From 8e2af1ae4e7a82cd0a54b11f9e79ea6087e81d28 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 26 Dec 2021 21:52:19 +0100 Subject: lineare differenzengleichungen, beta, integral-gamma --- buch/chapters/040-rekursion/beta.tex | 550 +++++++++++++++++++++++++++++++++++ 1 file changed, 550 insertions(+) create mode 100644 buch/chapters/040-rekursion/beta.tex (limited to 'buch/chapters/040-rekursion/beta.tex') diff --git a/buch/chapters/040-rekursion/beta.tex b/buch/chapters/040-rekursion/beta.tex new file mode 100644 index 0000000..24d6ac5 --- /dev/null +++ b/buch/chapters/040-rekursion/beta.tex @@ -0,0 +1,550 @@ +% +% Beta-Integrale +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\subsection{Die Beta-Funktion +\label{buch:rekursion:gamma:subsection:beta}} +Die Eulersche Integralformel für die Gamma-Funktion in +Definition~\ref{buch:rekursion:def:gamma} wurde bisher nicht +gerechtfertigt. +In diesem Abschnitt wird das Beta-Integral eingeführt, eine Funktion +von zwei Variablen, welches eine Integral-Definition mit einer +reichaltigen Menge von Rekursionsbeziehungen hat, die sich direkt auf +die Gamma-Funktion zurückführen lassen. +Daraus wird sich dann ein Beweis für die Integralformel für die +Gamma-Funktion ergeben. + +\begin{definition} +\label{buch:rekursion:gamma:def:beta-funktion} +Das Beta-Integral ist das Integral +\[ +B(x,y) += +\int_0^1 t^{x-1} (1-t)^{y-1}\,dt +\] +für $\operatorname{Re}x>0$, $\operatorname{Re}y>0$. +\end{definition} + +Aus der Definition kann man sofort ablesen, dass $B(x,y)=B(y,x)$. +Für $y=1$ folgt ausserdem +\begin{equation} +B(x,1) += +\int_0^1 t^{x-1}\,dt += +\biggl[ \frac{t^x}{x}\biggr]_0^1 += +\frac{1}{x}. +\label{buch:rekursion:gamma:betax1} +\end{equation} +Speziell gilt $B(1,1)=1$. + +\subsubsection{Rekursionsformeln für das Beta-Integral} +Aus der Definition folgt direkt +\begin{align*} +B(x,y+1) +&= +\int_0^1 t^{x-1} (1-t)^{y+1-1}\,dt += +\int_0^1 (1-t) t^{x-1} (1-t)^{y-1}\,dt +\\ +&= +\int_0^1 t^{x-1} (1-t)^{y-1}\,dt +- +\int_0^1 t^{x} (1-t)^{y-1}\,dt +\\ +&= +B(x,y) - B(x+1,y) +\end{align*} +oder +\begin{equation} +B(x+1,y) = B(x,y) - B(x,y+1). +\label{buch:rekursion:gamma:betarek1} +\end{equation} +% +%XXX Vergleich mit der Rekursionsformel für Binomialkoeffizienten +% +Durch partielle Integration kann man eine weitere Rekursionsformel finden. +Dazu berechnet man +\begin{align} +B(x,y+1) +&= +\int_0^1 t^{x-1}(1-t)^{y}\,dt +\notag +\\ +&= +\biggl[\frac{t^x}x(1-t)^y\biggr]_0^1 ++ +\frac{y}x \int_0^1 t^x(1-t)^{y-1}\,dt +\notag +\\ +&= + \frac{y}x B(x+1,y). +\label{buch:rekursion:gamma:betarek2} +\end{align} +Durch Gleichsetzen +\eqref{buch:rekursion:gamma:betarek1} +und +\eqref{buch:rekursion:gamma:betarek2} +entsteht die Rekursionsformel +\[ +B(x,y)-B(x,y+1) += +B(x+1,y) += +\frac{x}{y}B(x,y+1) +\] +oder +\begin{equation} +B(x,y) += +\frac{x+y}{y}B(x,y+1). +\label{buch:rekursion:gamma:betarek3} +\end{equation} + +\subsubsection{Beta-Funktion und Gamma-Funktion} +Die Rekursionsbeziehung~\eqref{buch:rekursion:gamma:betarek3} +kann jetzt dazu verwendet werden, eine Darstellung der Beta-Funktion +durch die Gamma-Funktion zu finden. +Durch $n$-fache Anwendung von \eqref{buch:rekursion:gamma:betarek3} +ergibt sich zunächst +\begin{align*} +B(x,y) +&= +\frac{x+y}{y} +B(x,y+1) += +\frac{x+y}{y} +\frac{x+y+1}{y+1} +B(x,y+2) +\\ +&= +\frac{x+y}{y} +\frac{x+y+1}{y+1} +\cdot +\ldots +\cdot +\frac{x+y+n-1}{y+n-1} +B(x,y+n) += +\frac{(x+y)_n}{(y)_n} +B(x,y+n) +\intertext{Die Beta-Funktion auf der rechten Seite kann als Integral +geschrieben werden:} +&= +\frac{(x+y)_n}{(y)_n} +\int_0^1 t^{x-1}(1-t)^{y+n-1}\,dt. +\end{align*} +Wir halten dieses Zwischenresultat für spätere Verwendung fest. + +\begin{lemma} +\label{buch:rekursion:gamma:betareklemma} +Für $n\in\mathbb{N}$ gilt +\[ +B(x,y+n) = \frac{(y)_n}{(x+y)_n} B(x,y). +\] +\end{lemma} + +Wir streben an, mit dem Grenzübergang $n\to\infty$ aus den +Pochhammer-Symbolen Gamma-Funktionen zu machen, dazu müssen gemäss +Definition~\ref{buch:rekursion:gamma:def:definition} weitere Faktoren +$1/(n!\,n^{x-1})$ vorhanden sein. +Wir erweitern geeignet und nehmen die übrig bleibenden Faktoren in +das Integral. +So ergibt sich +\begin{align} +B(x,y) +&= +\frac{(x+y)_n}{n!\, n^{x+y-1}} +\frac{n!\,n^{y-1}}{(y)_n} +\int_0^1 n^{x} t^{x-1}(1-t)^{y+n-1}\,dt. +\notag +\intertext{Mit der Substition $s/n=t$ wird das Integral zu einem Integral +über das Interval $[0,n]$} +&= +\frac{(x+y)_n}{n!\, n^{x+y-1}} +\frac{n!\,n^{y-1}}{(y)_n} +\int_0^n +n^{x} +\biggl(\frac{s}{n}\biggr)^{x-1} +\biggl(1-\frac{s}{n}\biggr)^{y+n-1} +\,\frac{ds}{n}. +\notag +\\ +&= +\frac{(x+y)_n}{n!\, n^{x+y-1}} +\frac{n!\,n^{y-1}}{(y)_n} +\int_0^n +n^{x-1} +\biggl(\frac{s}{n}\biggr)^{x-1} +\biggl(1-\frac{s}{n}\biggr)^{y+n-1} +\,ds. +\intertext{Beim Grenzübergang $n\to\infty$ wird daraus} +&= +\underbrace{\frac{(x+y)_n}{n!\, n^{x+y-1}}}_{\displaystyle \to 1/\Gamma(x+y)} +\underbrace{\frac{n!\,n^{y-1}}{(y)_n}}_{\displaystyle\to \Gamma(y)} +\int_0^n +s^{x-1} +\underbrace{\biggl(1-\frac{s}{n}\biggr)^{n}}_{\displaystyle\to e^{-s}} +\underbrace{\biggl(1-\frac{s}{n}\biggr)^{y-1}}_{\displaystyle\to 1} +\,ds. +\notag +\\ +&\to \frac{\Gamma(y)}{\Gamma(x+y)} \int_0^\infty s^{x-1}e^{-s}\,ds. +\label{buch:rekursion:gamma:betagamma} +\end{align} +Das Integral im letzten Ausdruck ist die Integraldarstellung für +die Gamma-Funktion von Definition~\ref{buch:rekursion:def:gamma}, +die bis anhin noch nicht gerechtfertigt wurde. + +In~\eqref{buch:rekursion:gamma:betax1} ist gezeigt worden, dass +$B(x,1)=1/x$. +Andererseits zeigt \eqref{buch:rekursion:gamma:betagamma} für $y=1$, +dass +\begin{align} +\frac1x += +B(x,1) +&= +\frac{\Gamma(1)}{\Gamma(x+1)}\int_0^\infty s^{x-1}e^{-s}\,ds. +\notag +\intertext{% +Wegen $\Gamma(1)=1$ und $\Gamma(x+1)=x\Gamma(x)$ finden wir nach +Multiplikation mit $x\Gamma(x)$:} +\Gamma(x) +&= +\int_0^\infty s^{x-1}e^{-s}\,ds, +\label{buch:rekursion:gamma:integralbeweis} +\end{align} +was die Integraldarstellung +von Definition~\ref{buch:rekursion:def:gamma}, +der Gamma-Funktion beweist. +Durch Einsetzen der Integralformel im Ausdruck +\eqref{buch:rekursion:gamma:betagamma} folgt der folgende +Satz. + +\begin{satz} +Die Beta-Funktion kann aus der Gamma-Funktion nach +\begin{equation} +B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} +\label{buch:rekursion:gamma:betagamma} +\end{equation} +berechnet werden. +\end{satz} + +\subsubsection{Der Wert von $\Gamma(\frac12)$?} +Als Anwendung der Formel~\eqref{buch:rekursion:gamma:betagamma} +untersuchen wir den Fall $y=1-x$. +In diesem Fall wird der Nenner zu $\Gamma(x+1-x)=\Gamma(1)=1$ und damit +\begin{equation} +\Gamma(x)\Gamma(1-x) += +B(x,1-x) += +\int_0^1 t^{x-1}(1-t)^{-x}\,dt. +\label{buch:rekursion:gamma:spiegelung-betaintegral} +\end{equation} +Sofern man in der Lage ist, das Integral auf der rechten Seite von +\eqref{buch:rekursion:gamma:spiegelung-betaintegral} auszuwerten, +kann man eine einfache Beziehung zwischen zwei Werten der Gamma-Funktion +an Stellen, die durch eine Spiegelung an der Geraden +$\operatorname{Re}x=\frac12$ auseinander hervorgehen. +Für $x=\frac12$ wird der Ausdruck besonders einfach: +\[ +\Gamma({\textstyle\frac12})^2 += +\int_0^1 t^{-\frac12}(1-t)^{-\frac12}\,dt += +\int_0^1 \frac{1}{\sqrt{t(1-t)}}\,dt. +\] +Mit der Substition $t=\sin^2 s$ wird daraus +\[ +\int_0^{\frac{\pi}2} +\frac{1}{ +\sqrt{\sin^2s(1-\sin^2s)} +} +2\sin s\cos s +\,ds += +2 +\int_0^{\frac{\pi}2} +\,ds += +\pi, +\] +wobei wir $dt = 2\sin s\cos s\,ds$ verwendet haben. +Somit folgt +\begin{equation} +\Gamma({\textstyle\frac12})^2 = \pi +\qquad\Rightarrow\qquad +\Gamma({\textstyle\frac12}) = \sqrt{\pi}. +\label{buch:rekursion:gamma:gamma12} +\end{equation} +Matt Parker hat auf seinem Youtube-Kanal {\em Stand-up Maths} dieses Resultat +sogar zum Titel eines Videos\footnote{\url{https://youtu.be/dGnIJFzkLI4}} +gemacht: +{\em What is the factorial of $-\nicefrac{1}{2}$?} +Die Antwort ist natürlich nur möglich, indem man +$(-\frac12)!$ als Wert +\[ +(-{\textstyle\frac12})! += +\Gamma(-{\textstyle\frac12}+1) += +\Gamma({\textstyle\frac12}) += +\sqrt{\pi} +\] +der Gamma-Funktion interpretiert. + +\subsubsection{Alternative Parametrisierungen} +Die Substitution $t=\sin^2 s$ hat im vorangegangenen Abschnitt +ermöglicht, $\Gamma(\frac12)$ zu ermitteln. +Die Substition erlaubt aber auch, das Beta-Integral in eine alternative +Form zu bringen. +Aus der Definition~\ref{buch:rekursion:gamma:def:beta-funktion} +wird damit +\begin{align*} +B(x,y) +&= +\int_0^1 t^{x-1} (1-t)^{y-1}\,dt +\\ +&= +2 +\int_0^{\frac{\pi}2} \sin^{2(x-1)} s\cdot (1-\sin^2 s)^{y-1} +\cdot \sin s\cos s\,ds +\\ +&= +2 +\int_0^{\frac{\pi}2} \sin^{2x-1}s \cos^{2y-1} s\,ds. +\intertext{Unter Verwendung der Formel~\eqref{buch:rekursion:gamma:betagamma}, +die die Beta-Funktion durch Gamma-Funktionen auszudrücken erlaubt, findet +man die Formel} +\int_0^{\frac{\pi}2} \sin^{2x-1}s \cos^{2y-1} s\,ds +&= +\frac{\Gamma(x)\Gamma(y)}{2\Gamma(x+y)} +\end{align*} +für ein bestimmtes Integral von Potenzen von Sinus- und Kosinus-Funktionen. + +Die alternative Substitution $t = s/(s+1)$ verwandelt das Beta-Integral +$B(x,y)$ in ein Integral über die positive Halbachse ab: +\begin{align} +B(x,y) +&= +\int_0^1 t^{x-1}(1-t)^{y-1}\,dt +\notag +\\ +&= +\int_0^\infty +\frac{s^{x-1}}{(s+1)^{x-1}} +\frac{1}{(s+1)^{y-1}} +\frac{ds}{(s+1)^2} +\notag +\\ +&= +\int_0^\infty +\frac{s^{x-1}}{(s+1)^{x+y}}\,ds, +\label{buch:rekursion:gamma:beta:sinf} +\end{align} +wobei wir +\[ +\frac{dt}{ds} += +\frac{d}{ds} +\frac{s}{s+1} += +\frac{(s+1)-s}{(s+1)^2} += +\frac{1}{(s+1)^2} +\] +verwendet haben. +Diese Darstellung des Beta-Integrals wird später +% XXX Ort ergänzen +dazu verwendet, die Spiegelungsformel für die Gamma-Funktion +herzuleiten. + +Eine weitere mögliche Parametrisierung verwendet $t = (1+s)/2$ +mit $dt=\frac12 ds$. +Damit wird das Beta-Integral +\begin{equation} +B(x,y) += +\int_0^1 t^{x-1}(1-t)^{y-1}\,dt += +\frac12 +\int_{-1}^1 +\biggl(\frac{1+s}2\biggr)^{x-1} +\biggl(\frac{1-s}2\biggr)^{y-1} +\,ds += +2^{1-x-y} +\int_{-1}^1 +(1+s)^{x-1}(1-s)^{y-1} +\,ds. +\label{buch:rekursion:gamma:beta:symm} +\end{equation} + +\subsubsection{Die Verdoppelungsformel von Legendre} +Die trigonometrische Substitution kann dazu verwendet werden, die +Legendresche Verdoppelungsformel für die Gamma-Funktion herzuleiten. + +\begin{satz}[Legendre] +\[ +\Gamma(x)\Gamma(x+{\textstyle\frac12}) += +2^{1-2x}\sqrt{\pi} +\Gamma(2x) +\] +\end{satz} + +\begin{proof}[Beweis] +Der Wert $\Gamma(2x)$ entsteht, wenn man $B(x,x)$ mit Hilfe der +Gamma-Funktion als +\[ +B(x,x) += +\frac{\Gamma(x)^2}{\Gamma(2x)} +\] +schreibt. +Das Ziel ist, $B(x,x)$ auf einem alternativen Weg zu berechnen. + +Mit Hilfe von \eqref{buch:rekursion:gamma:beta:symm} +kann man das Beta-Integral zu +\begin{align*} +B(x,x) +&= +2^{1-2x} +\int_{-1}^1 +(1+s)^{x-1}(1-s)^{x-1} +\,ds += +2^{1-2x} +\int_{-1}^1(1-s^2)^{x-1}\,ds +\end{align*} +vereinfachen. +Der Integrand ist gerade, es folgt +\[ +B(x,x) += +2^{1-2x} +\cdot 2 +\int_0^1(1-s^2)^{x-1}\,ds. +\] +Das Integral kann mit der Substitution $s^2=t$ wieder in die Form +eines Beta-Integrals gebracht werden: +\begin{align*} +2\int_0^1(1-s^2)^{x-1}\,ds +&= +\int_0^1 (1-t)^{x-1} \,\frac{dt}{\sqrt{t}} += +\int_0^1 t^{\frac12-1}(1-t)^{x-1}\,dt += +B({\textstyle\frac12},x). +\end{align*} +In