From 374bb4a4dbc16598329cb777600c531c8c848330 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 5 Jun 2022 11:24:46 +0200 Subject: fix trigo definition graph --- buch/chapters/030-geometrie/chapter.tex | 3 +- .../030-geometrie/images/einheitskreis.pdf | Bin 19706 -> 20005 bytes .../030-geometrie/images/einheitskreis.tex | 4 + buch/chapters/030-geometrie/uebungsaufgaben/3.tex | 169 +++++++++++++++++++++ 4 files changed, 175 insertions(+), 1 deletion(-) create mode 100644 buch/chapters/030-geometrie/uebungsaufgaben/3.tex (limited to 'buch/chapters/030-geometrie') diff --git a/buch/chapters/030-geometrie/chapter.tex b/buch/chapters/030-geometrie/chapter.tex index f3f1d39..0b2842b 100644 --- a/buch/chapters/030-geometrie/chapter.tex +++ b/buch/chapters/030-geometrie/chapter.tex @@ -42,7 +42,7 @@ wie die Berechnung der Länge von Ellipsen- oder Hyperbelbögen auf die Notwendigkeit führt, neue spezielle Funktionen zu definieren. \input{chapters/030-geometrie/trigonometrisch.tex} -\input{chapters/030-geometrie/sphaerisch.tex} +%\input{chapters/030-geometrie/sphaerisch.tex} \input{chapters/030-geometrie/hyperbolisch.tex} \input{chapters/030-geometrie/laenge.tex} \input{chapters/030-geometrie/flaeche.tex} @@ -54,5 +54,6 @@ die Notwendigkeit führt, neue spezielle Funktionen zu definieren. %\uebungsaufgabe{0} \uebungsaufgabe{1} \uebungsaufgabe{2} +\uebungsaufgabe{3} \end{uebungsaufgaben} diff --git a/buch/chapters/030-geometrie/images/einheitskreis.pdf b/buch/chapters/030-geometrie/images/einheitskreis.pdf index 0b514eb..d708377 100644 Binary files a/buch/chapters/030-geometrie/images/einheitskreis.pdf and b/buch/chapters/030-geometrie/images/einheitskreis.pdf differ diff --git a/buch/chapters/030-geometrie/images/einheitskreis.tex b/buch/chapters/030-geometrie/images/einheitskreis.tex index c38dc19..a194190 100644 --- a/buch/chapters/030-geometrie/images/einheitskreis.tex +++ b/buch/chapters/030-geometrie/images/einheitskreis.tex @@ -41,6 +41,7 @@ \fill[color=blue] (\a:\r) circle[radius=0.05]; \draw[color=blue,line width=1.4pt] (\r,0) -- (\r,{\r*tan(\a)}); +\fill[color=blue] (\r,{\r*tan(\a)}) circle[radius=1.0pt]; \node[color=blue] at (\r,{0.5*\r*tan(\a)}) [right] {$\tan\alpha$}; \draw[color=blue,line width=0.4pt] ({\r*cos(\a)},0) -- (\a:\r); @@ -53,6 +54,7 @@ \draw[color=blue] (-0.1,{\r*sin(\a)}) -- (0.1,{\r*sin(\a)}); \draw[color=blue,line width=1.4pt] (0,\r) -- ({\r/tan(\a)},\r); +\fill[color=blue] ({\r/tan(\a)},\r) circle[radius=1.0pt]; \node[color=blue] at ({0.5*\r/tan(\a)},\r) [above] {$\cot\alpha$}; \draw[color=darkgreen,line width=1pt] (0,0) -- (\b:\r); @@ -61,9 +63,11 @@ \fill[color=darkgreen] (\b:\r) circle[radius=0.05]; \draw[color=darkgreen,line width=1.4pt] (0,\r) -- ({\r/tan(\b)},\r); +\fill[color=darkgreen] ({\r/tan(\b)},\r) circle[radius=1.0pt]; \node[color=darkgreen] at ({0.5*\r/tan(\b)},\r) [above] {$\cot\beta$}; \draw[color=darkgreen,line