From fefadac123a94fd60a2e20a05e2cf2461f1892d6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Erik=20L=C3=B6ffler?= <100943759+erik-loeffler@users.noreply.github.com> Date: Fri, 26 Aug 2022 15:01:14 +0200 Subject: Added reference to modified dot product to solution properties. --- buch/papers/sturmliouville/eigenschaften.tex | 20 ++++++++++++++++---- 1 file changed, 16 insertions(+), 4 deletions(-) diff --git a/buch/papers/sturmliouville/eigenschaften.tex b/buch/papers/sturmliouville/eigenschaften.tex index fc9c3da..2e3d4fd 100644 --- a/buch/papers/sturmliouville/eigenschaften.tex +++ b/buch/papers/sturmliouville/eigenschaften.tex @@ -83,13 +83,25 @@ Um auf die Orthogonalität der Lösungsfunktion zu schliessen, wird dafür der Operator $L$ genauer betrachtet. Analog zur Matrix $A$ aus Abschnitt~\ref{sturmliouville:sec:eigenvalue-problem-matrix} kann auch für -$L$ gezeigt werden, dass dieser Operator selbstadjungiert ist, also dass +$L$ gezeigt werden, dass dieser Operator selbstadjungiert ist. + +Dazu wird das modifizierte Skalarprodukt +\begin{equation} + \label{sturmliouville:eq:modified-dot-product} + \langle f, g \rangle_w + = + \int_a^b f(x)g(x)w(x)\,dx +\end{equation} +aus Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} verwendet, +welches auch die Gewichtsfunktion $w(x)$ berücksichtigt. +Damit $L$ bezüglich dieses Skalarproduktes selbstadjungiert ist, muss also \[ - \langle L u, v\rangle + \langle L u, v\rangle_w = - \langle u, L v\rangle + \langle u, L v\rangle_w \] -gilt. +gelten. + Wie in Kapitel~\ref{buch:integrale:subsection:sturm-liouville-problem} bereits gezeigt, ist dies durch die Randbedingungen~\eqref{sturmliouville:eq:randbedingungen} des -- cgit v1.2.1