der Substitution haben wir $2s\,ds = dt$ oder $2\,ds = dt/\sqrt{t}$ +verwendet. +Das letzte Beta-Integral kann man nun wieder mit Gamma-Funktionen +schreiben, nämlich als +\[ +B({\textstyle\frac12},x) += +\frac{\Gamma({\textstyle\frac12})\Gamma(x)}{\Gamma(x+{\textstyle\frac12})}. +\] +Setzt man alles zusammen, erhält man jetzt +\begin{align*} +\frac{\Gamma(x)^2}{\Gamma(2x)} +&= +\frac1{2^{2x-1}} +\frac{\Gamma({\textstyle\frac12})\Gamma(x)}{\Gamma(x+{\textstyle\frac12})} +\\ +\Rightarrow\qquad +\Gamma(x)\Gamma(x+{\textstyle\frac12}) +&= +2^{1-2x} +\Gamma({\textstyle\frac12})\Gamma(2x) += +2^{1-2x}\sqrt{\pi}\Gamma(2x), +\end{align*} +wobei wir den bekannten Wert $\Gamma(\frac12)=\sqrt{\pi}$ verwendet haben. +\end{proof} + +Setzt man $x=\frac12$ in die Verdoppelungsformel ein, erhält man +\[ +\Gamma({\textstyle\frac12})\Gamma(1) = 2^{1-2\frac12}\sqrt{\pi}\Gamma(1) +\qquad\Rightarrow\qquad +\Gamma({\textstyle\frac12}) = \sqrt{\pi}, +\] +in Übereinstimmung mit dem bereits bekannten Wert. + +\subsubsection{Beta-Funktion und Binomialkoeffizienten} +Die Binomialkoeffizienten können mit Hilfe der Fakultät als +\begin{equation} +\binom{n}{k} += +\frac{n!}{(n-k)!\,k!} += +\frac{\Gamma(n-1)}{\Gamma(n-k-1)\Gamma(k-1)} += +\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k-1)\Gamma(k-1)} += +\frac{n-2}{B(n-k-1,k-1)} +\label{buch:rekursion:gamma:binombeta} +\end{equation} +geschrieben werden. +Die Rekursionsbeziehung +\[ +\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} +\] +der Binomialkoeffizienten erzeugt das vertraute Pascal-Dreieck, +die Formel \eqref{buch:rekursion:gamma:binombeta} für die +Binomialkoeffizienten macht daraus +\[ +\frac{n-1}{B(n-k,k-1)} += +\frac{n-2}{B(n-k,k-2)} ++ +\frac{n-2}{B(n-k-1,k-1)}, +\] +die für ganzzahlige Argumente gilt. +Wir wollen nachrechnen, dass dies für beliebige Argumente gilt. +\begin{align*} +\frac{(n-1)\Gamma(n-1)}{\Gamma(n-k)\Gamma(k-1)} +&= +\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k)\Gamma(k-2)} ++ +\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k-1)\Gamma(k-1)} +\\ +\frac{\Gamma(n)}{\Gamma(n-k)\Gamma(k-1)} +&= +\frac{\Gamma(n-1)}{\Gamma(n-k)\Gamma(k-2)} ++ +\frac{\Gamma(n-1)}{\Gamma(n-k-1)\Gamma(k-1)} +\intertext{Durch Zusammenfassen der Faktoren im Zähler mit Hilfe +der Rekursionsformel für die Gamma-Funktion und Multiplizieren +mit dem gemeinsamen Nenner +$\Gamma(n-k)\Gamma(k-1)=(n-k-1)\Gamma(n-k-1)(k-2)\Gamma(k-2)$ wird daraus} +\Gamma(n) +&= +(k-2) +\Gamma(n-1) ++ +(n-k-1) +\Gamma(n-1) +\intertext{Indem wir die Rekursionsformel für die Gamma-Funktion auf +die rechte Seite anwenden können wir erreichen, dass in allen Termen +ein Faktor +$\Gamma(n-1)$ auftritt:} +(n-1)\Gamma(n-1) +&= +(k-2)\Gamma(n-1) ++ +(n+k-1)\Gamma(n-1) +\\ +n-1 +&= +k-2 ++ +n-k-1 +\end{align*} + -- cgit v1.2.1