width=1.4pt] (\r,0) -- (\r,{\r*tan(\b)}); +\fill[color=darkgreen] (\r,{\r*tan(\b)}) circle[radius=1.0pt]; \node[color=darkgreen] at (\r,{0.5*\r*tan(\b)}) [right] {$\tan\beta$}; \draw[color=darkgreen,line width=0.4pt] (\b:\r) -- (0,{\r*sin(\b)}); diff --git a/buch/chapters/030-geometrie/uebungsaufgaben/3.tex b/buch/chapters/030-geometrie/uebungsaufgaben/3.tex new file mode 100644 index 0000000..6a501fb --- /dev/null +++ b/buch/chapters/030-geometrie/uebungsaufgaben/3.tex @@ -0,0 +1,169 @@ +\def\cas{\operatorname{cas}} +Die Funktion $\cas$ definiert durch +$\cas x = \cos x + \sin x$ hat einige interessante Eigenschaften. +Wie die gewöhnlichen trigonometrischen Funktionen $\sin x$ und $\cos x$ +ist $\cas x$ $2\pi$-periodisch. +Die Ableitung und das Additionstheorem benötigen bei den gewöhnlichen +trigonometrischen Funktionen aber beide Funktionen, im Gegensatz zu den +im folgenden hergeleiteten Formeln, die nur die Funktion $\cas x$ brauchen. +\begin{teilaufgaben} +\item +Drücken Sie die Ableitung von $\cas x$ allein durch Werte der +$\cas$-Funktion aus. +\item +Zeigen Sie, dass +\[ +\cas x += +\sqrt{2} \sin\biggl(x+\frac{\pi}4\biggr) += +\sqrt{2} \cos\biggl(x-\frac{\pi}4\biggr). +\] +\item +Beweisen Sie das Additionstheorem für die $\cas$-Funktion +\begin{equation} +\cas(x+y) += +\frac12\bigl( +\cas(x)\cas(y) + \cas x\cas (-y) + \cas(-x)\cas(y) -\cas(-x)\cas(-y) +\bigr) +\label{buch:geometrie:uebung3:eqn:addition} +\end{equation} +\end{teilaufgaben} +Youtuber Dr Barker hat die Funktion $\cas$ im Video +{\small\url{https://www.youtube.com/watch?v=bn38o3u0lDc}} vorgestellt. + +\begin{loesung} +\begin{teilaufgaben} +\item +Die Ableitung ist +\[ +\frac{d}{dx}\cas x += +\frac{d}{dx}(\cos x + \sin x) += +-\sin x + \cos x += +\sin(-x) + \cos(-x) += +\cas(x). +\] +\item +Die Additionstheoreme angewendet auf die trigonometrischen Funktionen +auf der rechten Seite ergibt +\begin{align*} +\sin\biggl(x+\frac{\pi}4\biggr) +&= +\sin x \cos\frac{\pi}4 + \cos x \sin\frac{\pi}4 +&&& +\cos\biggl(x-\frac{\pi}4\biggr) +&= +\cos(x)\cos\frac{\pi}4 -\sin x \sin\biggl(-\frac{\pi}4\biggr) +\\ +&= +\frac{1}{\sqrt{2}} \sin x ++ +\frac{1}{\sqrt{2}} \cos x +&&& +&= +\frac{1}{\sqrt{2}} \cos x ++ +\frac{1}{\sqrt{2}} \sin x +\\ +&=\frac{1}{\sqrt{2}} \cas x +&&& +&= +\frac{1}{\sqrt{2}} \cas x. +\end{align*} +Multiplikation mit $\sqrt{2}$ ergibt die behaupteten Relationen. +\item +Substituiert man die Definition von $\cas(x)$ auf der rechten Seite von +\eqref{buch:geometrie:uebung3:eqn:addition} und multipliziert aus, +erhält man +\begin{align*} +\eqref{buch:geometrie:uebung3:eqn:addition} +&= +{\textstyle\frac12}\bigl( +(\cos x + \sin x) +(\cos y + \sin y) ++ +(\cos x + \sin x) +(\cos y - \sin y) +\\ +&\qquad ++ +(\cos x - \sin x) +(\cos y + \sin y) +- +(\cos x - \sin x) +(\cos y - \sin y) +\bigr) +\\ +&= +\phantom{-\mathstrut} +{\textstyle\frac12}\bigl( +\cos x\cos