From dcd6d6037a84343f19333fe86a904bdc0bb8a36f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 17 Jun 2022 11:20:00 +0200 Subject: new section, cleanup --- buch/chapters/040-rekursion/hypergeometrisch.tex | 170 ++++++++++++++++++++--- 1 file changed, 154 insertions(+), 16 deletions(-) (limited to 'buch/chapters/040-rekursion/hypergeometrisch.tex') diff --git a/buch/chapters/040-rekursion/hypergeometrisch.tex b/buch/chapters/040-rekursion/hypergeometrisch.tex index d92e594..39efc6b 100644 --- a/buch/chapters/040-rekursion/hypergeometrisch.tex +++ b/buch/chapters/040-rekursion/hypergeometrisch.tex @@ -16,22 +16,38 @@ n^3S_{n} mit Anfangswerten $S_0=1$ und $S_1=8$ angeben? Dies scheint auf den ersten Blick unmöglich kompliziert, man kann aber zeigen, dass -\[ +\begin{equation} S_n = \sum_{k=0}^n \binom{2n-2k}{n-k}^2 \binom{2k}{k}^2 -\] +\label{buch:rekursion:hypergeometrisch:eqn:Sn} +\end{equation} gilt (\cite[p.~xi]{buch:ab}). Die Lösung ist also eine Summe von Summanden, die sehr viel einfacher aussehen und vor allem die besondere Eigenschaft haben, dass die -Quotienten aufeinanderfolgender Terme rationale Funktionen von von $k$ +Quotienten aufeinanderfolgender Terme rationale Funktionen von $k$ sind. -% XXX Quotient berechnen -Eine besonders simple solche Funktion ist die geometrische Reihe, die -im Abschnitt~\ref{buch:rekursion:hypergeometrisch:geometrisch} -in Erinnerung gerufen wird. +\begin{definition} +Ein Folge heisst {\em hypergeometrisch}, wenn der Quotient aufeinanderfolgender +\index{hypergeometrische Folge}% +\index{Folge, hypergeometrisch}% +Terme eine rationale Funktion des Folgenindex ist. +\end{definition} + +Die Terme der Reihenentwicklungen aller bisher behandelten speziellen +Funktionen waren hypergeometrisch. +Im aktuellen Abschnitt soll daher die Klasse der sogenannten +hypergeometrischen Funktionen untersucht werden, die durch diese +Eigenschaft charakterisiert sind. + +In Abschnitt~\ref{buch:rekursion:hypergeometrisch:binomialkoeffizienten} +wird klar, dass Folgen, deren Terme aus Fakultäten und Binomialkoeffizienten +immer hypergeometrisch sind. +Die Untersuchung der geometrischen Reihe in +Abschnitt~\ref{buch:rekursion:hypergeometrisch:geometrisch} +motiviert die Namensgebung. Abschnitt~\ref{buch:rekursion:hypergeometrisch:reihen} definiert den Begriff der hypergeometrischen Reihe und zeigt, wie sie in eine Standardform gebracht werden können. @@ -39,22 +55,99 @@ In Abschnitt~\ref{buch:rekursion:hypergeometrisch:beispiele} schliesslich wird an Hand von Beispielen gezeigt, wie bekannte Funktionen als hypergeometrische Funktionen interpretiert werden können. +% +% Quotienten von Binomialkoeffizienten +% +\subsection{Quotienten von Binomialkoeffizienten +\label{buch:rekursion:hypergeometrisch:binomialkoeffizienten}} +Aufeinanderfolgende Terme der Summe +\eqref{buch:rekursion:hypergeometrisch:eqn:Sn} +sollen als Quotienten eine rationale Funktion haben. +Dies ist eine allgemeine Eigenschaft von Folgen, die durch Fakultäten +oder Binomialkoeffizienten definiert sind, wie die beiden folgenden +Sätze zeigen. + +\begin{satz} +\label{buch:rekursion:hypergeometrisch:satz:fakquo} +Der Quotient aufeinanderfolgender Folgenglieder +der Folge $c_k=(a+bk)!