From 4764f8b481629a2f733c6025ec66a34a31d50222 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 16 Jun 2022 20:01:13 +0200 Subject: more on polynomials --- buch/chapters/010-potenzen/polynome.tex | 61 ++++++++++++++++++++++++++++++++- 1 file changed, 60 insertions(+), 1 deletion(-) (limited to 'buch/chapters/010-potenzen') diff --git a/buch/chapters/010-potenzen/polynome.tex b/buch/chapters/010-potenzen/polynome.tex index 981e444..2086078 100644 --- a/buch/chapters/010-potenzen/polynome.tex +++ b/buch/chapters/010-potenzen/polynome.tex @@ -24,6 +24,7 @@ $K[x]$ bezeichnet. \end{definition} Die Menge $K[x]$ ist heisst auch der {\em Polynomring}, weil $K[x]$ +\index{Polynomring}% mit der Addition, Subtraktion und Multiplikation von Polynomen eine algebraische Struktur bildet, die man einen Ring mit $1$ nennt. \index{Ring}% @@ -82,32 +83,47 @@ ebenfalls als Approximationen dienen können. Weitere Möglichkeiten liefern Interpolationsmethoden der numerischen Mathematik. +% +% Polynomdivision, Teilbarkeit und ggT +% \subsection{Polynomdivision, Teilbarkeit und grösster gemeinsamer Teiler} Der schriftliche Divisionsalgorithmus für Zahlen funktioniert auch für die Division von Polynomen. +\index{Polynome!Divisionsalgorithmus}% Zu zwei beliebigen Polynomen $p(x)$ und $q(x)$ lassen sich also immer zwei Polynome $a(x)$ und $r(x)$ finden derart, dass $p(x) = a(x) q(x) + r(x)$. Das Polynom $a(x)$ heisst der {\em Quotient}, $r(x)$ der {\em Rest} der Division. Das Polynom $p(x)$ heisst {\em teilbar} durch $q(x)$, geschrieben +\index{teilbar}% +\index{Polynome!teilbar}% $q(x)\mid p(x)$, wenn $r(x)=0$ ist. +% +% Grösster gemeinsamer Teiler +% \subsubsection{Grösster gemeinsamer Teiler} Mit dem Begriff der Teilbarkeit geht auch die Idee des grössten gemeinsamen Teilers einher. Ein gemeinsamer Teiler zweier Polynome $a(x)$ und $b(x)$ +\index{gemeinsamer Teiler}% ist ein Polynom $g(x)$, welches beide Polynome teilt, also $g(x)\mid a(x)$ und $g(x)\mid b(x)$. \index{grösster gemeinsamer Teiler}% -Ein Polynome $g(x)$ heisst grösster gemeinsamer Teiler von $a(x)$ +Ein Polynom $g(x)$ heisst {\em grösster gemeinsamer Teiler} von $a(x)$ und $b(x)$, wenn jeder andere gemeinsame Teiler $f(x)$ von $a(x)$ und $b(x)$ auch ein Teiler von $g(x)$ ist. Man beachte, dass die skalaren Vielfachen eines grössten gemeinsamen Teilers ebenfalls grösste gemeinsame Teiler sind, der grösste gemeinsame Teiler ist also nicht eindeutig bestimmt. +% +% Der euklidische Algorithmus +% \subsubsection{Der euklidische Algorithmus} +\index{Algorithmus!euklidisch}% +\index{euklidischer Algorithmus}% Zur Berechnung eines grössten gemeinsamen Teilers steht wie bei den ganzen Zahlen der euklidische Algorithmus zur Verfügung. Dazu bildet man die Folgen von Polynomen @@ -144,6 +160,9 @@ a_m(x)&=b_m(x)q_m(x).