y ++ +\cos x\sin y ++ +\sin x\cos y ++ +\sin x\sin y +\\ +& +\phantom{=-\mathstrut{\textstyle\frac12}\bigl(}\llap{$\mathstrut +\mathstrut$} +\cos x\cos y +- +\cos x\sin y ++ +\sin x\cos y +- +\sin x\sin y +\\ +& +\phantom{=-\mathstrut{\textstyle\frac12}\bigl(}\llap{$\mathstrut +\mathstrut$} +\cos x\cos y ++ +\cos x\sin y +- +\sin x\cos y +- +\sin x\sin y +\bigr) +\\ +& +\phantom{=} +-\mathstrut{\textstyle\frac12}\bigl( +\cos x\cos y +- +\cos x\sin y +- +\sin x\cos y ++ +\sin x\sin y +\bigr) +\\ +&= \cos x \cos y ++ +\cos x \sin y ++ +\sin x \cos y +- +\sin x \sin y. +\intertext{Die äussersten zwei Terme passen zum Additionstheorem für den +Kosinus, die beiden inneren Terme dagegen zum Sinus. +Fasst man sie zusammen, erhält man} +&= +(\sin x\cos y + \cos x \sin y) ++ +(\cos x\cos y - \sin x \sin y) +\\ +&= +\sin (x+y) + \cos(x+y) += +\cas(x+y). +\end{align*} +Damit ist das Additionstheorem für die Funktion $\cas$ bewiesen. +\qedhere +\end{teilaufgaben} +\end{loesung} -- cgit v1.2.1 From dcd6d6037a84343f19333fe86a904bdc0bb8a36f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 17 Jun 2022 11:20:00 +0200 Subject: new section, cleanup --- buch/chapters/030-geometrie/chapter.tex | 1 + 1 file changed, 1 insertion(+) (limited to 'buch/chapters/030-geometrie') diff --git a/buch/chapters/030-geometrie/chapter.tex b/buch/chapters/030-geometrie/chapter.tex index 0b2842b..24fc089 100644 --- a/buch/chapters/030-geometrie/chapter.tex +++ b/buch/chapters/030-geometrie/chapter.tex @@ -32,6 +32,7 @@ der Strahlensatz muss durch den Satz von Menelaos ersetzt werden. Es ergibt sich eine Methode, beliebige Dreiecke auf einer Kugeloberfläche ganz analog zum Vorgehen bei ebenen Dreiecken zu berechnen. Diese sphärische Trigonometrie ist die Basis der Navigation +(siehe Kapitel~\ref{chapter:nav}) und aller astrometrischer Berechnungen. Die Analysis hat die Möglichkeit geschaffen, die Länge von Kurven -- cgit v1.2.1 From 6893688fccb63844102d8f1d728302d4eb823d68 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 18 Jun 2022 11:01:07 +0200 Subject: add new graphs --- buch/chapters/030-geometrie/trigonometrisch.tex | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) (limited to 'buch/chapters/030-geometrie') diff --git a/buch/chapters/030-geometrie/trigonometrisch.tex b/buch/chapters/030-geometrie/trigonometrisch.tex index dc1f46a..047e6cb 100644 --- a/buch/chapters/030-geometrie/trigonometrisch.tex +++ b/buch/chapters/030-geometrie/trigonometrisch.tex @@ -167,11 +167,11 @@ und umgekehrt: \[ \sin\alpha = -\sqrt{1-\cos^2\alpha\mathstrut} +\sqrt{1-{\cos\mathstrut\!}^2\,\alpha\mathstrut} \qquad\text{und}\qquad \cos\alpha = -\sqrt{1-\sin^2\alpha\mathstrut} +\sqrt{1-{\sin\mathstrut\!}^2\,\alpha\mathstrut} \] Da sich alle Funktionen durch $\cos\alpha$ und $\sin\alpha$ ausdrücken lassen, können alle auch nur durch eine ausgedrückt werden. @@ -197,7 +197,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist. &\displaystyle\frac{\sqrt{\csc^2\alpha-1}}{\csc\alpha} \\ \cos\alpha - &\sqrt{1-\sin^2\alpha\mathstrut} + &\sqrt{1-\sin{\!