$ ist der ein Polynom vom Grad $b$. +\end{satz} +\begin{proof}[Beweis] +\begin{align*} +\frac{c_{k+1}}{c_k} +&= +\frac{(a+b(k+1))!}{(a+bk)!} += +\frac{(a+bk+b)!}{(a+b)!} +\\ +&= +(a+bk+1)(a+bk+2)\cdots(a+bk+b) += +(a+bk+1)_b +\end{align*} +Das Pochhammer-Symbol hat $b$ Faktoren, es ist ein Polynom vom Grad $b$. +\end{proof} + +\begin{satz} +\label{buch:rekursion:hypergeometrisch:satz:binomquo} +Die Quotienten aufeinanderfolgender Werte der Binomialkoeffizienten +\[ +f_k += +\binom{a+bk}{c+dk} +\] +ist eine rationale Funktion von $k$ mit Zähler- und Nennergrad $b$. +\end{satz} + +\begin{proof}[Beweis] +Indem man die Binomialkoeffizienten mit Fakultäten als +\[ +\binom{a+bk}{c+dk} += +\frac{(a+bk)!}{(c+dk)!(a-c+(b-d)k)!} +\] +ausschreibt, findet man mit +Satz~\ref{buch:rekursion:hypergeometrisch:satz:fakquo} +für die Quotienten +\begin{align} +\frac{f_{k+1}}{f_k} +&= +\frac{(a+bk+1)_b}{(c+dk+1)_d\cdot(a-c+(b-d)k+1)_{b-d}} +\label{buch:rekursion:eqn:binomquotient} +\end{align} +Die Pochhammer-Symbole sind Polynome vom Grad $b$, $d$ bzw.~$b-d$. +Insbesondere ist auch das Nenner-Polynom vom Grad $d+(b-d)=b$. +\end{proof} + +Aus den Sätzen~\ref{buch:rekursion:hypergeometrisch:satz:fakquo} +und +\ref{buch:rekursion:hypergeometrisch:satz:binomquo} +folgt jetzt sofort, dass auch der Quotient aufeinanderfolgender +Summanden der Summe~\eqref{buch:rekursion:hypergeometrisch:eqn:Sn} +eine rationale Funktion von $k$ ist. + +% +% Die geometrische Reihe +% \subsection{Die geometrische Reihe \label{buch:rekursion:hypergeometrisch:geometrisch}} -Die besonders einfache Potenzreihe +Die Reihe \[ f(q) = \sum_{k=0}^\infty aq^k \] -heisst die {\em geometrische Reihe}. +heisst die {\em geometrische Reihe} ist besonders einfache +Reihe mit einer hypergeometrischen Folge von Termen. +\index{geometrische Reihe}% +\index{Reihe!geometrische}% Die Partialsummen \[ S_n = \sum_{k=0}^n aq^k \] -kann mit der Differenz +können aus der Differenz \begin{equation} (1-q)S_n = @@ -75,8 +168,7 @@ a\frac{1-q^{n+1}}{1-q} \label{buch:rekursion:hypergeometrisch:eqn:geomsumme} \end{equation} auflösen kann. - -Fü $q<1$ geht $q^n\to 0$ und damit konvergiert +Für $q<1$ geht $q^n\to 0$ und damit konvergiert $S_n$ gegen \[ \sum_{k=0}^\infty aq^k @@ -97,6 +189,9 @@ Die Berechnung der Summe in beruht darauf, dass die Multiplikation mit $q$ einen ``anderen'' Teil der Summe ergibt, der sich in der Differenze weghebt. +% +% Hypergeometrische Reihen +% \subsection{Hypergeometrische Reihen \label{buch:rekursion:hypergeometrisch:reihen}} Es ist plausibel, dass eine etwas lockerere Bedingung an die @@ -105,11 +200,14 @@ ermöglichen wird, interessante Aussagen über die durch die Reihe beschriebenen Funktionen zu machen. \begin{definition} -Eine Reihe +Eine durch die Reihe \[ f(x) = \sum_{k=0}^\infty a_k x^k \] -heisst {\em hypergeometrisch}, wenn der Quotient aufeinanderfolgender +definierte Funktion $f(x)$ heisst {\em hypergeometrisch}, +wenn der Quotient aufeinanderfolgender +\index{hypergeometrisch} +\index{Reihe!hypergeometrisch} Koeffizienten eine rationale Funktion von $k$ ist, wenn also \[ @@ -485,6 +583,7 @@ x\cdot \subsubsection{Trigonometrische Funktionen} +\index{trigonometrische Funktionen!als hypergeometrische Funktionen}% Die Kosinus-Funktion wurde bereits als hypergeometrische Funktion erkannt, im Folgenden