From 265b976d0d6bfa665ba5e1be3755ba932f42b97e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 3 Jan 2022 16:06:51 +0100 Subject: Abbildung kegelschnitte --- buch/chapters/030-geometrie/laenge.tex | 217 ++++++++++++++++++++++++++++++++- 1 file changed, 212 insertions(+), 5 deletions(-) (limited to 'buch/chapters/030-geometrie/laenge.tex') diff --git a/buch/chapters/030-geometrie/laenge.tex b/buch/chapters/030-geometrie/laenge.tex index 0561eca..e82577f 100644 --- a/buch/chapters/030-geometrie/laenge.tex +++ b/buch/chapters/030-geometrie/laenge.tex @@ -280,10 +280,149 @@ Tatsächlich ist die Ableitung davon was mit der Integralformel~\ref{buch:geometrie:eqn:kreislaenge} übereinstimmt. -\subsection{Hyperbeln und Ellipsen -\label{buch:geometrie:subsection:hyperbeln-und-ellipsen}} +\subsection{Hyperbeln +\label{buch:geometrie:subsection:hyperbeln}} +\begin{figure} +\centering +\includegraphics{chapters/030-geometrie/images/kegelschnitte.pdf} +\caption{Hyperbeln, Parabeln und Ellipsen sind die Schnittkurven einer +Ebene mit einem Kegel +\label{buch:geometrie:laenge:fig:kegelschnitte}} +\end{figure} +Eine Hyperbel entsteht durch Schneiden eines geraden Kreiskegels mit +einer Ebene wie in Abbildung~\ref{buch:geometrie:laenge:fig:kegelschnitte}. +Es lässt sich ableiten, dass die Punkte der Hyperbel die Eigenschaft +haben, dass die Differenzt der Entfernung von zwei festen Punkte, +den sogenannten Brennpunkten, konstant ist. +Dies ist die Definition, von der wir in diesem Abschnitt ausgehen +wollen. + +\subsubsection{Geometrie einer Hyperbel} +\begin{figure} +\centering +\includegraphics{chapters/030-geometrie/images/hyperbel.pdf} +\caption{Geometrie einer Hyperbel in der Ebene. +Die Hyperbel besteht aus den Punkten $P$ der Ebene, deren Entfernungsdifferenz +$\overline{F_1P}-\overline{F_2P}$ +von zwei vorgegebenen Punkten $F_1$ und $F_2$ konstant ist. +Die Differenz $\pm 2a$ führt auf die Hyperbeln mit Halbachsen +$a$ und $b$. +\label{buch:geometrie:hyperbel:fig:2d}} +\end{figure} +Die Brennpunkte der Hyperbel sollen $F_1=(e,0)$ und $F_2=(-e,0)$ sein. +Die Grösse $e$ heisst auch die {\em lineare Exzentrizität} der Hyperbel. +Die beiden Äste der Hyperbel schneiden die $x$-Achse in den Punkten +$A_\pm=(\pm a,0)$. +In Abbildung~\ref{buch:geometrie:hyperbel:fig:2d} ist diese Situation +dargestellt. + +Die Differenz der Entfernungen von $A_+$ zu den beiden Brennpunkten ist +\[ +\overline{A_+F_2} +- +\overline{A_+F_1} += +(e+a)-(e-a) = 2a +\] +Für einen beliebigen Punkt $P=(x,y)$ in der Ebene wird die Bedingung +an die Abstände zu +\[ +\overline{PF_2} +- +\overline{PF_1} += +\sqrt{(x+e)^2+y^2} +- +\sqrt{(x-e)^2+y^2} += +2a. +\] +Quadrieren ergibt +\begin{align*} +4a^2 +&= +(x+e)^2+y^2 ++ +2\sqrt{ +((x+e)^2+y^2) +((x-e)^2+y^2) +} ++ +(x-e)^2+y^2 +\\ +2a^2-x^2-e^2-y^2 +&= +\sqrt{ +y^4 + y^2((x+e)^2 + (x-e)^2) +(x^2-e^2)^2 +} +\\ +&= +\sqrt{y^4 + 2y^2 ( x^2+e^2) +x^4 - 2x^2e^2 + e^4}. +\end{align*} +Erneutes Quadrieren bringt auch die Wurzel auf der rechten Seiten +zum Verschwinden: +\begin{align} +4a^4 + x^4 + e^4 + y^4 +-4a^2(x^2+y^2+e^2) ++2y^2(x^2+e^2)+2x^2e^2 +&= +y^4+2y^2(x^2 +e^2) + x^4 -2x^2e^2+e^4 +\notag +\\ +4a^4 +-4a^2(x^2+y^2+e^2) ++2x^2e^2 +&= +-2x^2e^2 +\notag +\\ +a^4+x^2e^2&=a^2(x^2+y^2+e^2) +\notag +\\ +x^2(e^2-a^2)&=a^2(e^2-a^2) + a^2y^2. +\notag +\end{align} +Schreiben wir $b^2=e^2-a^2$ und stellen die Gleichung etwas um, +ergibt sich +\begin{equation} +b^2x^2 - a^2y^2 = a^2b^2 +\qquad\Rightarrow\qquad +\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. +\label{buch:geometrie:hyperbel:gleichung} +\end{equation} +Die Zahlen $a$ und $b$ heissen die {\em grosse} bzw.~{\em kleine Halbachse} +der Hyperbel. + +Die Hyperbeln können auch als Graphen einer Funktion von $x$ gefunden werden. +Dazu wird die Gleichung~\eqref{buch:geometrie:hyperbel:gleichung} +nach $y$ aufgelöst: +\[ +\frac{y^2}{b^2} = \frac{x^2}{a^2} - 1 +\qquad\Rightarrow\qquad +y += +\pm +b\sqrt{\frac{x^2}{a^2}-1}. +\] +Die rechte Seite hat für $|x|