From f5047d4d780e996a8b8f7738c1ac7c884a07f135 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 13 Mar 2022 23:26:58 +0100 Subject: new stuff about beta, test2 --- buch/chapters/040-rekursion/beta.tex | 104 +++++++---------------------------- 1 file changed, 20 insertions(+), 84 deletions(-) (limited to 'buch/chapters/040-rekursion/beta.tex') diff --git a/buch/chapters/040-rekursion/beta.tex b/buch/chapters/040-rekursion/beta.tex index ea847bc..ff59bad 100644 --- a/buch/chapters/040-rekursion/beta.tex +++ b/buch/chapters/040-rekursion/beta.tex @@ -3,11 +3,17 @@ % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % -\subsection{Die Beta-Funktion -\label{buch:rekursion:gamma:subsection:beta}} +\section{Die Beta-Funktion +\label{buch:rekursion:gamma:section:beta}} Die Eulersche Integralformel für die Gamma-Funktion in -Definition~\ref{buch:rekursion:def:gamma} wurde bisher nicht -gerechtfertigt. +Definition~\ref{buch:rekursion:def:gamma} wurde in +Abschnitt~\ref{buch:subsection:integral-eindeutig} +mit dem Satz von Mollerup gerechtfertigt. +Man kann Sie aber auch als Grenzfall der Beta-Funktion verstehen, +die in diesem Abschnitt dargestellt wird. + + +\subsection{Beta-Integral} In diesem Abschnitt wird das Beta-Integral eingeführt, eine Funktion von zwei Variablen, welches eine Integral-Definition mit einer reichaltigen Menge von Rekursionsbeziehungen hat, die sich direkt auf @@ -233,6 +239,16 @@ B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} berechnet werden. \end{satz} +% +% Info über die Beta-Verteilung +% +\input{chapters/040-rekursion/betaverteilung.tex} + +\subsection{Weitere Eigenschaften der Gamma-Funktion} +Die nahe Verwandtschaft der Gamma- mit der Beta-Funktion ermöglicht +nun, weitere Eigenschaften der Gamma-Funktion mit Hilfe der Beta-Funktion +herzuleiten. + \subsubsection{Nochmals der Wert von $\Gamma(\frac12)$?} Der Wert von $\Gamma(\frac12)=\sqrt{\pi}$ wurde bereits in \eqref{buch:rekursion:gamma:wert12} @@ -484,83 +500,3 @@ Setzt man $x=\frac12$ in die Verdoppelungsformel ein, erhält man in Übereinstimmung mit dem aus \eqref{buch:rekursion:gamma:gamma12} bereits bekannten Wert. -\subsubsection{Beta-Funktion und Binomialkoeffizienten} -Die Binomialkoeffizienten können mit Hilfe der Fakultät als -\begin{align*} -\binom{n}{k} -&= -\frac{n!}{(n-k)!\,k!} -\intertext{geschrieben werden. -Drückt man die Fakultäten durch die Gamma-Funktion aus, erhält man} -&= -\frac{\Gamma(n+1)}{\Gamma(n-k+1)\Gamma(k+1)}. -\intertext{Schreibt man $x=k-1$ und $y=n-k+1$, wird daraus -wegen $x+y=k+1+n-k+1=n+2=(n+1)+1$} -&= -\frac{\Gamma(x+y-1)}{\Gamma(x)\Gamma(y)}. -\intertext{Die Rekursionsformel für die Gamma-Funktion erlaubt, -den Zähler umzuwandeln in $\Gamma(x+y-1)=\Gamma(x+y)/(x+y-1)$, so dass -der Binomialkoeffizient schliesslich} -&= -\frac{\Gamma(x+y)}{(x+y-1)\Gamma(x)\Gamma(y)} -= -\frac{1}{(n-1)B(n-k+1,k+1)} -\label{buch:rekursion:gamma:binombeta} -\end{align*} -geschrieben