soll dies auch noch für die Sinus-Funktion durchgeführt werden. @@ -586,6 +685,7 @@ x\cdot\mathstrut_0F_1\biggl( durch eine hypergeometrische Funktion ausdrücken. \subsubsection{Hyperbolische Funktionen} +\index{hyperbolische Funktionen!als hypergeometrische Funktionen}% Die für die Sinus-Funktion angewendete Methode lässt sich auch auf die Funktion \begin{align*} @@ -619,9 +719,47 @@ Dies illustriert die Rolle der hypergeometrischen Funktionen als ``grosse Vereinheitlichung'' der bekannten speziellen Funktionen. \subsubsection{Tschebyscheff-Polynome} +\index{Tschebyscheff-Polynome}% +Man kann zeigen, dass auch die Tschebyscheff-Polynome sich durch die +hypergeometrischen Funktionen +\begin{equation} +T_n(x) += +\mathstrut_2F_1\biggl( +\begin{matrix}-n,n\\\frac12\end{matrix} +; +\frac12(1-x) +\biggr) +\label{buch:rekursion:hypergeometrisch:tschebyscheff2f1} +\end{equation} +ausdrücken lassen. +Beweisen kann man diese Beziehung zum Beispiel mit Hilfe der +Differentialgleichungen, denen die Funktionen genügen. +Diese Methode wird in +Abschnitt~\ref{buch:differentialgleichungen:section:hypergeometrisch} +von Kapitel~\ref{buch:chapter:differential} vorgestellt. -TODO -\url{https://en.wikipedia.org/wiki/Chebyshev_polynomials} +Die Tschebyscheff-Polynome sind nicht die einzigen Familien von Polynomen, +\index{Tschebyscheff-Polynome!als hypergeometrische Funktion} +die sich durch $\mathstrut_pF_q$ ausdrücken lassen. +Für die zahlreichen Familien von orthogonalen Polynomen, die in +Kapitel~\ref{buch:chapter:orthogonalitaet} untersucht werden, +trifft dies auch zu. +Ein Funktion +\[ +\mathstrut_pF_q +\biggl( +\begin{matrix} +a_1,\dots,a_p\\ +b_1,\dots,b_q +\end{matrix} +;z +\biggr) +\] +ist genau dann ein Polynom, wenn mindestens einer der Parameter +$a_k$ eine negative ganze Zahl ist. +Der Grad des Polynoms ist der kleinste Betrag der negativ ganzzahligen +Werte unter den Parametern $a_k$. % % Ableitung und Stammfunktion -- cgit v1.2.1 From 3a95957a38a1cc8bcd865459a75cda87a2a8b56c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 18 Jun 2022 21:41:57 +0200 Subject: add new image, stuff about hypergeometrich series --- buch/chapters/040-rekursion/hypergeometrisch.tex | 184 +++++++++++++++++++++-- 1 file changed, 168 insertions(+), 16 deletions(-) (limited to 'buch/chapters/040-rekursion/hypergeometrisch.tex') diff --git a/buch/chapters/040-rekursion/hypergeometrisch.tex b/buch/chapters/040-rekursion/hypergeometrisch.tex index 39efc6b..1f42ade 100644 --- a/buch/chapters/040-rekursion/hypergeometrisch.tex +++ b/buch/chapters/040-rekursion/hypergeometrisch.tex @@ -200,6 +200,7 @@ ermöglichen wird, interessante Aussagen über die durch die Reihe beschriebenen Funktionen zu machen. \begin{definition} +\label{buch:rekursion:hypergeometrisch:def:allg} Eine durch die Reihe \[ f(x) = \sum_{k=0}^\infty a_k x^k @@ -218,9 +219,13 @@ wenn also mit Polynomen $p(k)$ und $q(k)$ ist. \end{definition} +% +% Beispiele von hypergeometrischen Funktionen +% +\subsubsection{Beispiele von hypergeometrischen Funktionen} Die geometrische Reihe ist natürlich eine hypergeometrische Reihe, wobei $p(k)/q(k)=1$ ist. -Etwas interessanter ist die Exponentialfunktion, durch die Taylor-Reihe +Etwas interessanter ist die Exponentialfunktion, die durch die Taylor-Reihe \[ e^x = \sum_{k=0}^\infty \frac{x^k}{k!