}^2\,\alpha\mathstrut} &\cos\alpha &\displaystyle\frac{1}{\sqrt{1+\tan^2\alpha}} &\displaystyle\frac{\cot\alpha}{\sqrt{1+\cot^2\alpha}} @@ -205,7 +205,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist. &\displaystyle\frac{1}{\csc\alpha} \\ \tan\alpha - &\displaystyle\frac{\sin\alpha}{\sqrt{1-\sin^2\alpha\mathstrut}} + &\displaystyle\frac{\sin\alpha}{\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}} &\displaystyle\frac{\sqrt{1-\cos^2\alpha\mathstrut}}{\cos\alpha} &\tan\alpha &\displaystyle\frac{1}{\cot\alpha} @@ -213,7 +213,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist. &\displaystyle\sqrt{\csc^2\alpha-1} \\ \cot\alpha - &\displaystyle\frac{\sqrt{1-\sin^2\alpha\mathstrut}}{\sin\alpha} + &\displaystyle\frac{\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}}{\sin\alpha} &\displaystyle\frac{\cos\alpha}{\sqrt{1-\cos^2\alpha\mathstrut}} &\displaystyle\frac{1}{\tan\alpha} &\cot\alpha @@ -229,7 +229,7 @@ Tabelle~\ref{buch:geometrie:tab:trigo} zusammengestellt ist. &\displaystyle\frac{\csc\alpha}{\sqrt{\csc^2\alpha-1}} \\ \csc\alpha - &\displaystyle\frac{1}{\sqrt{1-\sin^2\alpha\mathstrut}} + &\displaystyle\frac{1}{\sqrt{1-\sin{\!}^2\,\alpha\mathstrut}} &\displaystyle\frac{1}{\cos\alpha} &\displaystyle\sqrt{1+\tan^2\alpha} &\displaystyle\frac{\sqrt{1+\cot^2\alpha}}{\cot\alpha} -- cgit v1.2.1 From 931871e8c8e9b266b9b626d816a803bbd2c56653 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 20:55:53 +0200 Subject: more index stuff --- buch/chapters/030-geometrie/hyperbolisch.tex | 1 + buch/chapters/030-geometrie/trigonometrisch.tex | 1 + 2 files changed, 2 insertions(+) (limited to 'buch/chapters/030-geometrie') diff --git a/buch/chapters/030-geometrie/hyperbolisch.tex b/buch/chapters/030-geometrie/hyperbolisch.tex index 72c2cb4..2938316 100644 --- a/buch/chapters/030-geometrie/hyperbolisch.tex +++ b/buch/chapters/030-geometrie/hyperbolisch.tex @@ -355,6 +355,7 @@ heissen der {\em hyperbolische Tangens} und der {\em hyperbolische Kotangens}. \end{definition} \begin{satz} +\index{Satz!hyperbolische Gruppe}% \label{buch:geometrie:hyperbolisch:Hparametrisierung} Die orientierungserhaltenden $2\times 2$-Matrizen, die das Minkowski-Skalarprodukt invariant lassen und die Zeitrichtung diff --git a/buch/chapters/030-geometrie/trigonometrisch.tex b/buch/chapters/030-geometrie/trigonometrisch.tex index 047e6cb..643c8f2 100644 --- a/buch/chapters/030-geometrie/trigonometrisch.tex +++ b/buch/chapters/030-geometrie/trigonometrisch.tex @@ -394,6 +394,7 @@ D_{\alpha}D_{\beta} Aus dem Vergleich der beiden Matrizen liest man die Additionstheoreme. \begin{satz} +\index{Satz!Drehmatrizen}% Für $\alpha,\beta\in\mathbb{R}$ gilt \begin{align*} \sin(\alpha\pm\beta) -- cgit v1.2.1