From b061e8140748608327055591a6c9e8a9722274a2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 27 Dec 2021 20:34:52 +0100 Subject: new stuff about logarithms --- buch/chapters/020-exponential/zins.tex | 297 ++++++++++++++++++++++++++++++++- 1 file changed, 294 insertions(+), 3 deletions(-) (limited to 'buch/chapters/020-exponential/zins.tex') diff --git a/buch/chapters/020-exponential/zins.tex b/buch/chapters/020-exponential/zins.tex index 7dd0431..81c68ef 100644 --- a/buch/chapters/020-exponential/zins.tex +++ b/buch/chapters/020-exponential/zins.tex @@ -3,11 +3,302 @@ % % (c) 2021 Prof Dr Andreas Müller, OST Ostscheizer Fachhochschule % -\section{Exponentialfunktion als Grenzwert +\section{Exponentialfunktion \label{buch:exponential:section:grenzwert}} \rhead{Exponentialfunktion als Grenzwert} +Mit Hilfe von Potenzen und Wurzeln lassen sich die Potenzen $a^x$ +für beliebige rationale Zahlen $x=p/q\in\mathbb{Q}$ als +\[ +a^x = a^{\frac{p}{q}} = \root{q}\of{a^p} +\] +definieren. +Da $x\mapsto a^x$ stetig ist, ergibt sich daraus auch eine +stetige Funktion +$a^{\bullet}\colon \mathbb{R}\to\mathbb{R}:x\mapsto a^x$. +Dies ist aber als Basis für eine neue spezielle Funktion nicht +wirklich geeignet, da ausser $x$ auch die Basis variert werden kann. +Die arithmetischen Eigenschaften der Potenzfunktion erlauben aber, +jede der Funktionen $a^x$ auf jede andere $b^x$ zurückzuführen. +Ist $b=a^t$, dann dann ist $b^x = a^{tx}$. +Es stellt sich damit die Frage, ob es eine bevorzugte Basis gibt. -\subsection{Permanente Verzinsung} +\subsection{Zins und Eulerscher Grenzwert} +Wir ein Kapital $K_0$ mit dem Jahreszinssatz $x=100\%$ verzinst, +wächst es jedes Jahr um den Faktor $1+x$ an. +Teilt man die Zinsperiode in kleiner Intervall, zum Beispiel Monate +oder Tage, und passt auch den Zins entsprechend an, dann wächste +das Kapitel in einem Jahr auf +\[ +K = \biggl(1+\frac{x}{12}\biggr)^{12} +\qquad\text{und}\qquad +K = \biggl(1+\frac{x}{365}\biggr)^{365} +\] +an. +Für eine Unterteilung in $n$ Zinsperioden ist der Faktor also +\[ +\biggl(1+\frac{x}{n}\biggr)^n. +\] +Diese Beobachtung hat Jacob Bernoulli 1683 dazu geführt, den Grenzwert +\[ +\lim_{n\to\infty} \biggl(1+\frac1n\biggr)^n +\] +zu studieren, die später mit $e$ bezeichnet wurde. +Später hat Euler gezeigt, dass +\begin{equation} +\lim_{n\to\infty}\biggl(1+\frac{x}{n}\biggr)^n += +e^x +\label{buch:exponential:zins:eulerex} +\end{equation} +gilt. + +Tatsächlich gilt für ganzzahlige $x$, dass auch die Teilfolge +mit $n=xm$ konvergiert, dass also +\begin{align*} +\lim_{n\to\infty} +\biggl(1+\frac{x}{n}\biggr)^n +&= +\lim_{m\to\infty} +\biggl(1+\frac{x}{xm}\biggr)^{xm} += +\lim_{m\to\infty}\biggl(1+\frac{1}{m}\biggr)^{xm} +\intertext{sein muss. +Da die Funktion $a\mapsto a^x$ stetig ist, folgt weiter} +&=\biggl(\lim_{m\to\infty}\biggl(1+\frac1m\biggr)^m\biggr)^x. +\end{align*} +Ähnlich