} \] @@ -263,7 +268,30 @@ eine rationale Funktion mit Zählergrad $0$ und Nennergrad $2$. Es gibt also eine hypergeometrische Reihe $f(z)$ derart, dass $\cos x = f(x^2)$ ist. -Seien $p(k)$ und $q(k)$ zwei Polynome derart, dass +% +% Die hypergeometrischen Funktione pFq +% +\subsubsection{Die hypergeometrischen Funktionen $\mathstrut_pF_q$} +Die Definition~\ref{buch:rekursion:hypergeometrisch:def:allg} +einer hypergeometrischen Funktion wie auch die Verschiedenartigkeit +der Beispiele kännen den Eindruck vermitteln, dass die diese Klasse +von Funktionen unübersichtlich gross sein könnte. +Dem ist jedoch nicht so. +In diesem Abschnitt soll gezeigt werden, dass alle hypergeometrischen +Funktionen durch die in +Definition~\ref{buch:rekursion:hypergeometrisch:def} definierten +Funktionen $\mathstrut_pF_q$ ausgedrückt werden. +Die hypergeometrischen Funktionen können also vollständig parametrisiert +werden. + +Zu diesem Zweick sie +\[ +f(x) += +\sum_{k=0}^\infty a_kx^k +\] +eine hypergeometrische Funktion und +seien $p(k)$ und $q(k)$ zwei Polynome derart, dass \[ \frac{a_{k+1}}{a_k} = \frac{p(k)}{q(k)}. \] @@ -299,12 +327,12 @@ Dazu nehmen wir an, dass $a_i$, $i=1,\dots,n$ die Nullstellen von $p(k)$ sind und $b_j$, $j=1,\dots,m$ die Nullstellen von $q(k)$, dass man also die Polynome als \begin{align*} -p(k) &= x(k-a_1)(k-a_2)\cdots(k-a_n) +p(k) &= s(k-a_1)(k-a_2)\cdots(k-a_n) \\ q(k) &= (k-b_1)(k-b_2)\cdots(k-b_m) \end{align*} schreiben kann. -Der Faktor $x$ ist nötig, weil die Polynome $p(k)$ und $q(k)$ nicht +Der Faktor $s$ ist nötig, weil die Polynome $p(k)$ und $q(k)$ nicht notwendigerweise normiert sind. Um das Produkt der Quotienten zu vereinfachen, nehmen wir für den Moment @@ -314,14 +342,14 @@ Dann ist nach \[ a_{k} = -x^{k} +s^{k} \frac{ (k-1-a_1) \cdots (2-a_1)(1-a_1)(0-a_1) }{ (k-1-b_1) \cdots (2-b_1)(1-b_1)(0-b_1) } = -\frac{(-a_1)_k}{(-b_1)_k} x^k. +\frac{(-a_1)_k}{(-b_1)_k} s^k. \] Die Koeffizienten können daher als Quotienten von Pochhammer-Symbolen geschrieben werden. @@ -331,13 +359,16 @@ von der Form a_k = \frac{(-a_1)_k(-a_2)_k\cdots (-a_n)_k}{(-b_1)_k(-b_2)_k\cdots(-b_m)_k} -x^ka_0. +s^ka_0. \] -Jede hypergeometrische Reihe kann daher in der Form +Jede hypergeometrische Funktion kann daher in der Form \[ +f(x) += a_0 \sum_{k=0}^\infty \frac{(-a_1)_k(-a_2)_k\cdots (-a_n)_k}{(-b_1)_k(-b_2)_k\cdots(-b_m)_k} +s^k x^k \] geschrieben werden. @@ -371,9 +402,10 @@ zusätzlichen Faktor $(1)_k$ im Zähler des Bruchs von Pochhammer-Symbolen kompensieren, wodurch sich der Grad $p$ des Zählers natürlich um $1$ erhöht. -Die oben analysierte Summe $S$ kann mit der Definition als +Die oben analysierte Summe für $f(x)$ kann mit der +Definition~\ref{buch:rekursion:hypergeometrisch:def} als \[ -S +f(x) = a_0 \cdot @@ -381,11 +413,69 @@ a_0 \begin{matrix} -a_1,-a_2,\dots,-a_n,1\\ -b_1,-b_2,\dots,-a_m -\end{matrix}; x +\end{matrix}; sx \biggr) \] beschrieben werden. +% +% Elementare Rechenregeln +% +\subsubsection{Elementare Rechenregeln} +Die Funktionen $\mathstrut_pF_q$ sind nicht alle unabhängig. +In Abschnitt~\ref{buch:rekursion:hypergeometrisch:stammableitung} +wird gezeigt werden, dass Ableitung und Stammfunktion einer hypergeometrischen +Funktion durch