From 76667638d447ccdc012590a3ce98235cc9d31035 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 9 Jan 2022 17:48:40 +0100 Subject: new stuff on tschebyscheff and conic sections --- buch/chapters/010-potenzen/tschebyscheff.tex | 280 ++++++++++++++++++++++++++- 1 file changed, 277 insertions(+), 3 deletions(-) (limited to 'buch/chapters/010-potenzen/tschebyscheff.tex') diff --git a/buch/chapters/010-potenzen/tschebyscheff.tex b/buch/chapters/010-potenzen/tschebyscheff.tex index be78967..ca6100b 100644 --- a/buch/chapters/010-potenzen/tschebyscheff.tex +++ b/buch/chapters/010-potenzen/tschebyscheff.tex @@ -12,6 +12,280 @@ Sie ermöglichen, Interpolationspolynome mit besonders guten Fehlereigenschaften zu finden, haben aber auch andere Anwendungen zum Beispiel beim Design von Filtern in der Elektronik. -\subsection{Motivation} -\subsection{Rekursionsbeziehung} -\subsection{Anwendung: Interpolation} +\subsection{Motivation: Interpolation} +Nach dem Satz von Weierstrass~\ref{buch:potenzen:satz:weierstrass} +lässt sich jede stetige Funktion auf einem kompakten Intervall durch +ein Polynom approximieren. + +\subsubsection{Lagrange-Interplationspolynome} +Eine mögliche Lösung des Problems, solche approximierenden Polynome +der Funktion $f(x)$ +zu finden, besteht darin, ein Polynom $p(x)$ zu konstruieren, welches +in einzelnen, Stützstellen genannten Werten $x_0m$ ist. +In solchen Fällen ist aber $T_{-n}(x)$ als +\[ +T_{-n}(x) += +\cos(-n\arccos(x)) += +\cos(n\arccos(x)) += +T_n(x), +\] +da die Kosinus-Funktion gerade ist. + +\begin{proof}[Beweis] +Zunächst ist wieder mit der Abkürzung $t=\arccos x$ +\begin{align*} +T_m(x)T_n(x) +&= +\cos mt \cos nt += +\frac12\bigl(\cos((m+n)t)+\cos((m-n)t)\bigr) += +\frac12\bigl( +T_{m+n}(x) + T_{m-n}(x) +\bigr), +\end{align*} +dies beweist~\eqref{buch:potenzen:tschebyscheff:mult1}. + +Für \eqref{buch:potenzen:tschebyscheff:mult2} rechnet man +\[ +T_m(T_n(x)) += +\underbrace{\cos(m\arccos(}_{\displaystyle T_m(}\underbrace{\cos(n\arccos x)}_{\displaystyle T_n(x)}\underbrace{))}_{\displaystyle)} += +\cos(mn\arccos x) += +T_{mn}(x). +\] +Damit ist auch \eqref{buch:potenzen:tschebyscheff:mult2} bewiesen. +\end{proof} + + -- cgit v1.2.1