From 07724dd7774994996b3dc1b2955ef9a30cb59a44 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 16 Jun 2022 21:47:35 +0200 Subject: more complete chapter 1 --- buch/chapters/010-potenzen/polynome.tex | 93 ++++++++++++++++++++++++++++++++- 1 file changed, 92 insertions(+), 1 deletion(-) (limited to 'buch/chapters/010-potenzen/polynome.tex') diff --git a/buch/chapters/010-potenzen/polynome.tex b/buch/chapters/010-potenzen/polynome.tex index 2086078..9edb012 100644 --- a/buch/chapters/010-potenzen/polynome.tex +++ b/buch/chapters/010-potenzen/polynome.tex @@ -83,6 +83,22 @@ ebenfalls als Approximationen dienen können. Weitere Möglichkeiten liefern Interpolationsmethoden der numerischen Mathematik. +Diese Betrachtungsweise von Polynomen als Funktionen trägt +aber den zusätzlichen algebraischen Eigenschaften des Polynomringes +nicht ausreichend Rechnung. +Zum Beispiel bedeutet Gleichheit von zwei reellen Funktion $f(x)$ und +$g(x)$, dass man $f(x)=g(x)$ für alle $x\in\mathbb{R}$ nachprüfen +muss. +Für Polynome reicht es jedoch, die Funktionswerte in nur wenigen +Punkten zu vergleichen. +Dies äussert sich zum Beispiel auch im Prinzip des +Koeffizientenvergleichs von +Satz~\ref{buch:polynome:satz:koeffizientenvergleich}. +Im Gegensatz zu beliebigen Funktionen kann man daher Aussagen +über Polynomen immer mit endlich Algorithmen entscheiden. +Die nächsten Abschnitte sollen diese algebraischen Eigenschaften +zusammenfassen. + % % Polynomdivision, Teilbarkeit und ggT % @@ -287,7 +303,8 @@ gilt. % % Faktorisierung und Nullstellen % -\subsection{Faktorisierung und Nullstellen} +\subsection{Faktorisierung und Nullstellen +\label{buch:polynome:subsection:faktorisierung-und-nullstellen}} % wird später gebraucht um bei der Definition der hypergeometrischen Reihe % die Zaehler- und Nenner-Polynome als Pochhammer-Symbole zu entwickeln Ist $\alpha$ eine Nullstelle des Polynoms $a(x)$, also $a(\alpha)=0$. @@ -318,6 +335,21 @@ r(\alpha), der Rest $r(x)$ muss also verschwinden. Für eine Nullstelle $\alpha$ von $a(x)$ ist $a(x)$ durch $(x-\alpha)$ teilbar. +Daraus folgt auch, dass ein Polynom $a(x)$ vom Grad $n=\deg a(x)$ höchstens +$n$ verschiedene Nullstellen haben kann. + +Sind $\alpha_1,\dots,\alpha_k$ alle Nullstellen von $a(x)$, dann lässt +sich $a(x)$ zerlegen in Faktoren +\[ +a(x) += +(x-\alpha_1)^{m_1} +(x-\alpha_2)^{m_2} +\cdots +(x-\alpha_k)^{m_k} +b(x). +\] +Das Polynom $b(x)\in K[x]$ hat keine Nullstellen in $K$. Wenn zwei Polynome $a(x)$ und $b(x)$ eine gemeinsame Nullstelle $\alpha$ haben, dann ist $(x-\alpha)$ ein Teiler beider Polynome und somit auch @@ -331,7 +363,66 @@ gemeinsame Nullstellen von $a(x)$ und $b(x)$. \subsection{Koeffizienten-Vergleich} % Wird gebraucht für die Potenzreihen-Methode % Muss später ausgedehnt werden auf Potenzreihen +Wenn zwei Polynome $a(x)$ und $b(x)$ vom Grad $\le n$ die gleichen +Koeffizienten haben, dann sind sie selbstverständlich gleich. +Weniger klar ist, ob zwei Polynome, die die gleichen Werte für beliebige +$x$ haben, auch die gleichen Koeffizienten haben. +Wir nehmen also an, dass $a(x)=b(x)$ gilt für jedes $x\in K$ und +wollen daraus ableiten, dass die Koeffizienten übereinstimmen müssen. +Seien $x_1,\dots,x_n$ verschiedene Elemente in $K$, dann +hat das Polynom $p(x)=a(x)-b(x)$, welches Grad $\le n$ hat, +die $n$ Nullstellen $x_k$ für $k=1,\dots,n$. +$p(x)$ ist also durch alle Polynome $x-x_k$ teilbar. +Weil $\deg p\le n$ ist, muss +\[ +0 += +a(x)-b(x) += +p(x) += +p_n +(x-x_1)(x-x_2)\cdots (x-x_n) +\] +sein. +Ist $y\in K$ verschieden von den Nullstellen $x_i$, dann ist +in $y-x_i\ne 0$ für alle $i$. +Für das Produkt gilt dann +\[ +0 += +p(y) += +p_n +(\underbrace{x-x_1}_{\displaystyle \ne 0}) +\cdots +(\underbrace{x-x_n}_{\displaystyle \ne 0}), +\] +so dass $p_n=0$ sein muss, was schliesslich dazu führt, dass alle +Koeffizienten von $a(x)-b(x)$ verschwinden. +Daraus folgt das Prinzip des Koeffizientenvergleichs: + +\begin{satz}[Koeffizientenvergleich] +\label{buch:polynome:satz:koeffizientenvergleich} +Zwei Polynome $a(x)$ und $b(x)$ stimmen genau dann überein, wenn +sie die gleichen Koeffizienten haben. +\end{satz} +Man beachte, dass dieses Prinzip nur funktioniert, wenn es genügend +viele verschiedene Elemente in $K$ gibt. +Für die endlichen Körper $\mathbb{F}_p$ gilt dies nicht, denn es gilt +\[ +a(x) += +x^p-x\equiv 0\mod p +\] +für jede Zahl $x\in\mathbb{F}_p$, das Polynom $a(x)$ mit Grad $p$ +hat also genau $p$ Nullstellen, es gibt aber keine weitere Nullstelle, +mit der man wie oben schliessen könnte, dass $a(x)$ das Nullpolynom ist. + +% +% Berechnung von Polynom-Werten +% \subsection{Berechnung von Polynom-Werten} Die naive Berechnung der Werte eines Polynoms $p(x)$ vom Grad $n$ beginnt mit der Berechnung der Potenzen von $x$. -- cgit v1.2.1