Manipulation der Parameter $a_k$ und $b_k$ bestimmt werden +können. +Viel einfacher sind jedoch die folgenden, aus +Definition~\ref{buch:rekursion:hypergeometrisch:def} +offensichtlichen Regeln: + +\begin{satz}[Permutationsregel] +Sei $\pi$ eine beliebige Permutation der Zahlen $1,\dots,p$ und $\sigma$ eine +beliebige Permutation der Zahlen $1,\dots,q$, dann ist +\[ +\mathstrut_pF_q\biggl( +\begin{matrix} +a_1,\dots,a_p\\b_1,\dots,a_q +\end{matrix} +;x +\biggr) += +\mathstrut_pF_q\biggl( +\begin{matrix} +a_{\pi(1)},\dots,a_{\pi(p)}\\b_{\sigma(1)},\dots,b_{\sigma(q)} +\end{matrix} +;x +\biggr). +\] +\end{satz} + +\begin{satz}[Kürzungsformel] +Stimmt einer der Koeffizienten $a_k$ mit einem der Koeffizienten $b_i$ +überein, dann können sie weggelassen werden: +\[ +\mathstrut_{p+1}F_{q+1}\biggl( +\begin{matrix} +c,a_1,\dots,a_p\\ +c,b_1,\dots,b_q +\end{matrix}; +x +\biggr) += +\mathstrut_{p}F_{q}\biggl( +\begin{matrix} +a_1,\dots,a_p\\ +b_1,\dots,b_q +\end{matrix}; +x +\biggr). +\] +\end{satz} + +% +% Beispiele von hypergeometrischen Funktionen +% \subsection{Beispiele von hypergeometrischen Funktionen \label{buch:rekursion:hypergeometrisch:beispiele}} Viele der bekannten Reihenentwicklungen häufig verwendeter Funktionen @@ -393,6 +483,9 @@ lassen sich durch die hypergeometrischen Funktionen von Definition~\ref{buch:rekursion:hypergeometrisch:def} ausdrücken. In diesem Abschnitt werden einige Beispiel dazu gegeben. +% +% Die geometrische Reihe +% \subsubsection{Die geometrische Reihe} In der geometrischen Reihe fehlt der Nenner $k!$, es braucht daher einen Term $(1)_k$ im Zähler, um den Nenner zu kompensieren. @@ -410,6 +503,9 @@ a\sum_{k=0}^\infty a\cdot\mathstrut_1F_0(1,x). \] +% +% Die Exponentialfunktion +% \subsubsection{Exponentialfunktion} Die Exponentialfunktion ist die Reihe \[ @@ -421,7 +517,10 @@ benötigt, es ist daher e^x = \mathstrut_0F_0(x). \] -\subsubsection{Wurzelfunktion} +% +% Wurzelfunktionen +% +\subsubsection{Wurzelfunktionen} Die Wurzelfunktion $x\mapsto \sqrt{x}$ hat keine Taylor-Entwicklung in $x=0$, aber die Funktion $x\mapsto\sqrt{1+x}$ hat die Taylor-Reihe \[ @@ -510,11 +609,27 @@ Die Wurzelfunktion ist daher die hypergeometrische Funktion \sqrt{1\pm x} = \sum_{k=0}^\infty -\biggl(-\frac12\biggr)_k \frac{(-x)^k}{k!} +\biggl(-\frac12\biggr)_k \frac{(\pm x)^k}{k!} = \mathstrut_1F_0(-{\textstyle\frac12};\mp x). \] +Mit der Newtonschen Binomialreihe +\begin{align*} +(1+x)^\alpha +&= +1+\alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3+\dots +\\ +&= +\sum_{k=0}^\infty \frac{(-\alpha)_k}{k!}x^k += +\mathstrut_1F_0\biggl(\begin{matrix}-\alpha\\\text{---}\end{matrix};-x\biggr) +\end{align*} +kann man ganz analog jede beliebige Wurzelfunktion +durch $\mathstrut_1F_0$ ausdrücken. +% +% Logarithmusfunktion +% \subsubsection{Logarithmusfunktion} Für $x\in (-1,1)$ konvergiert die Taylor-Reihe \[ @@ -581,7 +696,9 @@ x\cdot \mathstrut_2F_1\biggl(\begin{matrix}1,1\\2\end{matrix};-x\biggr). \] - +% +% Trigonometrische Funktionen +% \subsubsection{Trigonometrische Funktionen} \index{trigonometrische Funktionen!als hypergeometrische Funktionen}% Die Kosinus-Funktion wurde bereits als hypergeometrische Funktion erkannt, @@ -684,6 +801,9 @@ x\cdot\mathstrut_0F_1\biggl( \end{equation} durch eine hypergeometrische