&& Der Index $m$ ist der Index, bei dem zum ersten Mal $r_m(x)=0$ ist. Dann ist $g(x)=r_{m-1}(x)$ ein grösster gemeinsamer Teiler. +% +% Der erweiterte euklidische Algorithmus +% \subsubsection{Der erweiterte euklidische Algorithmus} Die Konstruktion der Folgen $a_n(x)$ und $b_n(x)$ kann in Matrixform kompakter geschrieben werden als @@ -265,10 +284,50 @@ g(x) = c(x)a(x)+d(x)b(x) gilt. \end{satz} +% +% Faktorisierung und Nullstellen +% \subsection{Faktorisierung und Nullstellen} % wird später gebraucht um bei der Definition der hypergeometrischen Reihe % die Zaehler- und Nenner-Polynome als Pochhammer-Symbole zu entwickeln +Ist $\alpha$ eine Nullstelle des Polynoms $a(x)$, also $a(\alpha)=0$. +Der Divisionsalgorithmus mit für die Polynome $a(x)$ und $b(x)=x-\alpha$ +liefert zwei Polynome $q(x)$ für den Quotienten und $r(x)$ für den Rest +mit den Eigenschaften +\[ +a(x) += +q(x) b(x) ++r(x) += +q(x)(x-\alpha)+r(x) +\qquad\text{mit}\qquad +\deg r < \deg b(x)=1. +\] +Der Rest $r(x)$ ist somit eine Konstante. +Setzt man $x=\alpha$ ein, folgt +\[ +0 += +a(\alpha) += +q(\alpha)(\alpha-\alpha)+r(\alpha) += +r(\alpha), +\] +der Rest $r(x)$ muss also verschwinden. +Für eine Nullstelle $\alpha$ von $a(x)$ ist $a(x)$ durch $(x-\alpha)$ +teilbar. +Wenn zwei Polynome $a(x)$ und $b(x)$ eine gemeinsame Nullstelle $\alpha$ +haben, dann ist $(x-\alpha)$ ein Teiler beider Polynome und somit auch +ein Teiler eines grössten gemeinsamer Teiler. +Insbesondere sind die Nullstellen des grössten gemeinsamen Teilers +gemeinsame Nullstellen von $a(x)$ und $b(x)$. + +% +% Koeffizienten-Vergleich +% \subsection{Koeffizienten-Vergleich} % Wird gebraucht für die Potenzreihen-Methode % Muss später ausgedehnt werden auf Potenzreihen -- cgit v1.2.1 From 07724dd7774994996b3dc1b2955ef9a30cb59a44 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 16 Jun 2022 21:47:35 +0200 Subject: more complete chapter 1 --- buch/chapters/010-potenzen/loesbarkeit.tex | 68 ++++++++++++++++++++++ buch/chapters/010-potenzen/polynome.tex | 93 +++++++++++++++++++++++++++++- 2 files changed, 160 insertions(+), 1 deletion(-) (limited to 'buch/chapters/010-potenzen') diff --git a/buch/chapters/010-potenzen/loesbarkeit.tex b/buch/chapters/010-potenzen/loesbarkeit.tex index 692192d..f93a84b 100644 --- a/buch/chapters/010-potenzen/loesbarkeit.tex +++ b/buch/chapters/010-potenzen/loesbarkeit.tex @@ -20,8 +20,21 @@ für ein Polynome $p(x)$ und eine Konstante $c\in\mathbb{C}$. % Fundamentalsatz der Algebra % \subsection{Fundamentalsatz der Algebra} +In Abschnitt~\ref{buch:polynome:subsection:faktorisierung-und-nullstellen} +wurde gezeigt, dass sich jede Nullstellen $\alpha$ eines Polynoms als +Faktor $x-\alpha$ abspalten lässt. +Jedes Polynom liess sich in ein Produkt von Linearfaktoren und +einen Faktor zerlegen, der keine Nullstellen hat. +Zum Beispiel hat das Polynom $x^2+1\in\mathbb{R}[x]$ keine +Nullstellen in $\mathbb{R}$. +Eine solche Nullstelle müsste eine Quadratwurzel von $-1$ sein. +Die komplexen Zahlen $\mathbb{C}$ wurden genau mit dem Ziel konstruiert, +dass $i=\sqrt{-1}$ sinnvoll wird. +Der Fundamentalsatz der Algebra zeigt, dass $\mathbb{C}$ alle +Nullstellen von Polynomen enthält. \begin{satz}[Gauss] +\index{Fundamentalsatz der Algebra}% \label{buch:potenzen:satz:fundamentalsatz} Jedes Polynom $p(x)=a_nx^n+\dots + a_2x^2 + a_1x + a_0\in\mathbb{C}[x]$ zerfällt in ein Produkt @@ -34,6 +47,7 @@ a_n für Nullstellen $\alpha_k\in\mathbb{C}$. \end{satz} + % % Lösbarkeit durch Wurzelausdrücke % @@ -148,3 +162,57 @@ Für Polynomegleichungen vom Grad $n\ge 