From 09e2c20b0a41a36161547b2628366db1e048eaf8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 12 Oct 2021 07:44:15 +0200 Subject: add some info on elliptic functions --- buch/chapters/030-geometrie/flaeche.tex | 286 ++++++++++++++++++++++++++++++++ 1 file changed, 286 insertions(+) create mode 100644 buch/chapters/030-geometrie/flaeche.tex (limited to 'buch/chapters/030-geometrie/flaeche.tex') diff --git a/buch/chapters/030-geometrie/flaeche.tex b/buch/chapters/030-geometrie/flaeche.tex new file mode 100644 index 0000000..468e175 --- /dev/null +++ b/buch/chapters/030-geometrie/flaeche.tex @@ -0,0 +1,286 @@ +% +% flaeche.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\section{Flächeninhalt +\label{buch:geometrie:section:flaeche}} +\rhead{Flächeninhalt} +Die elementare Definition des Integrals versucht, den Flächeninhalt +unter dem Graphen der Funktion $y=f(x)$ zu definieren. +Die Erfahrung zeigt, dass es nicht immer einfach ist, ein Integral in +geschlossener Form zu berechnen. +Solche Integrale können auf sinnvolle neue spezielle Funktionen führen. + +\subsection{Berechnung des Flächeninhaltes in kartesischen Koordinaten} +Wir betrachten in diesem Abschnitt nur die Berechnung des +Flächeninhaltes von Teilgebieten der Ebene $\mathbb{R}^2$ +aus ihrer Berandung. +Sei $\gamma\colon I \to\mathbb{R}^2$ eine Kurve und +\[ +a=t_01$ entstehen Hyperbeln, die im grün hinterlegten Teil +der Ebene liegen. +\label{buch:geometrie:fig:polargleichung}} +\end{figure} +Das zweite Keplersche Gesetz über Planetenbahnen besagt, dass sich ein +Planet auf seiner elliptischen Bahn um die Sonne so bewegt, dass +sein Radiusvektor in gleichen Zeiten gleiche Flächen überstreicht. +Die bisher verwendete Parametrisierung hat den Mittelpunkt der Ellipse +im Nullpunkt, nach dem ersten Keplerschen Gesetz ist aber müssen +wir eine Parametrisierung verwenden so, dass der Brennpunkt im +Ursprung liegt. +In Polarkoordinaten ist +\begin{equation} +r(\varphi) = \frac{p}{1+\varepsilon \cos\varphi} +\label{buch:geometrie:eqn:polargleichung} +\end{equation} +die sogenannte {\em Polargleichung} für die Kegelschnitte. +Für $\varepsilon=0$ wird $r(\varphi)=p$ konstant, die Gleichung +beschreibt in diesem Fall einen Kreis. +Für $\varepsilon=1$ entsteht eine Parabel. +Werte zwischen $0$ und $1$ parametrisieren Ellipsen mit verschiedener +Exzentrizität, Werte grösser als $1$ führen auf Hyperbeln. +Abbildung~\ref{buch:geometrie:fig:polargleichung} zeigt alle vier Fälle. + +Die zwischen den Polarwinkeln $\alpha$ und $\beta$ überstrichene Fläche +wird durch das Integral +\[ +F(\alpha,\beta) += +\int_\alpha^\beta +\frac{r(\varphi)^2}2 +\,d\varphi += +\frac12 \int_\alpha^\beta +\frac{p^2 \,d\varphi}{(1+\varepsilon\cos\varphi)^2} +\] +Das Integral kann in geschlossener Form angegeben werden, die Formeln +sind aber ziemlich kompliziert und für uns hier nicht weiter nützlich. + + + -- cgit v1.2.1