Funktion ausdrücken. +% +% Hyperbolische Funktionen +% \subsubsection{Hyperbolische Funktionen} \index{hyperbolische Funktionen!als hypergeometrische Funktionen}% Die für die Sinus-Funktion angewendete Methode lässt sich auch @@ -718,6 +838,9 @@ ist diese Darstellung identisch mit der von $\sin x$. Dies illustriert die Rolle der hypergeometrischen Funktionen als ``grosse Vereinheitlichung'' der bekannten speziellen Funktionen. +% +% Tschebyscheff-Polynome +% \subsubsection{Tschebyscheff-Polynome} \index{Tschebyscheff-Polynome}% Man kann zeigen, dass auch die Tschebyscheff-Polynome sich durch die @@ -761,13 +884,39 @@ $a_k$ eine negative ganze Zahl ist. Der Grad des Polynoms ist der kleinste Betrag der negativ ganzzahligen Werte unter den Parametern $a_k$. +% +% Die Funktionen 0F1 +% +\subsubsection{Die Funktionen $\mathstrut_0F_1$} +\begin{figure} +\centering +\includegraphics{chapters/040-rekursion/images/0f1.pdf} +\caption{Graphen der Funktionen $\mathstrut_0F_1(;\alpha;x)$ für +verschiedene Werte von $\alpha$. +\label{buch:rekursion:hypergeometrisch:0f1}} +\end{figure} +Die Funktionen $\mathstrut_0F_1$ sind in den Beispielen mit der +beschränkten trigonometrischen Funktion $\sin x$ und mit der +exponentiell unbeschränkten Funktion $\sinh x$ mit dem gleichen +Wert des Parameters und nur einem Wechsel des Vorzeichens des +Arguments verbunden worden. +Die Graphen der Funktionen $\mathstrut_0F_1$, die in +Abbildung~\ref{buch:rekursion:hypergeometrisch:0f1} dargestellt sind, +machen dieses Verhalten plausibel. +Es wird sich später zeigen, dass $\mathstrut_0F_1$ auch mit den Bessel- +und den Airy-Funktionen verwandt sind. + + % % Ableitung und Stammfunktion % -\subsection{Ableitung und Stammfunktion hypergeometrischer Funktionen} +\subsection{Ableitung und Stammfunktion hypergeometrischer Funktionen +\label{buch:rekursion:hypergeometrisch:stammableitung}} Sowohl Ableitung wie auch Stammfunktion einer hypergeometrischen Funktion lässt sich immer durch hypergeometrische Reihen ausdrücken. - +% +% Ableitung +% \subsubsection{Ableitung} Wir gehen aus von der Funktion \begin{equation} @@ -909,6 +1058,9 @@ Funktion $\mathstrut_0F_1$ überein, es ist also wie erwartet} \end{align*} \end{beispiel} +% +% Stammfunktion +% \subsubsection{Stammfunktion} Eine Stammfunktion kann man auf die gleiche Art und Weise wie die Ableitung finden. -- cgit v1.2.1 From 13572bcfb58f8b486edf521965f99158aab8ce9c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 20 Jun 2022 10:58:52 +0200 Subject: fix some typos --- buch/chapters/040-rekursion/hypergeometrisch.tex | 83 ++++++++++++++++-------- 1 file changed, 57 insertions(+), 26 deletions(-) (limited to 'buch/chapters/040-rekursion/hypergeometrisch.tex') diff --git a/buch/chapters/040-rekursion/hypergeometrisch.tex b/buch/chapters/040-rekursion/hypergeometrisch.tex index 1f42ade..3b72ffa 100644 --- a/buch/chapters/040-rekursion/hypergeometrisch.tex +++ b/buch/chapters/040-rekursion/hypergeometrisch.tex @@ -432,9 +432,10 @@ Definition~\ref{buch:rekursion:hypergeometrisch:def} offensichtlichen Regeln: \begin{satz}[Permutationsregel] +\label{buch:rekursion:hypergeometrisch:satz:permuationsregel} Sei $\pi$ eine beliebige Permutation der Zahlen $1,\dots,p$ und $\sigma$ eine beliebige Permutation