From 2400bd7fe87b268a8bb10ab503c3e0948c4dd6f2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 17:18:14 +0200 Subject: Einleitung fertig --- .../000-einleitung/speziellefunktionen.tex | 150 +++++++++++++++++++++ 1 file changed, 150 insertions(+) create mode 100644 buch/chapters/000-einleitung/speziellefunktionen.tex (limited to 'buch/chapters/000-einleitung/speziellefunktionen.tex') diff --git a/buch/chapters/000-einleitung/speziellefunktionen.tex b/buch/chapters/000-einleitung/speziellefunktionen.tex new file mode 100644 index 0000000..8ca71bc --- /dev/null +++ b/buch/chapters/000-einleitung/speziellefunktionen.tex @@ -0,0 +1,150 @@ +% +% Spezielle Funktionen +% +\subsection*{Spezielle Funktionen} +Der abstrakte Funktionsbegriff auferlegt einer Funktion nur ganz wenige +Einschränkungen. +Damit lässt sich zwar eine mathematische Theorie entwickeln, die +klärt, unter welchen Umständen zusätzliche Eigenschaften wie Stetigkeit +und Differenzierbarkeit zu erwarten sind. +Allgemeine Berechnungen kann man mit diesem Begriff aber nicht durchführen, +seine Anwendbarkeit ist beschränkt. +Praktisch nützlich wird der Funktionsbegriff also erst, wenn man ihn +einschränkt auf anwendungsrelevante Eigenschaften. +Die Mathematik hat in ihrer Geschichte genau dies immer wieder +getan, wie im Folgenden kurz skizziert werden soll. + +% +% Polynome und Wurzeln +% +\subsubsection{Polynome und Wurzeln} +Eine Polynomgleichung wie etwa +\begin{equation} +p(x) = ax^2+bx+c = 0 +\label{buch:einleitung:quadratisch} +\end{equation} +kann manchmal dadurch gelöst werden, dass man die Nullstellen errät +und damit eine Faktorisierung $p(x)=a(x-x_1)(x-x_2)$ konstruiert. +Doch im Allgemeinen wird man die Lösungsformel für quadratische +Gleichungen verwenden, die auf quadratischem Ergänzen basiert. +Es erlaubt die Gleichung~\eqref{buch:einleitung:quadratisch} umzwandeln in +\[ +\biggl(x + \frac{b}{2a}\biggr)^2 += +-\frac{c}{a} + \frac{b^2}{4a^2} += +\frac{b^2-4ac}{4a^2}. +\] +Um diese Gleichung nach $x$ aufzulösen, muss man die inverse Funktion +der Quadratfunktion zur Verfügung haben, die Wurzelfunktion. +Dies ist wohl das älteste Beispiel einer speziellen Funktion, +die man zu dem Zweck eingeführt hat, spezielle algebraische Gleichungen +lösen zu können. +Sie liefert die bekannte Lösungsformel +\[ +x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} +\] +für die quadratische Gleichung. + +% +% Exponential- und Logarithmusfunktion +% +\subsubsection{Exponential- und Logarithmusfunktion} +Durch die Definition der Wurzelfunktion ist das Problem der numerischen +Berechnung der Nullstelle natürlich noch nicht gelöst, aber man hat +ein handliches mathematisches Symbol gewonnen, mit dem man die Lösungen +übersichtlich beschreiben und algebraisch manipulieren kann. +Diese Idee steht hinter allen weiteren in diesem Buch diskutierten +Funktionen: wann immer ein wichtiges mathematisches Konzept sich nicht +direkt durch die bereits entwickelten Funktionen ausdrücken lässt, +erfindet man dafür eine neue Funktion oder Familie von Funktionen. +Beispielsweise hat sich die Darstellung von Zahlen $x$ als Potenzen +einer gemeinsamen Basis, zum Beispiel $x=10^y$, als sehr nützlich +herausgestellt, um Multiplikationen auf die von Hand leichter +ausführbaren Additionen zurückzuführen. +Man braucht also die Fähigkeit, die Abhängigkeit des Exponenten $y$ +von $x$ auszudrücken, mit anderen Worten, man braucht die +Logarithmusfunktion. + +Auch die Logarithmusfunktion erlaubt nicht, die Gleichungen $xe^x=y$ +nach $x$ aufzulösen. +Solche Exponentialgleichungen treten in verschiedenster Form auch in +Anwendungen auf. +Die Lambert-$W$-Funktion, die in Abschnitt~\ref{buch:section:lambertw} +eingeführt wird, löst genau diese Aufgabe. + + +% +% Geometrisch definierte spezielle Funktionen +% +\subsubsection{Geometrisch definierte spezielle Funktionen} +Die trigonometrischen Funktionen entstanden bereits im Altertum +um das Problem der Vermessung der Himmelskugel zu lösen. +Man kann sie aber auch zur Parametrisierung eines Kreises oder +zur Beschreibung von Drehungen mit Drehmatrizen verwenden. +Sie stellen auch eine Zusammenhang zwischen der Bogenlänge +entlang eines Kreises und der zugehörigen Sehne her. +Diese Ideen lassen sich auf eine grössere Klasse von Kurven, +nämlich die Kegelschnitte verallgemeinern. +Diese werden in Kapitel~\ref{buch:chapter:geometrie} eingeführt. +Die Parametrisierungen der Hyperbeln zum Beispiel führt auf +hyperbolische Funktion und macht eine Verbindung zu Exponential- +und Logarithmusfunktion sichtbar. + +% +% Lösungen von Differentialgleichungen +% +\subsubsection{Lösungen von Differentialgleichungen} +Alternativ kann man $\sin x$ und $\cos x$ als spezielle Lösungen der +Differentialgleichung $y''=-y$ verstehen. +Viele andere Funktionen wie die hyperbolischen Funktionen oder die +Bessel-Funktionen sind ebenfalls Lösungen spezieller Differentialgleichungen. + +Auch die Theorie der partiellen Differentialgleichungen, auf die +im Kapitel~\ref{buch:chapter:pde} eingegangen wird, gibt Anlass +zu interessanten Lösungsfunktionen. +Die Separation des Poisson-Problems in Kugelkoordinaten führt zum Beispiel +auf die Kugelfunktionen, mit denen sich beliebige Funktionen auf einer +Kugeloberfläche analysieren und synthetisieren lassen. +Die Lösungen einer linearer gewöhnlicher Differentialgleichung können +oft mit Hilfe von Potenzreihen dargestellt werden. +So kann man zum Beispiel die Potenzreihenentwicklung der Exponentialfunktion +und der trigonometrischen Funktionen finden. +Die Konvergenz einer Potenzreihe wird aber durch Singularitäten +eingeschränkt. +Komplexe Potenzreihen ermöglichen aber, solche Stellen zu ``umgehen''. +Die Theorie der komplex differenzierbaren Funktionen bildet einen +allgemeinen Rahmen, mit solchen Funktionen umzugehen und ist zum +Beispiel nötig, um die Bessel-Funktionen der zweiten Art zu konstruieren, +die ebenfalls Lösungen ger Bessel-Gleichung sind, aber bei $x=0$ +eine Singularität aufweisen. + +% +% Stammfunktionen +% +\subsubsection{Stammfunktionen} +Die Stammfunktion $F(x)$ einer gegebenen Funktion $f(x)$ ist natürlich +auch die Lösung der besonders einfachen Differentialgleichung $F'=f$. +Ein bekanntes Beispiel ist die Stammfunktion der Wahrscheinlichkeitsdichte +\[ +\varphi(x) += +\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, +\] +der Normalverteilung, für die aber keine geschlossene Darstellung +mit bekannten Funktionen bekannt ist. +Sie kann aber durch die Fehlerfunktion +\[ +\operatorname{erf}(x) += +\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2}\,dt +\] +dargestellt werden. +Mit dem Risch-Algorithmus kann man nachweisen, dass es tatsächlich +keine Möglichkeit gibt, die Stammfunktion in geschlossener Form durch +die bereits bekannten Funktionen darzustellen, die Definition einer +neuen speziellen Funktion ist also der einzige Ausweg. +Die Fehlerfunktion ist heute in der Standardbibliothek enthalten auf +gleicher Stufe wie Wurzeln, trigonometrische Funktionen, +Exponentialfunktionen oder Logarithmen. + -- cgit v1.2.1