5$ gibt es keine allgemeine Lösung durch Wurzelausdrücke. \end{satz} + + +% +% Algebraische Zahlen +% +\subsection{Algebraische Zahlen} +Die Verwendung der komplexen Zahlen ist für numerische Rechnungen +zweckmässig. +In den Anwendungen der Computer-Algebra hingegen erwartet man zum +Beispiel exakte Formeln für eine Stammfunktion. +Nicht rationale Zahlen können nur exakt verarbeitet werden, wenn +Sie sich algebraisch in endlich vielen Schritten charakterisieren +lassen. +Dies ist zum Beispiel für rationale Zahlen $\mathbb{Q}$ möglich. +Gewisse irrationale Zahlen kann man charakterisieren durch +die Eigenschaft, Nullstelle eines Polynoms $p(x)\in\mathbb{Q}[x]$ +mit rationalen Koeffizienten zu sein. + +\begin{definition} +Eine Zahl $\alpha$ heisst {\em algebraisch} über $\mathbb{Q}$, +wenn es ein Polynom +\index{algebraische Zahl}% +$p(x)\in \mathbb{Q}[x]$ gibt, welches $\alpha$ als Nullstelle hat. +Eine Zahl heisst transzendent über $\mathbb{Q}$, wenn sie nicht algebraisch ist +über $\mathbb{Q}$. +\end{definition} + +Die Zahlen $i=\sqrt{-1}$ und $\sqrt{n\mathstrut}$ für $n\in\mathbb{N}$ +sind also algebraisch über $\mathbb{Z}$. +Es ist gezeigt worden, dass $\pi$ und $e$ nicht nur irrational +sind, sondern sogar transzendent. + +Eine Polynomgleichung $p(\alpha)=0$ mit $p(x)\in\mathbb{Q}[x]$ +hat eine Rechenregel für $\alpha$ zur Folge. +Dazu schreibt man +\[ +p_n\alpha^n + p_{n-1}\alpha^{n-1} + \dots + a_1\alpha + a_0 =0 +\qquad\Rightarrow\qquad +\alpha^n = -\frac{1}{p_n}\bigl( +p_{n-1}\alpha^{n-1}+\dots+a_1\alpha+a_0 +\bigr). +\] +Diese Regel erlaubt, jede Potenz $\alpha^k$ mit $k\ge n$ durch +Potenzen von $\alpha^l$ mit $l Date: Fri, 17 Jun 2022 11:20:00 +0200 Subject: new section, cleanup --- buch/chapters/010-potenzen/Makefile.inc | 1 + buch/chapters/010-potenzen/chapter.tex | 1 + buch/chapters/010-potenzen/rational.tex | 60 +++++++++++++++++++++++++++++++++ 3 files changed, 62 insertions(+) create mode 100644 buch/chapters/010-potenzen/rational.tex (limited to 'buch/chapters/010-potenzen') diff --git a/buch/chapters/010-potenzen/Makefile.inc b/buch/chapters/010-potenzen/Makefile.inc index 27ccdae..87afe38 100644 --- a/buch/chapters/010-potenzen/Makefile.inc +++ b/buch/chapters/010-potenzen/Makefile.inc @@ -8,6 +8,7 @@ CHAPTERFILES += \ chapters/010-potenzen/loesbarkeit.tex \ chapters/010-potenzen/polynome.tex \ chapters/010-potenzen/tschebyscheff.tex \ + chapters/010-potenzen/rational.tex \ chapters/010-potenzen/potenzreihen.tex \ chapters/010-potenzen/uebungsaufgaben/101.tex \ chapters/010-potenzen/uebungsaufgaben/102.tex \ diff --git a/buch/chapters/010-potenzen/chapter.tex b/buch/chapters/010-potenzen/chapter.tex index 7dc30d4..2628e33 100644 --- a/buch/chapters/010-potenzen/chapter.tex +++ b/buch/chapters/010-potenzen/chapter.tex @@ -40,6 +40,7 @@ Abschnitt~\ref{buch:potenzen:section:potenzreihen} erinnert. \input{chapters/010-potenzen/polynome.tex} \input{chapters/010-potenzen/loesbarkeit.tex} \input{chapters/010-potenzen/tschebyscheff.tex} +\input{chapters/010-potenzen/rational.tex} \input{chapters/010-potenzen/potenzreihen.tex} \section*{Übungsaufgaben} diff --git a/buch/chapters/010-potenzen/rational.tex b/buch/chapters/010-potenzen/rational.tex new file mode 100644 index 0000000..a5612e9 --- /dev/null +++ b/buch/chapters/010-potenzen/rational.tex @@ -0,0 +1,60 @@ +% +% rational.