der Zahlen $1,\dots,q$, dann ist -\[ +\begin{equation} \mathstrut_pF_q\biggl( \begin{matrix} a_1,\dots,a_p\\b_1,\dots,a_q @@ -448,13 +449,15 @@ a_{\pi(1)},\dots,a_{\pi(p)}\\b_{\sigma(1)},\dots,b_{\sigma(q)} \end{matrix} ;x \biggr). -\] +\label{buch:rekursion:hypergeometrisch:eqn:permuationsregel} +\end{equation} \end{satz} \begin{satz}[Kürzungsformel] +\label{buch:rekursion:hypergeometrisch:satz:kuerzungsregel} Stimmt einer der Koeffizienten $a_k$ mit einem der Koeffizienten $b_i$ überein, dann können sie weggelassen werden: -\[ +\begin{equation} \mathstrut_{p+1}F_{q+1}\biggl( \begin{matrix} c,a_1,\dots,a_p\\ @@ -470,7 +473,8 @@ b_1,\dots,b_q \end{matrix}; x \biggr). -\] +\label{buch:rekursion:hypergeometrisch:eqn:kuerzungsregel} +\end{equation} \end{satz} % @@ -613,19 +617,25 @@ Die Wurzelfunktion ist daher die hypergeometrische Funktion = \mathstrut_1F_0(-{\textstyle\frac12};\mp x). \] -Mit der Newtonschen Binomialreihe +Mit der Newtonschen Binomialreihe, die in +Abschnitt~\ref{buch:differentialgleichungen:subsection:newtonschereihe} +hergleitet wird, +kann man ganz analog jede beliebige Wurzelfunktion \begin{align*} (1+x)^\alpha &= 1+\alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3+\dots -\\ -&= +%\\ +%& += \sum_{k=0}^\infty \frac{(-\alpha)_k}{k!}x^k = \mathstrut_1F_0\biggl(\begin{matrix}-\alpha\\\text{---}\end{matrix};-x\biggr) \end{align*} -kann man ganz analog jede beliebige Wurzelfunktion durch $\mathstrut_1F_0$ ausdrücken. +Dieses Resultat ist der Inhalt von +Satz~\ref{buch:differentialgleichungen:satz:newtonschereihe} + % % Logarithmusfunktion @@ -725,7 +735,7 @@ x f(-x^2). Die Funktion $f(z)$ soll jetzt als hypergeometrische Funktion geschrieben werden. Dazu muss zunächst wieder der Nenner $k!$ wiederhergestellt werden: -\[ +\begin{equation*} f(z) = 1 @@ -737,7 +747,7 @@ f(z) \frac{3!}{7!}\cdot \frac{z^3}{3!} + \dots -\] +\end{equation*} Die Koeffizienten $k!/(2k+1)!$ müssen jetzt durch Pochhammer-Symbole mit jeweils $k$ Faktoren ausgedrückt werden. Dazu muss die Fakultät $(2k+1)!$ in zwei Produkte @@ -777,15 +787,27 @@ müssen wird mit $2^{2k}$ kompensieren: (1)_k\cdot \biggl(\frac{3}{2}\biggr)_k \end{align*} Setzt man dies in die Reihe ein, wird -\[ +\begin{equation} f(z) = \sum_{k=0}^\infty \frac{(1)_k}{(1)_k\cdot (\frac{3}{2})_k\cdot 4^k} z^k = -\mathstrut_1F_2\biggl(1;1,\frac{3}{2};\frac{z}4\biggr). -\] +\mathstrut_1F_2\biggl( +\begin{matrix}1\\1,\frac{3}{2}\end{matrix};\frac{z}4 +\biggr) += +\mathstrut_0F_1\biggl( +\begin{matrix}\text{---}\\\frac{3}{2}\end{matrix};\frac{z}4 +\biggr). +\label{buch:rekursion:hyperbolisch:eqn:hilfsfunktionf} +\end{equation} +Im letzten Schritt wurde die Kürzungsregel +\eqref{buch:rekursion:hypergeometrisch:eqn:kuerzungsregel} +von +Satz~\ref{buch:rekursion:hypergeometrisch:satz:kuerzungsregel} +angewendet. Damit lässt sich die Sinus-Funktion als \begin{equation} \sin x @@ -812,21 +834,24 @@ auf die Funktion \sinh x &= \sum_{k=0}^\infty \frac{x^{2k+1}}{(2k+1)!} -\\ -&= +%\\ +%& += x \, \biggl( 1+\frac{x^2}{3!} + \frac{x^4}{5!}+\frac{x^6}{7!