From 4764f8b481629a2f733c6025ec66a34a31d50222 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 16 Jun 2022 20:01:13 +0200 Subject: more on polynomials --- buch/chapters/010-potenzen/polynome.tex | 61 ++++++++++++++++++++++++++++++++- 1 file changed, 60 insertions(+), 1 deletion(-) (limited to 'buch/chapters/010-potenzen') diff --git a/buch/chapters/010-potenzen/polynome.tex b/buch/chapters/010-potenzen/polynome.tex index 981e444..2086078 100644 --- a/buch/chapters/010-potenzen/polynome.tex +++ b/buch/chapters/010-potenzen/polynome.tex @@ -24,6 +24,7 @@ $K[x]$ bezeichnet. \end{definition} Die Menge $K[x]$ ist heisst auch der {\em Polynomring}, weil $K[x]$ +\index{Polynomring}% mit der Addition, Subtraktion und Multiplikation von Polynomen eine algebraische Struktur bildet, die man einen Ring mit $1$ nennt. \index{Ring}% @@ -82,32 +83,47 @@ ebenfalls als Approximationen dienen können. Weitere Möglichkeiten liefern Interpolationsmethoden der numerischen Mathematik. +% +% Polynomdivision, Teilbarkeit und ggT +% \subsection{Polynomdivision, Teilbarkeit und grösster gemeinsamer Teiler} Der schriftliche Divisionsalgorithmus für Zahlen funktioniert auch für die Division von Polynomen. +\index{Polynome!Divisionsalgorithmus}% Zu zwei beliebigen Polynomen $p(x)$ und $q(x)$ lassen sich also immer zwei Polynome $a(x)$ und $r(x)$ finden derart, dass $p(x) = a(x) q(x) + r(x)$. Das Polynom $a(x)$ heisst der {\em Quotient}, $r(x)$ der {\em Rest} der Division. Das Polynom $p(x)$ heisst {\em teilbar} durch $q(x)$, geschrieben +\index{teilbar}% +\index{Polynome!teilbar}% $q(x)\mid p(x)$, wenn $r(x)=0$ ist. +% +% Grösster gemeinsamer Teiler +% \subsubsection{Grösster gemeinsamer Teiler} Mit dem Begriff der Teilbarkeit geht auch die Idee des grössten gemeinsamen Teilers einher. Ein gemeinsamer Teiler zweier Polynome $a(x)$ und $b(x)$ +\index{gemeinsamer Teiler}% ist ein Polynom $g(x)$, welches beide Polynome teilt, also $g(x)\mid a(x)$ und $g(x)\mid b(x)$. \index{grösster gemeinsamer Teiler}% -Ein Polynome $g(x)$ heisst grösster gemeinsamer Teiler von $a(x)$ +Ein Polynom $g(x)$ heisst {\em grösster gemeinsamer Teiler} von $a(x)$ und $b(x)$, wenn jeder andere gemeinsame Teiler $f(x)$ von $a(x)$ und $b(x)$ auch ein Teiler von $g(x)$ ist. Man beachte, dass die skalaren Vielfachen eines grössten gemeinsamen Teilers ebenfalls grösste gemeinsame Teiler sind, der grösste gemeinsame Teiler ist also nicht eindeutig bestimmt. +% +% Der euklidische Algorithmus +% \subsubsection{Der euklidische Algorithmus} +\index{Algorithmus!euklidisch}% +\index{euklidischer Algorithmus}% Zur Berechnung eines grössten gemeinsamen Teilers steht wie bei den ganzen Zahlen der euklidische Algorithmus zur Verfügung. Dazu bildet man die Folgen von Polynomen @@ -144,6 +160,9 @@ a_m(x)&=b_m(x)q_m(x).&& Der Index $m$ ist der Index, bei dem zum ersten Mal $r_m(x)=0$ ist. Dann ist $g(x)=r_{m-1}(x)$ ein grösster gemeinsamer Teiler. +% +% Der erweiterte euklidische Algorithmus +% \subsubsection{Der erweiterte euklidische Algorithmus} Die Konstruktion der Folgen $a_n(x)$ und $b_n(x)$ kann in Matrixform kompakter geschrieben werden als @@ -265,10 +284,50 @@ g(x) = c(x)a(x)+d(x)b(x) gilt. \end{satz} +% +% Faktorisierung und Nullstellen +% \subsection{Faktorisierung und Nullstellen} % wird später gebraucht um bei der Definition der hypergeometrischen Reihe % die Zaehler- und Nenner-Polynome als Pochhammer-Symbole zu entwickeln +Ist $\alpha$ eine Nullstelle des Polynoms $a(x)$, also $a(\alpha)=0$. +Der Divisionsalgorithmus mit für die Polynome $a(x)$ und $b(x)=x-\alpha$ +liefert zwei Polynome $q(x)$ für den Quotienten und $r(x)$ für den Rest +mit den Eigenschaften +\[ +a(x) += +q(x) b(x) ++r(x) += +q(x)(x-\alpha)+r(x) +\qquad\text{mit}\qquad +\deg r < \deg b(x)=1. +\] +Der Rest $r(x)$ ist somit eine Konstante. +Setzt man $x=\alpha$ ein, folgt +\[ +0 += +a(\alpha) += +q(\alpha)(\alpha-\alpha)+r(\alpha) += +r(\alpha), +\] +der Rest $r(x)$ muss also verschwinden. +Für eine Nullstelle $\alpha$ von $a(x)$ ist $a(x)$ durch $(x-\alpha)$ +teilbar. +Wenn zwei Polynome $a(x)$ und $b(x)$ eine gemeinsame Nullstelle $\alpha$ +haben, dann ist $(x-\alpha)$ ein Teiler beider Polynome und somit auch +ein Teiler eines grössten gemeinsamer Teiler. +Insbesondere sind die Nullstellen des grössten gemeinsamen Teilers +gemeinsame Nullstellen von $a(x)$ und $b(x)$. + +% +% Koeffizienten-Vergleich +% \subsection{Koeffizienten-Vergleich} % Wird gebraucht für die Potenzreihen-Methode % Muss später ausgedehnt werden auf Potenzreihen -- cgit v1.2.1