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\section{Rationale Funktionen +\label{buch:polynome:section:rationale-funktionen}} +\rhead{Rationale Funktionen} +Polynome sind sehr einfach auszuwerten und können auf einem +Interval jede stetige Funktion beliebig gut approximieren. +Auf einem unbeschränkten Definitionsbereich wachsen Polynome aber +immer unbeschränkt an. +Der führende Term $a_nx^n$ dominiert das Verhalten eines Polynoms +für $x\to\infty$ wegen +\[ +\lim_{x\to\infty} a_nx^n += +\sign a_n \cdot\infty +\qquad\text{und}\qquad +\lim_{x\to-\infty} a_nx^n += +(-1)^n \sign a_n\cdot \infty. +\] +Insbesondere kann man nicht erwarten, dass sich eine beschränkte +Funktion wie $\sin x$ durch Polynome auf dem ganzen Definitionsbereich +gut approximieren lässt. +Der Unterschied $p(x)-\sin x$ wird für jedes beliebige Polynome $p(x)$ +für $x\to\pm\infty$ unbeschränkt anwachsen. + +Eine weitere Einschränkung ist, dass die Menge der Polynome bezüglich +der arithmetischen Operationen nicht abgeschlossen ist. +Man kann zwar Polynome addieren und multiplizieren, aber der Quotient +ist nicht notwendigerweise ein Polynome. +Abhilfe schafft nur, wenn man Quotienten von Polynomen zulässt. + +\begin{definition} +Eine Funktion $f(x)$ heisst {\em rationale Funktion}, wenn sie Quotient +\index{rationale Funktion}% +zweier Polynome ist, wenn es also Polynome $p(x), q(x)\in K[x]$ gibt mit +\[ +f(x) = \frac{p(x)}{q(x)}. +\] +Die Menge der rationalen Funktione mit Koeffizienten in $K$ wird mit +$K(x)$ bezeichnet. +\end{definition} + +Polynome sind rationale Funktionen, deren Nennergrad $1$ ist. +Rationale Funktionen können ebenfalls zur Approximation von Funktionen +verwendet werden. +Da sie beschränkt sein können, haben sie das Potential, +beschränkte Funktionen besser zu approximieren, als dies mit +Polynomen allein möglich wäre. +Die Theorie der Padé-Approximation, wie sie zum Beispiel im Buch +\cite{buch:pade} dargestellt ist, ist zum Beispiel auch in der +Regelungstechnik von Interesse, da sich rationale Funktionen mit +linearen Komponenten schaltungstechnisch realisieren lassen. +Weitere Anwendungen werden in Kapitel~\ref{chapter:transfer} +gezeigt. + + -- cgit v1.2.1 From 0a24e24dc7b997d054be086aa2c021decf0a01f5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 17 Jun 2022 20:09:36 +0200 Subject: info on rational functions --- buch/chapters/010-potenzen/rational.tex | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) (limited to 'buch/chapters/010-potenzen') diff --git a/buch/chapters/010-potenzen/rational.tex b/buch/chapters/010-potenzen/rational.tex index a5612e9..f1957ac 100644 --- a/buch/chapters/010-potenzen/rational.tex +++ b/buch/chapters/010-potenzen/rational.tex @@ -15,11 +15,11 @@ für $x\to\infty$ wegen \[ \lim_{x\to\infty} a_nx^n = -\sign a_n \cdot\infty +\operatorname{sgn} a_n \cdot\infty \qquad\text{und}\qquad \lim_{x\to-\infty} a_nx^n = -(-1)^n \sign a_n\cdot \infty. +(-1)^n \operatorname{sgn} a_n\cdot \infty. \] Insbesondere kann man nicht