% +\index{Wärmeleitungs-Gleichung}% +mit geeigneten Randbedingungen sind. +Diese Vorgehensweise hat den Vorteil, ziemlich direkt zu +Reihen- und Produktentwicklungen für die Funktionen zu führen. +Auch die Additionstheorem ergeben sich vergleichsweise leicht. +Dieser Zugang zu den Jacobischen elliptischen Funktionen wird in der +Standardreferenz~\cite{buch:ellfun-applications} gewählt. + +Bei anderen speziellen Funktionen waren Reihenentwicklungen ein +wichtiges Hilfsmittel zu deren numerischer Berechnung. +Bei den Jacobischen elliptischen Funktionen ist diese Methode +nicht zielführend. +Im Abschnitt~\ref{buch:elliptisch:subsection:differentialgleichungen} +wird gezeigt, dass Jacobische elliptische Funktionen gewisse nichtlineare +Differentialgleichungen zu lösen ermöglichen. +Dies zeigt auch, dass Jacobischen elliptischen Funktionen +Umkehrfunktionen der elliptischen Integrale sind, die in +Abschnitt~\ref{buch:elliptisch:subsection:agm} mit dem +arithmetisch-geometrischen Mittel berechnet wurden. +Die dort angetroffenen numerischen Schwierigkeiten treten bei der +Berechnung der Umkehrfunktion jedoch nicht auf. + +Die grundlegende Mechanik dieser Berechnungsmethode wird auf +Seite~\pageref{buch:elliptisch:jacobi:agm} dargestellt und +und in den Übungsaufgaben +\ref{buch:elliptisch:aufgabe:2} bis \ref{buch:elliptisch:aufgabe:5} +etwas näher untersucht wird. + +Aus der Theorie das arithmetisch-geometrischen Mittels lässt sich +die sogenannte Landen-Trans\-formation herleiten. +\index{Landen-Transformation}% +Sie stellt eine Verbindung zwischen +den Werten der elliptischen Funktionen zu verschiedenen Moduli $k$ her. +Sie ist die Basis aller effizienten Berechnungsmethoden. + + +% algebraische Beziehungen \\ +% Additionstheoreme \\ +% Perioden % use https://math.stackexchange.com/questions/3013692/how-to-show-that-jacobi-sine-function-is-doubly-periodic diff --git a/buch/chapters/110-elliptisch/lemniskate.tex b/buch/chapters/110-elliptisch/lemniskate.tex index 61476a0..04c137d 100644 --- a/buch/chapters/110-elliptisch/lemniskate.tex +++ b/buch/chapters/110-elliptisch/lemniskate.tex @@ -17,12 +17,6 @@ elliptischen Funktionen hergestellt werden. % \subsection{Lemniskate \label{buch:gemotrie:subsection:lemniskate}} -\begin{figure} -\centering -\includegraphics{chapters/110-elliptisch/images/lemniskate.pdf} -\caption{Bogenlänge und Radius der Lemniskate von Bernoulli. -\label{buch:elliptisch:fig:lemniskate}} -\end{figure} Die {\em Lemniskate von Bernoulli} ist die Kurve vierten Grades mit der Gleichung \index{Lemniskate von Bernoulli}% @@ -64,6 +58,12 @@ In dieser Normierung, der Standard-Lemniskaten, liegen die Scheitel bei $\pm 1$. Dies ist die Skalierung, die für die Definition des lemniskatischen Sinus und Kosinus verwendet werden soll. +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/lemniskate.pdf} +\caption{Bogenlänge und Radius der Lemniskate von Bernoulli. +\label{buch:elliptisch:fig:lemniskate}} +\end{figure} \subsubsection{Polarkoordinaten} In Polarkoordinaten $x=r\cos\varphi$ und $y=r\sin\varphi$ diff --git a/buch/chapters/110-elliptisch/mathpendel.tex b/buch/chapters/110-elliptisch/mathpendel.tex index 39cb418..54b7531 100644 --- a/buch/chapters/110-elliptisch/mathpendel.tex +++ b/buch/chapters/110-elliptisch/mathpendel.tex @@ -53,7 +53,7 @@ enthält. Der Energieerhaltungssatz kann uns eine solche Gleichung geben. Die Summe von kinetischer und potentieller Energie muss konstant sein. Dies führt auf -\[ +\begin{equation} E_{\text{kinetisch}} + E_{\text{potentiell}} @@ -66,8 +66,9 @@ mgl(1-\cos\vartheta) + mgl(1-\cos\vartheta) = -E -\] +E. +\label{buch:elliptisch:mathpendel:energiegleichung} +\end{equation} Durch Auflösen nach $\dot{\vartheta}$ kann man jetzt die Differentialgleichung \[ @@ -94,159 +95,229 @@ Für $E>2mgl$ wird sich das Pendel im Kreis bewegen, für sehr grosse Energie ist die kinetische Energie dominant, die Verlangsamung im höchsten Punkt wird immer weniger ausgeprägt sein. -\begin{figure} -\centering -\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobiplots.pdf} -\caption{% -Abhängigkeit der elliptischen Funktionen von $u$ für -verschiedene Werte von $k^2=m$. -Für $m=0$ ist $\operatorname{sn}(u,0)=\sin u$, -$\operatorname{cn}(u,0)=\cos u$ und $\operatorname{dn}(u,0)=1$, diese -sind in allen Plots in einer helleren Farbe eingezeichnet. -Für kleine Werte von $m$ weichen die elliptischen Funktionen nur wenig -von den trigonometrischen Funktionen ab, -es ist aber klar erkennbar, dass die anharmonischen Terme in der -Differentialgleichung die Periode mit steigender Amplitude verlängern. -Sehr grosse Werte von $m$ nahe bei $1$ entsprechen der Situation, dass -die Energie des Pendels fast ausreicht, dass es den höchsten Punkt -erreichen kann, was es für $m$ macht. -\label{buch:elliptisch:fig:jacobiplots}} -\end{figure} + % % Koordinatentransformation auf elliptische Funktionen % \subsubsection{Koordinatentransformation auf elliptische Funktionen} Wir verwenden als neue Variable -\[ -y = \sin\frac{\vartheta}2 -\] -mit der Ableitung -\[ -\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}. -\] -Man beachte, dass $y$ nicht eine Koordinate in -Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist. - -Aus den Halbwinkelformeln finden wir -\[ +\begin{align} +y +&= +\sin\frac{\vartheta}2 +&&\Rightarrow& +\cos^2\frac{\vartheta}2 +&= +1-y^2. +\label{buch:elliptisch:mathpendel:ydef} +\intertext{Die Ableitung ist} +\dot{y} +&= +\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta} +&&\Rightarrow& +\dot{y}^2 +&= +\frac14\cos^2\frac{\vartheta}2\cdot\dot{\vartheta}^2. +\label{buch:elliptisch:mathpendel:yabl} +\intertext{% +Man beachte, dass die Koordinate senkrecht zur $x$-Achse in +Abbildung~\ref{buch:elliptisch:fig:mathpendel} die Auslenkung +$l\sin\vartheta$ ist, $y$ ist also nicht die Auslenkung senkrecht +zur $x$-Achse! +Aus den Halbwinkelformeln finden wir ausserdem +} \cos\vartheta -= +&= 1-2\sin^2 \frac{\vartheta}2 = -1-2y^2. -\] -Dies können wir zusammen mit der -Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$ -in die Energiegleichung einsetzen und erhalten -\[ -\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E -\qquad\Rightarrow\qquad -\frac14 \dot{\vartheta}^2 = \frac{E}{2ml^2} - \frac{g}{2l}y^2. -\] -Der konstante Term auf der rechten Seite ist grösser oder kleiner als -$1$ je nachdem, ob das Pendel sich im Kreis bewegt oder nicht. +1-2y^2 +&&\Rightarrow& +1-\cos\vartheta +&= +2y^2. +\label{buch:elliptisch:mathpendel:halbwinkel} +\end{align} +Die Grösse $1-\cos\vartheta$ haben wir in der Energiegleichung +\eqref{buch:elliptisch:mathpendel:energiegleichung} +bereits angetroffen. -Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$ +Die Identitäten +\eqref{buch:elliptisch:mathpendel:halbwinkel} +%und +%\eqref{buch:elliptisch:mathpendel:ydef} +können wir jetzt in die +Energiegleichung~\eqref{buch:elliptisch:mathpendel:energiegleichung} +einsetzen und erhalten +\begin{align} +\frac12ml^2\dot{\vartheta}^2 + 2mgly^2 +&= +E +\intertext{und nach Division durch $2ml^2$} +\frac14 \dot{\vartheta}^2 +&= +\frac{E}{2ml^2} - \frac{g}{l}y^2. +\label{buch:elliptisch:mathpendel:thetadgl} +\end{align} +%Der konstante Term auf der rechten Seite ist grösser oder kleiner als +%$1$ je nachdem, ob das Pendel sich im Kreis bewegt oder nicht. +Durch Multiplizieren mit der rechten Gleichung von +\eqref{buch:elliptisch:mathpendel:ydef} erhalten wir auf der linken Seite einen Ausdruck, den wir +mit Hilfe von \eqref{buch:elliptisch:mathpendel:yabl} als Funktion von $\dot{y}$ ausdrücken können. Wir erhalten -\begin{align*} -\frac14 +\begin{align} +\underbrace{\frac14 \cos^2\frac{\vartheta}2 \cdot -\dot{\vartheta}^2 +\dot{\vartheta}^2}_{\displaystyle=\dot{y}^2} &= -\frac14 (1-y^2) -\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr) +\biggl(\frac{E}{2ml^2} -\frac{g}{l}y^2\biggr) +\notag \\ \dot{y}^2 &= -\frac{1}{4} (1-y^2) -\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr) -\end{align*} +\biggl(\frac{E}{2ml^2} -\frac{g}{l}y^2\biggr) +\label{buch:elliptisch:mathpendel:ydgl} +\end{align} Die letzte Gleichung hat die Form einer Differentialgleichung für elliptische Funktionen. -Welche Funktion verwendet werden muss, hängt von der Grösse der -Koeffizienten in der zweiten Klammer ab. -Die Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen} -zeigt, dass in der zweiten Klammer jeweils einer der Terme -$1$ sein muss. +Welche Funktion verwendet werden muss, hängt von der relativen +Grösse der Koeffizienten in der zweiten Klammer ab. % -% Der Fall E < 2mgl +% Zeittransformation zur Elimination des konstanten Faktors % -\subsubsection{Der Fall $E<2mgl$} - - -Wir verwenden als neue Variable -\[ -y = \sin\frac{\vartheta}2 -\] -mit der Ableitung +\subsubsection{Zeittransformation} +Die Gleichung~\eqref{buch:elliptisch:mathpendel:ydgl} kann auch in +die Form +\begin{equation} +\frac{2ml^2}{E}\dot{y}^2 += +(1-y^2)\biggl(1-\frac{2mgl}{E}y^2\biggr) +\label{buch:elliptisch:mathpendel:ydgl2} +\end{equation} +gebracht werden. +Der konstante Faktor auf der linken Seite kann wie in der Diskussion +des anharmonischen Oszillators durch eine lineare +Transformation der Zeit zum Verschwinden gebracht werden. +Dazu setzt man $z(t) = y(bt)$ und bekommt \[ -\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}. +\frac{d}{dt}z(t) += +\frac{d}{dt}y(bt) \frac{d\,bt}{dt} += +b\dot{y}(bt). \] -Man beachte, dass $y$ nicht eine Koordinate in -Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist. +Die Zeit muss also mit dem Faktor $\sqrt{2ml^2/E}$ skaliert werden. + +% +% Nullstellen der rechten Seite der Differentialgleichung +% +\subsubsection{Nullstellen der rechten Seite} +Die rechte Seite von \eqref{buch:elliptisch:mathpendel:ydgl2} +hat die beiden Nullstellen $1$ und +\begin{equation} +y_0=\sqrt{\frac{E}{2mgl}}. +\label{buch:elliptisch:mathpendel:y0} +\end{equation} +Die