kann man für einen Bruch $x=p/q$ vorgehen. +Dazu berechnet man die $q$-te Potenz, wobei man wieder verwenden kann, +dass, die Funktion $a\mapsto a^q$ stetig ist. +So bekommt man +\begin{align*} +\biggl( +\lim_{n\to\infty} +\biggl(1+\frac{x}{n}\biggr)^n +\biggr)^q +&= +\lim_{n\to\infty} +\biggl(+\frac{p}{qn}\biggr)^{nq} += +\lim_{m\to\infty} +\biggl(1+\frac{p}{m}) +\biggr)^m += +e^p. +\end{align*} +Zieht man jetzt die $q$-te Wurzel, bekommt man +\[ +\lim_{n\to\infty}\biggl(1+\frac{x}{n}\biggr)^n = e^{\frac{p}{q}}. +\] +Da auch die Potenzfunktion $x\mapsto a^x$ stetig ist, folgt schliesslich, +dass für beliebige reelle $x\in\mathbb{R}$ die +Formel~\eqref{buch:exponential:zins:eulerex} gilt. + +\subsubsection{Approximation durch Jost Bürgi} +Jost Bürgi, Uhrmacher und Mathematiker aus Lichtensteig, +war einer der Erfinder der Logartihmen, für die er allerdings +noch keinen Namen hatte. +Er berechnete eine Tabelle aller Werte von +\[ +10^8\cdot(1+10^{-4})^n. +\] +Schreibt man +\[ +(1+10^{-4})^n += +\biggl(1+\frac{1}{10000}\biggr)^{1000\cdot n\cdot10^{-4}}, +\] +dann erkennt man, dass Bürgi die Potenzen der Approximation +\[ +\biggl(1+\frac{1}{1000}\biggr)^{1000} += +2.7181459 +\approx +2.7182818 +\] +von $e$ berechnet hat. +Die Wahl dieser Basis hat keine Auswirkungen auf die Genauigkeit +der Anwendung seiner Tabellen, da jede andere Basis genauso. + +\subsubsection{Störungen des Eulerschen Grenzwertes} +Der Grenzwert~\eqref{buch:exponential:zins:eulerex} +bleibt unverändert, wenn man den Term $x$ um einen zusätzlichen +Summanden $x_n$ modifiziert, der schnell genug gegen $0$ geht. + +\begin{lemma} +\label{buch:exponential:zins:perturbedeulerlimit} +Sei $x_n$ eine Folge $x_n\in\mathbb{R}$, die gegen $0$ konvergiert. +Dann gilt +\[ +\lim_{n\to\infty}\biggl(1+\frac{x+x_n}{n}\biggr)^n += +\lim_{n\to\infty}\biggl(1+\frac{x}{n}\biggr)^n += +e^x. +\] +\end{lemma} + +\begin{proof}[Beweis] +Für $\varepsilon>0$ gibt es ein $N$ derart, dass +\( |x_n| < \varepsilon \) +für alle $n>N$. +Da +\[ +\biggl( +1+\frac{x-\varepsilon}{n} +\biggr)^n +< +\biggl( +1+\frac{x+x_n}{n} +\biggr)^n +< +\biggl( +1+\frac{x+\varepsilon}{n} +\biggr)^n +\] +folgt +\[ +e^{x-\varepsilon} +\ge +\lim_{n\to\infty} +\biggl( +1+\frac{x+x_n}{n} +\biggr)^n +\le +e^{x+\varepsilon}. +\] +Da dies für alle $\varepsilon$ gilt, und die Funktion $x\mapsto e^x$ +stetig ist, folgt +\[ +\lim_{n\to\infty} \biggl(1+\frac{x+x_n}{n}\biggr)^n += +e^x, +\] +die Behauptung des Lemmas. +\end{proof} + +\subsubsection{Funktionalgleichung} +Die Definition der Exponentialfunktion als Potenz $e^x$ +hat automatisch zur Folge, +dass für beliebige reelle Zahlen +die Funktionalgleichung +\[ +e^x\cdot e^y += +e^{x+y} +\] +gilt. +Dies kann jedoch auch direkt aus dem +Grenzwert~\eqref{buch:exponential:zins:eulerex} +abgeleitet werden. +Dazu rechnet man +\begin{align*} +\lim_{n\to\infty}\biggl(1+\frac{x}{n}\biggr)^n +\cdot +\lim_{m\to\infty}\biggl(1+\frac{x}{m}\biggr)^m +&= +\lim_{n\to\infty} +\biggl( +\biggl(1+\frac{x}{n}\biggr) +\biggl(1+\frac{y}{n}\biggr) +\biggr)^n +\\ +&= +\lim_{n\to\infty} +\biggl( 1+\frac{x+y}{n}+\frac{xy}{n^2} \biggr)^n +\\ +&= +\lim_{n\to\infty} +\biggl( 1+\frac{x+y+xy/n}{n}\biggr)^n. +\intertext{Der Term $x_n=xy/n$ konvergiert gegen $0$, daher ist nach dem +Lemma~\ref{buch:exponential:zins:perturbedeulerlimit} +} +&= +e^{x+y}. +\end{align*} +Damit ist die Funktionalgleichung bewiesen. + +\subsection{Potenzreihe} +Die übliche Definition der Exponentialfunktion verwendet eine Potenzreihe. + +\begin{definition} +\label{buch:exponential:zins:exppotenzreihe} +Die Potenzreihe +\[ +\exp(x) += +\sum_{k=0}^\infty \frac{x^k}{k!} +\] +definiert eine Funktion $\exp\colon \mathbb{C}\to\mathbb{C}$. +\end{definition} + +\subsubsection{Funktionalgleichung} +Auch für die Potenzreihendefinition lässt sich die Funktionalgleichung +direkt zu verifizieren. +Das Produkt von $\exp(x)$ und $\exp(y)$ ist +\begin{align*} +\exp(x)\cdot\exp(y) +&= +\sum_{k=0}^\infty \frac{x^k}{k!} +\cdot +\sum_{l=0}^\infty \frac{y^l}{l!} . +\intertext{Fasst man die Terme vom Grad $n$ zusammen, erhält man} +&= +\sum_{n=0}^\infty +\sum_{k=0}^n +\frac{1}{k!(n-k)!} +x^ky^{n-k}. +\intertext{Durch Erweitern mit $n!$ wird daraus} +&= +\sum_{n=0}^\infty +\frac{1}{n!} +\sum_{k=0}^n +\frac{n!}{k!(n-k)!} +x^ky^{n-k}. +\intertext{Der Quotient von Fakultäten ist der Binomialkoeffizient, so +dass die Summe mit dem Binomialsatz vereinfacht werden kann:} +&= +\sum_{n=0}^\infty +\frac{1}{n!} +\sum_{k=0}^n +\binom{n}{k} +x^ky^{n-k} += +\sum_{n=0}^\infty +\frac{1}{n!} +(x+y)^n += +\exp(x+y), +\end{align*} +damit ist die Funktionalgleichung nachgewiesen und es wird klar, dass +$\exp(x)$ eine Funktion der Form $a^x$ ist. + +\subsubsection{$\exp(x)$ und $e^x$} +Die Tatsache, dass $\exp(x)$ die Funktionalgleichung erfüllt, reicht +nicht aus um zu zeigen, dass $\exp(x)$ und $e^x$ dasselbe sind, +da jede beliebige Funktion $a^x$ diese Eigenschaft hat. +Wir können nur schliessen, dass $\exp(x)=\exp(1)^x$. +Wenn wir zeigen wollen, dass $\exp(x)$ und $e^x$ dasselbe sind, dann +müssen wir zeigen, dass $e=\exp(1)$ gilt. +Dazu formen wir den Eulerschen Grenzwert wie folgt um: +\begin{align*} +e=\biggl(1+\frac1n\biggr)^n +&= +\sum_{k=0}^n \binom{n}{k} \frac{1}{n^{n-k}} += +\sum_{k=0}^n \frac{1}{k!} \frac{n(n-1)\cdots(n-k+1)}{n^{n-k}} +\\ +&= +\sum_{k=0}^n \frac{1}{k!} +\underbrace{\frac{n}{n}}_{\displaystyle \downarrow\atop\displaystyle 1} +\cdot +\underbrace{\frac{n-1}{n}}_{\displaystyle\downarrow\atop\displaystyle 1} +\cdots +\underbrace{\frac{n-k+1}{n}}_{\displaystyle\downarrow\atop\displaystyle 1} +\to +\sum_{k=0}^\infty \frac{1}{k!} += +\exp(1) +\end{align*} +Damit ist gezeigt, dass $e=\exp(1)$ und damit auch $e^x=\exp(x)$ ist. -\subsection{Eulerscher Grenzwert} -- cgit v1.2.1