erwarten, dass sich eine beschränkte Funktion wie $\sin x$ durch Polynome auf dem ganzen Definitionsbereich @@ -30,7 +30,7 @@ für $x\to\pm\infty$ unbeschränkt anwachsen. Eine weitere Einschränkung ist, dass die Menge der Polynome bezüglich der arithmetischen Operationen nicht abgeschlossen ist. Man kann zwar Polynome addieren und multiplizieren, aber der Quotient -ist nicht notwendigerweise ein Polynome. +ist nicht notwendigerweise ein Polynom. Abhilfe schafft nur, wenn man Quotienten von Polynomen zulässt. \begin{definition} @@ -51,6 +51,7 @@ Da sie beschränkt sein können, haben sie das Potential, beschränkte Funktionen besser zu approximieren, als dies mit Polynomen allein möglich wäre. Die Theorie der Padé-Approximation, wie sie zum Beispiel im Buch +\index{Pade-Approximation@Padé-Approximation}% \cite{buch:pade} dargestellt ist, ist zum Beispiel auch in der Regelungstechnik von Interesse, da sich rationale Funktionen mit linearen Komponenten schaltungstechnisch realisieren lassen. -- cgit v1.2.1 From 8a570ddc78a49006c1e6ad15bf05a19e62038f16 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 21 Jun 2022 16:16:07 +0200 Subject: jacobi stuff completed --- buch/chapters/010-potenzen/tschebyscheff.tex | 78 ++++++++++++++++++++++++++++ 1 file changed, 78 insertions(+) (limited to 'buch/chapters/010-potenzen') diff --git a/buch/chapters/010-potenzen/tschebyscheff.tex b/buch/chapters/010-potenzen/tschebyscheff.tex index 29d1d4b..780be1b 100644 --- a/buch/chapters/010-potenzen/tschebyscheff.tex +++ b/buch/chapters/010-potenzen/tschebyscheff.tex @@ -241,6 +241,9 @@ Die Rekursionsformel kann auch dazu verwendet werden, Werte der Tschebyscheff-Polynome sehr effizient zu berechnen. +% +% Multiplikationsformel +% \subsubsection{Multiplikationsformel} Aus der Definition mit Hilfe trigonometrischer Funktionen lässt sich auch eine Multiplikationsformel ableiten. @@ -300,4 +303,79 @@ T_{mn}(x). Damit ist auch \eqref{buch:potenzen:tschebyscheff:mult2} bewiesen. \end{proof} +% +% Differentialgleichung +% +\subsubsection{Differentialgleichung} +Die Ableitungen der Tschebyscheff-Polynome sind +\begin{align*} +T_n(x) +&= +\cos (ny(x)) +&& +&& +\\ +\frac{d}{dx} T_n(x) +&= +\frac{d}{dx} \cos(ny(x)) += +n\sin(ny(x)) \cdot \frac{dy}{dx} +& +&\text{mit}& +\frac{dy}{dx} +&= +-\frac{1}{\sqrt{1-x^2}} +\\ +\frac{d^2}{dx^2} T_n(x) +&= +-n^2\cos(ny(x)) \biggl(\frac{dy}{dx}\biggr)^2 + n\sin(ny(x)) \frac{d^2y}{dx^2} +& +&\text{mit}& +\frac{d^2y}{dx^2} +&= +-\frac{x}{(1-x^2)^{\frac32}}. +\end{align*} +Wir suchen eine verschwindende Linearkombination dieser drei Terme +mit Funktionen von $x$ als Koeffizienten. +Wir setzen daher an +\begin{align*} +0 +&= +\alpha(x) T_n''(x) ++ +\beta(x) T_n'(x) ++ +\gamma(x) T_n(x) +\\ +&= +\biggl( +-\frac{n^2\alpha(x)}{1-x^2} ++ +\gamma(x) +\biggr) +\cos(ny(x)) ++ +\biggl( +-\frac{nx\alpha(x)}{(1-x^2)^{\frac32}} +-\frac{n\beta(x)}{\sqrt{1-x^2}} +\biggr) +\sin(ny(x)) +\end{align*} +Die grossen Klammern müssen verschwinden, was nur möglich ist, wenn zu +gegebenem $\alpha(x)$ die anderen beiden Koeffizienten +\begin{align*} +\beta(x) &= -\frac{x\alpha(x)}{1-x^2} \\ +\gamma(x) &= n^2 \frac{\alpha(x)}{1-x^2} +\end{align*} +sind. +Die