Differentialgleichung kann damit als +\begin{equation} +\dot{y}^2 += +(1-y^2)\biggl(1-\frac{1}{y_0^2}y^2\biggr) +\label{buch:elliptisch:mathpendel:y0dgl} +\end{equation} +geschrieben werden. +Da die linke Seite $\ge 0$ sein muss, muss +\( +y\le \min(1,y_0) +\) +sein. +Damit ergeben sich zwei Fälle. +Wenn $y_0<1$ ist, dann schwingt das Pendel. +Der Fall $y_0>1$ entspricht einer Bewegung, bei der das Pendel +um den Punkt $O$ rotiert. + + +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobiplots.pdf} +\caption{% +Abhängigkeit der elliptischen Funktionen von $u$ für +verschiedene Werte von $k^2=m$. +Für $m=0$ ist $\operatorname{sn}(u,0)=\sin u$, +$\operatorname{cn}(u,0)=\cos u$ und $\operatorname{dn}(u,0)=1$, diese +sind in allen Plots in einer helleren Farbe eingezeichnet. +Für kleine Werte von $m$ weichen die elliptischen Funktionen nur wenig +von den trigonometrischen Funktionen ab, +es ist aber klar erkennbar, dass die anharmonischen Terme in der +Differentialgleichung die Periode mit steigender Amplitude verlängern. +Sehr grosse Werte von $m$ nahe bei $1$ entsprechen der Situation, dass +die Energie des Pendels fast ausreicht, dass es den höchsten Punkt +erreichen kann, was es für $m$ macht. +\label{buch:elliptisch:fig:jacobiplots}} +\end{figure} -Aus den Halbwinkelformeln finden wir +\subsubsection{Der Fall $E>2mgl$} +In diesem Fall ist die zweite Nullstelle $y_0>1$ oder $1/y_0^2 < 1$. +Die Differentialgleichung~\eqref{buch:elliptisch:mathpendel:y0dgl} +sieht ganz ähnlich aus wie die Differentialgleichung der +Funktion $\operatorname{sn}(u,k)$, tatsächlich wird sie zur +Differentialgleichung von $\operatorname{sn}(u,k)$ wenn man \[ -\cos\vartheta +k^2 = -1-2\sin^2 \frac{\vartheta}2 +1/y_0^2 = -1-2y^2. +\frac{2mgl}{E} \] -Dies können wir zusammen mit der -Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$ -in die Energiegleichung einsetzen und erhalten -\[ -\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E. -\] -Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$ -erhalten wir auf der linken Seite einen Ausdruck, den wir -als Funktion von $\dot{y}$ ausdrücken können. -Wir erhalten -\begin{align*} -\frac12ml^2 -\cos^2\frac{\vartheta}2 -\dot{\vartheta}^2 -&= -(1-y^2) -(E -mgly^2) -\\ -\frac{1}{4}\cos^2\frac{\vartheta}{2}\dot{\vartheta}^2 -&= -\frac{1}{2} -(1-y^2) -\biggl(\frac{E}{ml^2} -\frac{g}{l}y^2\biggr) -\\ +wählt. +In diesem Fall ist also $y=\operatorname{sn}(u,1/y_0)$ eine Lösung +der Differentialgleichung, wobei $u$ eine lineare Funktion der Zeit +ist. + +Wenn $y_0 \gg 1$ ist, dann ist $k\approx 0$ und die Bewegung ist +entspricht einer gleichförmigen Kreisbewegung. +Je näher $y_0$ an $1$ liegt, desto näher an $1$ ist auch $k$ und +desto grösser wird die Verlangsamung der Bewgung in der Nähe des +Scheitels, das Pendel verweilt sehr lange. +Dies äussert sich in Abbildung~\ref{buch:elliptisch:fig:jacobiplots} +durch die lange Verweildauer der Funktion nahe der Extrema. + +% +% Der Fall E < 2mgl +% +\subsubsection{Der Fall $E<2mgl$} +In diesem Fall ist $y_0<1$ und die +Differentialgleichung~\eqref{buch:elliptisch:mathpendel:y0dgl} +sieht zwar immer noch wie eine Differentialgleichung für +$\operatorname{sn}(u,k)$ aus, aber die Lage der Nullstellen +der rechten Seite ist verkehrt. +Indem wir $y=y_0z$ schreiben, erhalten wir +\begin{equation} \dot{y}^2 -&= -\frac{E}{2ml^2} -(1-y^2)\biggl( -1-\frac{2gml}{E}y^2 -\biggr). -\end{align*} -Dies ist genau die Form der Differentialgleichung für die elliptische -Funktion $\operatorname{sn}(u,k)$ -mit $k^2 = 2gml/E< 1$. - -XXX Verbindung zur Abbildung - -%% -%% Der Fall E > 2mgl -%% -%\subsection{Der Fall $E > 2mgl$} -%In diesem Fall hat das Pendel im höchsten Punkte immer noch genügend -%kinetische Energie, so dass es sich im Kreise dreht. -%Indem wir die Gleichung - - -%\subsection{Soliton-Lösungen der Sinus-Gordon-Gleichung} - -%\subsection{Nichtlineare Differentialgleichung vierter Ordnung} -%XXX Möbius-Transformation \\ -%XXX Reduktion auf die Differentialgleichung elliptischer Funktionen += +y_0^2 \dot{z}^2 += +(1-y_0^2z^2)(1-z^2). +\end{equation} +Wieder kann durch eine lineare Transformation der Zeit der Faktor $y_0^2$ +auf der linken Seite zum Verschwinden gebracht werden, es bleibt +die Differentialgleichung der Funktion $\operatorname{sn}(u,k)$ +mit $k=y_0$. +Daraus liest man ab, dass $y_0\operatorname{sn}(u,k)$ die Bewegung +des Pendels im oszillatorischen Fall beschreibt, wobei $u$ wieder +eine lineare Funktion der Zeit ist. + +Wenn $y_0\ll 1$ ist, dann ist auch $k$ sehr klein und die lineare +Näherung ist sehr gut, das Pendel verhält sich wie ein harmonischer +Oszillator mit einer Sinus-Schwingung als Lösung. +Für $y_0=k$ nahe an $1$ dagegen erreicht die Schwingung fast den +die maximale Höhe und wird dort sehr langsam. +Dies äussert sich in Abbildung~ +Dies äussert sich in Abbildung~\ref{buch:elliptisch:fig:jacobiplots} +wiederum durch die lange Verweildauer der Funktion nahe der Extrema. + diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex index 694f18a..af094c6 100644 --- a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex @@ -1,3 +1,4 @@ +\label{buch:elliptisch:aufgabe:1} In einem anharmonische Oszillator oszilliert eine Masse $m$ unter dem Einfluss einer Kraft, die nach dem Gesetz \[ diff --git a/buch/chapters/part1.tex b/buch/chapters/part1.tex index bee4416..52b18a0 100644 --- a/buch/chapters/part1.tex +++ b/buch/chapters/part1.tex @@ -35,6 +35,7 @@ %\end{appendices} \vfill \pagebreak + \ifodd\value{page}\else\null\clearpage\fi \lhead{Literatur} \rhead{} diff --git a/buch/chapters/references.bib b/buch/chapters/references.bib index e8f3494..d14a3d2 100644 --- a/buch/chapters/references.bib +++ b/buch/chapters/references.bib @@ -120,7 +120,7 @@ } @article{buch:pearsondgl, title = {Orthogonal matrix polynomials, scalar-type Rordigues' formulas and Pearson equations}, - author = { Antion J. Dur\'an and F. Alberto Grünbaum }, + author = { Antonio J. Dur\'an and F. Alberto Grünbaum }, year = 2005, journal = { Journal of Approximation theory }, volume = 134, @@ -155,3 +155,18 @@ pages = { 585--608 }, year = 1988 } + +@book{buch:schwalm, + author = { William A. Schwalm }, + title = { Lectures on Selected Topics in Mathematical Physics: Elliptic Functions and Elliptic Integrals }, + publisher = { IOP Science }, + year = 2015, + ISBN = { 978-1-6817-4166-6 } +} + +@misc{buch:schwalm-youtube, + author = { William A. Schwalm }, + title = { Elliptic Functions and Elliptic Integrals }, + howpublished = { \url{https://youtu.be/DCXItCajCyo} }, + year = 2018 +} -- cgit v1.2.1