}+\dots \biggr) -\\ +\intertext{Die Reihe in der Klammer lässt sich mit der Funktion +$f$ von \eqref{buch:rekursion:hyperbolisch:eqn:hilfsfunktionf} +schreiben als} &= -xf(-x^2) -= -x\,\mathstrut_1F_2\biggl( -\begin{matrix}1\\1,\frac{3}{2}\end{matrix} -;\frac{x^2}{4} -\biggr) +x\,f(-x^2) +%= +%x\cdot\mathstrut_1F_2\biggl( +%\begin{matrix}1\\1,\frac{3}{2}\end{matrix} +%;\frac{x^2}{4} +%\biggr) = x\cdot\mathstrut_0F_1\biggl( \begin{matrix}\text{---}\\\frac{3}{2}\end{matrix} @@ -1030,7 +1055,7 @@ Damit kann jetzt die Kosinus-Funktion als \frac{1}{(\frac12)_k} \frac{1}{k!}\biggl(\frac{-x^2}{4}\biggr)^k = -\mathstrut_0F_1\biggl(;\frac12;-\frac{x^2}4\biggr) +\mathstrut_0F_1\biggl(\begin{matrix}\text{---}\\\frac12\end{matrix};-\frac{x^2}4\biggr) \end{align*} geschrieben werden kann. @@ -1039,16 +1064,22 @@ Die Ableitung der Kosinus-Funktion ist daher \frac{d}{dx} \cos x &= \frac{d}{dx} -\mathstrut_0F_1\biggl(;\frac12;-\frac{x^2}4\biggr) +\mathstrut_0F_1\biggl( +\begin{matrix}\text{---}\\\frac12\end{matrix};-\frac{x^2}4 +\biggr) = \frac{1}{\frac12} \, -\mathstrut_0F_1\biggl(;\frac32;-\frac{x^2}4\biggr) +\mathstrut_0F_1\biggl( +\begin{matrix}\text{---}\\\frac32\end{matrix};-\frac{x^2}4 +\biggr) \cdot\biggl(-\frac{x}2\biggr) = -x \cdot -\mathstrut_0F_1\biggl(;\frac32;-\frac{x^2}4\biggr) +\mathstrut_0F_1\biggl( +\begin{matrix}\text{---}\\\frac32\end{matrix};-\frac{x^2}4 +\biggr) \intertext{Dies stimmt mit der in \eqref{buch:rekursion:hypergeometrisch:eqn:sinhyper} gefundenen Darstellung der Sinusfunktion mit Hilfe der hypergeometrischen -- cgit v1.2.1 From 931871e8c8e9b266b9b626d816a803bbd2c56653 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 20:55:53 +0200 Subject: more index stuff --- buch/chapters/040-rekursion/hypergeometrisch.tex | 4 ++++ 1 file changed, 4 insertions(+) (limited to 'buch/chapters/040-rekursion/hypergeometrisch.tex') diff --git a/buch/chapters/040-rekursion/hypergeometrisch.tex b/buch/chapters/040-rekursion/hypergeometrisch.tex index 3b72ffa..13ba3b2 100644 --- a/buch/chapters/040-rekursion/hypergeometrisch.tex +++ b/buch/chapters/040-rekursion/hypergeometrisch.tex @@ -68,6 +68,7 @@ oder Binomialkoeffizienten definiert sind, wie die beiden folgenden Sätze zeigen. \begin{satz} +\index{Satz!Quotienten von Fakultäten}% \label{buch:rekursion:hypergeometrisch:satz:fakquo} Der Quotient aufeinanderfolgender Folgenglieder der Folge $c_k=(a+bk)!$ ist der ein Polynom vom Grad $b$. @@ -89,6 +90,7 @@ Das Pochhammer-Symbol hat $b$ Faktoren, es ist ein Polynom vom Grad $b$. \end{proof} \begin{satz} +\index{Satz!Quotienten von Binomialkoeffizienten}% \label{buch:rekursion:hypergeometrisch:satz:binomquo} Die Quotienten aufeinanderfolgender Werte der Binomialkoeffizienten \[ @@ -432,6 +434,7 @@ Definition~\ref{buch:rekursion:hypergeometrisch:def} offensichtlichen Regeln: \begin{satz}[Permutationsregel] +\index{Satz!Permutationsregel für hypergeometrische Funktionen}% \label{buch:rekursion:hypergeometrisch:satz:permuationsregel} Sei $\pi$ eine beliebige Permutation der Zahlen $1,\dots,p$ und $\sigma$ eine beliebige Permutation der Zahlen $1,\dots,q$, dann ist @@ -454,6 +457,7 @@ a_{\pi(1)},\dots,a_{\pi(p)}\\b_{\sigma(1)},\dots,b_{\sigma(q)} \end{satz} \begin{satz}[Kürzungsformel] +\index{Satz!Kürzungsformel für hypergeometrische Funktionen}% \label{buch:rekursion:hypergeometrisch:satz:kuerzungsregel} Stimmt einer der Koeffizienten $a_k$ mit einem der Koeffizienten $b_i$ überein, dann können sie weggelassen werden: -- cgit v1.2.1