Koeffizienten werden besonders einfach, wenn man $\alpha(x)=1-x^2$ wählt. +Die Tschebyscheff-Polynome sind Lösungen der Differentialgleichung +\begin{equation} +(1-x^2) T_n''(x) -x T_n'(x) +n^2 T_n(x) = 0. +\label{buch:potenzen:tschebyscheff:dgl} +\end{equation} + + + + -- cgit v1.2.1 From 931871e8c8e9b266b9b626d816a803bbd2c56653 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 20:55:53 +0200 Subject: more index stuff --- buch/chapters/010-potenzen/chapter.tex | 4 ++++ buch/chapters/010-potenzen/loesbarkeit.tex | 2 ++ buch/chapters/010-potenzen/polynome.tex | 13 +++++++++++++ buch/chapters/010-potenzen/potenzreihen.tex | 14 ++++++++++++-- buch/chapters/010-potenzen/tschebyscheff.tex | 8 ++++++-- 5 files changed, 37 insertions(+), 4 deletions(-) (limited to 'buch/chapters/010-potenzen') diff --git a/buch/chapters/010-potenzen/chapter.tex b/buch/chapters/010-potenzen/chapter.tex index 2628e33..a1cce60 100644 --- a/buch/chapters/010-potenzen/chapter.tex +++ b/buch/chapters/010-potenzen/chapter.tex @@ -18,10 +18,13 @@ Diskussion rechtfertigen. \begin{enumerate} \item Die Umkehrfunktion der Potenzfunktion sind viel schwieriger zu +\index{Potenzfunktion}% berechnen und können als eine besonders einfache Art von speziellen Funktionen betrachtet werden. Die in Abschnitt~\ref{buch:potenzen:section:loesungen} definierten Wurzelfunktionen sind der erste Schritt zur Lösung von Polynomgleichungen. +\index{Wurzelfunktion}% +\index{Polynomgleichung}% \item Es lassen sich interessante Familien von Funktionen definieren, die zum Teil aus Polynomen bestehen. @@ -32,6 +35,7 @@ Abschnitt~\ref{buch:polynome:section:tschebyscheff} vorgestellt. \item Alles speziellen Funktionen sind analytisch, sie haben eine konvergente Potenzreihenentwicklung. +\index{Potenzreihe}% Die Partialsummen einer Potenzreihenentwicklung sind Approximationen An die wichtigsten Eigenschaften von Potenzreihen wird in Abschnitt~\ref{buch:potenzen:section:potenzreihen} erinnert. diff --git a/buch/chapters/010-potenzen/loesbarkeit.tex b/buch/chapters/010-potenzen/loesbarkeit.tex index f93a84b..a9f273a 100644 --- a/buch/chapters/010-potenzen/loesbarkeit.tex +++ b/buch/chapters/010-potenzen/loesbarkeit.tex @@ -34,6 +34,7 @@ Der Fundamentalsatz der Algebra zeigt, dass $\mathbb{C}$ alle Nullstellen von Polynomen enthält. \begin{satz}[Gauss] +\index{Satz!Fundamentalsatz der Algebra}% \index{Fundamentalsatz der Algebra}% \label{buch:potenzen:satz:fundamentalsatz} Jedes Polynom $p(x)=a_nx^n+\dots + a_2x^2 + a_1x + a_0\in\mathbb{C}[x]$ @@ -157,6 +158,7 @@ höheren Grades nicht mit einer Lösung durch Wurzelausdrücke rechnen kann. \begin{satz}[Abel] +\index{Satz!von Abel} \label{buch:potenzen:satz:abel} Für Polynomegleichungen vom Grad $n\ge 5$ gibt es keine allgemeine Lösung durch Wurzelausdrücke. diff --git a/buch/chapters/010-potenzen/polynome.tex b/buch/chapters/010-potenzen/polynome.tex index 9edb012..ce5e521 100644 --- a/buch/chapters/010-potenzen/polynome.tex +++ b/buch/chapters/010-potenzen/polynome.tex @@ -19,6 +19,7 @@ wobei $a_n\ne 0$ sein muss. Das Polynom heisst {\em normiert}, wenn $a_n=1$ ist. \index{normiert}% \index{Grad eines Polynoms}% +\index{Polynom!Grad}% Die