From 931871e8c8e9b266b9b626d816a803bbd2c56653 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 20:55:53 +0200 Subject: more index stuff --- buch/chapters/010-potenzen/polynome.tex | 13 +++++++++++++ 1 file changed, 13 insertions(+) (limited to 'buch/chapters/010-potenzen/polynome.tex') diff --git a/buch/chapters/010-potenzen/polynome.tex b/buch/chapters/010-potenzen/polynome.tex index 9edb012..ce5e521 100644 --- a/buch/chapters/010-potenzen/polynome.tex +++ b/buch/chapters/010-potenzen/polynome.tex @@ -19,6 +19,7 @@ wobei $a_n\ne 0$ sein muss. Das Polynom heisst {\em normiert}, wenn $a_n=1$ ist. \index{normiert}% \index{Grad eines Polynoms}% +\index{Polynom!Grad}% Die Menge aller Polynome mit Koeffizienten in der Menge $K$ wird mit $K[x]$ bezeichnet. \end{definition} @@ -65,6 +66,8 @@ Berechnungsverfahren für die speziellen Funktionen zu konstruieren. Dank des folgenden Satzes kann dies immer mit Polynomen geschehen. \begin{satz}[Weierstrass] +\index{Satz!Weierstrass}% +\index{Weierstrasse, Karl}% \label{buch:potenzen:satz:weierstrass} \index{Weierstrass, Satz von}% Eine auf einem kompakten Intervall $[a,b]$ stetige Funktion $f(x)$ @@ -74,7 +77,9 @@ approximieren. Der Satz sagt in dieser Form nichts darüber aus, wie die Approximationspolynome konstruiert werden sollen. +\index{Approximationspolynom}% Von Bernstein gibt es konstruktive Beweise dieses Satzes, +\index{Bernstein-Polynom}% welche auch explizit eine Folge von Approximationspolynomen konstruieren. In der späteren Entwicklung werden wir für die meisten @@ -127,6 +132,7 @@ Ein gemeinsamer Teiler zweier Polynome $a(x)$ und $b(x)$ ist ein Polynom $g(x)$, welches beide Polynome teilt, also $g(x)\mid a(x)$ und $g(x)\mid b(x)$. \index{grösster gemeinsamer Teiler}% +\index{Polynome!grösster gemeinsamer Teiler}% Ein Polynom $g(x)$ heisst {\em grösster gemeinsamer Teiler} von $a(x)$ und $b(x)$, wenn jeder andere gemeinsame Teiler $f(x)$ von $a(x)$ und $b(x)$ auch ein Teiler von $g(x)$ ist. @@ -180,6 +186,9 @@ Dann ist $g(x)=r_{m-1}(x)$ ein grösster gemeinsamer Teiler. % Der erweiterte euklidische Algorithmus % \subsubsection{Der erweiterte euklidische Algorithmus} +\index{Polynome!erweiterter euklidischer Algorithmus}% +\index{erweiterter euklidischer Algorithmus}% +\index{euklidischer Algorithmus!erweitert}% Die Konstruktion der Folgen $a_n(x)$ und $b_n(x)$ kann in Matrixform kompakter geschrieben werden als \[ @@ -401,8 +410,11 @@ p_n so dass $p_n=0$ sein muss, was schliesslich dazu führt, dass alle Koeffizienten von $a(x)-b(x)$ verschwinden. Daraus folgt das Prinzip des Koeffizientenvergleichs: +\index{Koeffizientenvergleich}% +\index{Polynome!Koeffizientenvergleich}% \begin{satz}[Koeffizientenvergleich] +\index{Satz!Koeffizientenvergleich}% \label{buch:polynome:satz:koeffizientenvergleich} Zwei Polynome $a(x)$ und $b(x)$ stimmen genau dann überein, wenn sie die gleichen Koeffizienten haben. @@ -436,6 +448,7 @@ und $n$ Additionen. Die Anzahl nötiger Multiplikationen kann mit dem folgenden Vorgehen reduziert werden, welches auch als das {\em Horner-Schema} bekannt ist. \index{Horner-Schema}% +\index{Polynome!Horner-Schema}% Statt erst am Schluss alle Terme zu addieren, addiert man so früh wie möglich. Zum Beispiel multipliziert man $(a_nx+a_{n-1})$ mit $x$, was auf -- cgit v1.2.1