werden kann. -Die Rekursionsbeziehung -\[ -\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} -\] -der Binomialkoeffizienten erzeugt das vertraute Pascal-Dreieck, -die Formel \eqref{buch:rekursion:gamma:binombeta} für die -Binomialkoeffizienten macht daraus -\[ -\frac{n-1}{B(n-k,k-1)} -= -\frac{n-2}{B(n-k,k-2)} -+ -\frac{n-2}{B(n-k-1,k-1)}, -\] -die für ganzzahlige Argumente gilt. -Wir wollen nachrechnen, dass dies für beliebige Argumente gilt. -\begin{align*} -\frac{(n-1)\Gamma(n-1)}{\Gamma(n-k)\Gamma(k-1)} -&= -\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k)\Gamma(k-2)} -+ -\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k-1)\Gamma(k-1)} -\\ -\frac{\Gamma(n)}{\Gamma(n-k)\Gamma(k-1)} -&= -\frac{\Gamma(n-1)}{\Gamma(n-k)\Gamma(k-2)} -+ -\frac{\Gamma(n-1)}{\Gamma(n-k-1)\Gamma(k-1)} -\intertext{Durch Zusammenfassen der Faktoren im Zähler mit Hilfe -der Rekursionsformel für die Gamma-Funktion und Multiplizieren -mit dem gemeinsamen Nenner -$\Gamma(n-k)\Gamma(k-1)=(n-k-1)\Gamma(n-k-1)(k-2)\Gamma(k-2)$ wird daraus} -\Gamma(n) -&= -(k-2) -\Gamma(n-1) -+ -(n-k-1) -\Gamma(n-1) -\intertext{Indem wir die Rekursionsformel für die Gamma-Funktion auf -die rechte Seite anwenden können wir erreichen, dass in allen Termen -ein Faktor -$\Gamma(n-1)$ auftritt:} -(n-1)\Gamma(n-1) -&= -(k-2)\Gamma(n-1) -+ -(n+k-1)\Gamma(n-1) -\\ -n-1 -&= -k-2 -+ -n-k-1 -\end{align*} - -- cgit v1.2.1 From e71c0efc46317cd9a2e1acb2304b0adadfc08da3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 16 Jun 2022 22:17:47 +0200 Subject: some fixes in chapter 4 --- buch/chapters/040-rekursion/beta.tex | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'buch/chapters/040-rekursion/beta.tex') diff --git a/buch/chapters/040-rekursion/beta.tex b/buch/chapters/040-rekursion/beta.tex index ff59bad..13e074f 100644 --- a/buch/chapters/040-rekursion/beta.tex +++ b/buch/chapters/040-rekursion/beta.tex @@ -13,7 +13,8 @@ Man kann Sie aber auch als Grenzfall der Beta-Funktion verstehen, die in diesem Abschnitt dargestellt wird. -\subsection{Beta-Integral} +\subsection{Beta-Integral +\label{buch:rekursion:gamma:subsection:integralbeweis}} In diesem Abschnitt wird das Beta-Integral eingeführt, eine Funktion von zwei Variablen, welches eine Integral-Definition mit einer reichaltigen Menge von Rekursionsbeziehungen hat, die sich direkt auf -- cgit v1.2.1 From 3a95957a38a1cc8bcd865459a75cda87a2a8b56c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 18 Jun 2022 21:41:57 +0200 Subject: add new image, stuff about hypergeometrich series --- buch/chapters/040-rekursion/beta.tex | 16 ++++++++++++++-- 1 file changed, 14 insertions(+), 2 deletions(-) (limited to 'buch/chapters/040-rekursion/beta.tex') diff --git a/buch/chapters/040-rekursion/beta.tex b/buch/chapters/040-rekursion/beta.tex index 13e074f..35ff758 100644 --- a/buch/chapters/040-rekursion/beta.tex +++ b/buch/chapters/040-rekursion/beta.tex @@ -8,7 +8,8 @@ Die Eulersche Integralformel für die Gamma-Funktion in Definition~\ref{buch:rekursion:def:gamma} wurde in Abschnitt~\ref{buch:subsection:integral-eindeutig} -mit dem Satz von Mollerup gerechtfertigt. +mit dem Satz~\ref{buch:satz:bohr-mollerup} +von Bohr-Mollerup gerechtfertigt. Man kann Sie aber auch als Grenzfall der Beta-Funktion verstehen, die in diesem Abschnitt dargestellt wird. @@ -31,6 +32,7 @@ B(x,y) \int_0^1 t^{x-1} (1-t)^{y-1}\,dt \] für $\operatorname{Re}x>0$, $\operatorname{Re}y>0$. +\index{Beta-Integral}% \end{definition} Aus der Definition kann man sofort ablesen, dass $B(x,y)=B(y,x)$. @@ -321,6 +323,9 @@ $(-\frac12)!$ als Wert \] der Gamma-Funktion interpretiert. +% +% Alternative Parametrisierung +% \subsubsection{Alternative Parametrisierungen} Die Substitution $t=\sin^2 s$ hat im vorangegangenen Abschnitt ermöglicht, $\Gamma(\frac12)$ zu ermitteln. @@ -383,8 +388,10 @@ wobei wir \] verwendet haben. Diese Darstellung des Beta-Integrals wird später -% XXX Ort ergänzen +in Satz~\ref{buch:funktionentheorie:satz:spiegelungsformel} dazu verwendet, die Spiegelungsformel für die Gamma-Funktion +\index{Gamma-Funktion!Spiegelungsformel}% +\index{Spiegelungsformel der Gamma-Funktion}% herzuleiten. Eine weitere mögliche Parametrisierung verwendet $t = (1+s)/2$ @@ -408,6 +415,9 @@ B(x,y) \label{buch:rekursion:gamma:beta:symm} \end{equation} +% +% +% \subsubsection{Die Verdoppelungsformel von Legendre} Die trigonometrische Substitution kann dazu verwendet werden, die Legendresche Verdoppelungsformel für die Gamma-Funktion herzuleiten. @@ -419,6 +429,8 @@ Legendresche Verdoppelungsformel für die Gamma-Funktion herzuleiten. 2^{1-2x}\sqrt{\pi} \Gamma(2x) \] +\index{Verdoppelungsformel}% +\index{Gamma-Funktion!Verdoppelungsformel von Legendre}% \end{satz} \begin{proof}[Beweis] -- cgit v1.2.1 From 931871e8c8e9b266b9b626d816a803bbd2c56653 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 20:55:53 +0200 Subject: more index stuff --- buch/chapters/040-rekursion/beta.tex | 2 ++ 1 file changed, 2 insertions(+) (limited to 'buch/chapters/040-rekursion/beta.tex') diff --git a/buch/chapters/040-rekursion/beta.tex b/buch/chapters/040-rekursion/beta.tex index 35ff758..20e3f0e 100644 --- a/buch/chapters/040-rekursion/beta.tex +++ b/buch/chapters/040-rekursion/beta.tex @@ -234,6 +234,7 @@ Durch Einsetzen der Integralformel im Ausdruck Satz. \begin{satz} +\index{Satz!Beta-Funktion und Gamma-Funktion}% Die Beta-Funktion kann aus der Gamma-Funktion nach \begin{equation} B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} @@ -423,6 +424,7 @@ Die trigonometrische Substitution kann dazu verwendet werden, die Legendresche Verdoppelungsformel für die Gamma-Funktion herzuleiten. \begin{satz}[Legendre] +\index{Satz!Verdoppelungsformel@Verdoppelungsformel für $\Gamma(x)$}% \[ \Gamma(x)\Gamma(x+{\textstyle\frac12}) = -- cgit v1.2.1