Menge aller Polynome mit Koeffizienten in der Menge $K$ wird mit $K[x]$ bezeichnet. \end{definition} @@ -65,6 +66,8 @@ Berechnungsverfahren für die speziellen Funktionen zu konstruieren. Dank des folgenden Satzes kann dies immer mit Polynomen geschehen. \begin{satz}[Weierstrass] +\index{Satz!Weierstrass}% +\index{Weierstrasse, Karl}% \label{buch:potenzen:satz:weierstrass} \index{Weierstrass, Satz von}% Eine auf einem kompakten Intervall $[a,b]$ stetige Funktion $f(x)$ @@ -74,7 +77,9 @@ approximieren. Der Satz sagt in dieser Form nichts darüber aus, wie die Approximationspolynome konstruiert werden sollen. +\index{Approximationspolynom}% Von Bernstein gibt es konstruktive Beweise dieses Satzes, +\index{Bernstein-Polynom}% welche auch explizit eine Folge von Approximationspolynomen konstruieren. In der späteren Entwicklung werden wir für die meisten @@ -127,6 +132,7 @@ Ein gemeinsamer Teiler zweier Polynome $a(x)$ und $b(x)$ ist ein Polynom $g(x)$, welches beide Polynome teilt, also $g(x)\mid a(x)$ und $g(x)\mid b(x)$. \index{grösster gemeinsamer Teiler}% +\index{Polynome!grösster gemeinsamer Teiler}% Ein Polynom $g(x)$ heisst {\em grösster gemeinsamer Teiler} von $a(x)$ und $b(x)$, wenn jeder andere gemeinsame Teiler $f(x)$ von $a(x)$ und $b(x)$ auch ein Teiler von $g(x)$ ist. @@ -180,6 +186,9 @@ Dann ist $g(x)=r_{m-1}(x)$ ein grösster gemeinsamer Teiler. % Der erweiterte euklidische Algorithmus % \subsubsection{Der erweiterte euklidische Algorithmus} +\index{Polynome!erweiterter euklidischer Algorithmus}% +\index{erweiterter euklidischer Algorithmus}% +\index{euklidischer Algorithmus!erweitert}% Die Konstruktion der Folgen $a_n(x)$ und $b_n(x)$ kann in Matrixform kompakter geschrieben werden als \[ @@ -401,8 +410,11 @@ p_n so dass $p_n=0$ sein muss, was schliesslich dazu führt, dass alle Koeffizienten von $a(x)-b(x)$ verschwinden. Daraus folgt das Prinzip des Koeffizientenvergleichs: +\index{Koeffizientenvergleich}% +\index{Polynome!Koeffizientenvergleich}% \begin{satz}[Koeffizientenvergleich] +\index{Satz!Koeffizientenvergleich}% \label{buch:polynome:satz:koeffizientenvergleich} Zwei Polynome $a(x)$ und $b(x)$ stimmen genau dann überein, wenn sie die gleichen Koeffizienten haben. @@ -436,6 +448,7 @@ und $n$ Additionen. Die Anzahl nötiger Multiplikationen kann mit dem folgenden Vorgehen reduziert werden, welches auch als das {\em Horner-Schema} bekannt ist. \index{Horner-Schema}% +\index{Polynome!Horner-Schema}% Statt erst am Schluss alle Terme zu addieren, addiert man so früh wie möglich. Zum Beispiel multipliziert man $(a_nx+a_{n-1})$ mit $x$, was auf diff --git a/buch/chapters/010-potenzen/potenzreihen.tex b/buch/chapters/010-potenzen/potenzreihen.tex index a003fcb..994f99f 100644 --- a/buch/chapters/010-potenzen/potenzreihen.tex +++ b/buch/chapters/010-potenzen/potenzreihen.tex @@ -105,6 +105,7 @@ Für $|z|<1$ geht $z^n\to 0$ für $n\to\infty$, die Partialsummen konvergieren und wir erhalten das Resultat des folgenden Satzes. \begin{satz} +\index{Satz!geometrische Reihe}% \label{buch:polynome:satz:geometrischereihe} Die geometrische Reihe $a+az+az^2+\dots$ konvergiert für $|z|<1$ und hat die Summe @@ -124,6 +125,7 @@ als konvergent erkannten Reihen nachweisbar. Dies ist der Inhalt des folgenden, wohlbekannten Majorantenkriteriums. \begin{satz}[Majorantenkriterium] +\index{Satz!Majorantenkriterium}% \label{buch:polynome:satz:majorantenkriterium} \index{Majorantenkriterium} Seien $a_k$ und $b_k$ die Glieder zweier unendlicher Reihen. @@ -142,6 +144,7 @@ Potenzreihen mit der geometrischen Reihe zu vergleichen und liefert damit einfach anzuwende Kriterien für die Konvergenz. \begin{satz}[Quotientenkriterium] +\index{Satz!Quotientenkriterium}% \label{buch:polynome:satz:quotientenkriterium} \index{Quotientenkriterium}% Eine Reihe @@ -175,6 +178,7 @@ die unter der gegebenen Voraussetzung konvergiert. \end{proof} \begin{satz}[Wurzelkriterium] +\index{Satz!Wurzelkriterium}% \label{buch:polynome:satz:wurzelkriterium} \index{Wurzelkriterium} Falls @@ -203,6 +207,9 @@ das Reststück der Reihe ab Index $N$ ist daher wieder majorisiert durch eine konvergente geometrische Reihe. \end{proof} +% +% Konvergenzradius +% \subsubsection{Konvergenzradius} Das Quotienten- und das Wurzel-Kriterium ist auf beliebige Reihen anwendbar, es berücksichtigt nicht, dass in einer Potenzreihe @@ -224,6 +231,7 @@ um den Punkt $z_0$ ist \end{definition} \begin{satz} +\index{Satz!Konvergenzradius}% \label{buch:polynome:satz:konvergenzradius} Der Konvergenzradius $\varrho$ einer Potenzreihe $\sum_{k=0}^\infty a_k(z-z_0)^k$ ist @@ -420,7 +428,7 @@ $z_0$ ist die Summe \frac{f^{(k)}(z_0)}{k!} (z-z_0)^k \label{buch:polynome:eqn:taylor-polynom} \end{equation} -\index{Taylor-Reihe} +\index{Taylor-Reihe}% Die {\em Taylor-Reihe} der Funktion $f(z)$ ist die Reihe \begin{equation} \mathscr{T}_{z_0}f (z) @@ -431,7 +439,9 @@ Die {\em Taylor-Reihe} der Funktion $f(z)$ ist die Reihe \end{equation} \end{definition} - +% +% Analytische Funktionen +% \subsubsection{Analytische Funktionen} Das Taylor-Polynom $\mathscr{T}_{z_0}^nf(z)$ hat an der Stelle $z_0$ die gleichen Funktionswerte und Ableitungen wie die Funktion $f(z)$, diff --git a/buch/chapters/010-potenzen/tschebyscheff.tex b/buch/chapters/010-potenzen/tschebyscheff.tex index 780be1b..ccc2e97 100644 --- a/buch/chapters/010-potenzen/tschebyscheff.tex +++ b/buch/chapters/010-potenzen/tschebyscheff.tex @@ -250,6 +250,7 @@ lässt sich auch eine Multiplikationsformel ableiten. \index{Multiplikationsformel}% \begin{satz} +\index{Satz!Multiplikationsformel für Tschebyscheff-Polynome}% Es gilt \begin{align} T_m(x)T_n(x)&=\frac12\bigl(T_{m+n}(x) + T_{m-n}(x)\bigr) @@ -306,7 +307,7 @@ Damit ist auch \eqref{buch:potenzen:tschebyscheff:mult2} bewiesen. % % Differentialgleichung % -\subsubsection{Differentialgleichung} +\subsubsection{Tschebyscheff-Differentialgleichung} Die Ableitungen der Tschebyscheff-Polynome sind \begin{align*} T_n(x) @@ -374,7 +375,10 @@ Die Tschebyscheff-Polynome sind Lösungen der Differentialgleichung (1-x^2) T_n''(x) -x T_n'(x) +n^2 T_n(x) = 0. \label{buch:potenzen:tschebyscheff:dgl} \end{equation} - +Die Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl} +heisst {\em Tschebyscheff-Differentialgleichung}. +\index{Tschebyscheff-Differentialgleichung}% +\index{Differentialgleichung!Tschebyscheff-}% -- cgit v1.2.1