From 698aec2e06b917a365e7483935d071fac5a6e142 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 27 Nov 2021 21:25:46 +0100 Subject: Verallgemeinerte Potenzreihen, Bessel-Funktionen --- buch/chapters/050-differential/bessel.tex | 330 +++++++++++++++++++++++++++++- 1 file changed, 328 insertions(+), 2 deletions(-) (limited to 'buch/chapters/050-differential/bessel.tex') diff --git a/buch/chapters/050-differential/bessel.tex b/buch/chapters/050-differential/bessel.tex index 25092ca..19460f5 100644 --- a/buch/chapters/050-differential/bessel.tex +++ b/buch/chapters/050-differential/bessel.tex @@ -5,11 +5,337 @@ % \section{Bessel-Funktionen \label{buch:differntialgleichungen:section:bessel}} +Die Besselsche Differentialgleichung +erlaubt Wellen mit zylindrischer +Symmetrie und die Strömung in einem zylindrischen Rohr zu beschreiben. +Die Auflösung eines optischen Systems wird durch die Beugung limitiert, +die Helligkeitskverteilung des Bildes einer Punktquelle ist +zylindersymmetrisch und kann mit Hilfe von Lösungen der Besselschen +Differentialgleichung beschrieben werden. +Die Besselsche Differentialgleichung hat im Allgemeinen keine Lösung, +die sich durch bekannte Funktionen ausdrücken lassen, es ist also +nötig, eine neue Familie von speziellen Funktionen zu definieren, +die Bessel-Funktionen. \subsection{Die Besselsche Differentialgleichung} % XXX Wo taucht diese Gleichung auf +Die Besselsche Differentialgleichung ist die Differentialgleichung +\[ +x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} + (x^2-\alpha^2)y = 0 +\] +zweiter Ordnung +für eine auf dem Interval $[0,\infty)$ definierte Funktion $y(x)$. +Der Parameter $\alpha$ ist eine beliebige komplexe Zahl $\alpha\in \mathbb{C}$, +die Lösungsfunktionen hängen daher von $\alpha$ ab. + +Die Besselsche Differentialgleichung ist eine Differentialgleichung +der Art~\eqref{buch:differentialgleichungen:eqn:dglverallg} mit +\[ +p(x) = 1 +\qquad\text{und}\qquad +q(x) = x^2-\alpha^2. +\] +Nach den Ausführungen von +Abschnitt~\ref{buch:differentialgleichungen:subsection:verallgemeinrt}, +muss die Lösung in der Form einer verallgemeinerten Potenzreihe +gesucht werden. +Dazu muss zunächst die Indexgleichung +\[ +0 += +X(X-1) + Xp_0 + q_0 += +X(X-1) + X - \alpha^2 += +X^2-\alpha^2 += +(X-\alpha)(X+\alpha) +\] +gelöst werden. +Die Nullstellen sind offenbar $\varrho_1=\alpha$ und $\varrho_2=-\alpha$. + +Die beiden Vorzeichen der Nullstellen der Indexgleichung führen +auf die gleiche Differentialgleichung. +Der Lösungsraum der Differentialgleichung ist natürlich trotzdem +zweidimensional, so dass es immer noch möglich ist, den +beiden Nullstellen der Indexgleichung verschiedene Lösungen +zuzuordnen. +Die Diskussion in +Abschnitt~\ref{buch:differentialgleichungen:subsection:verallgemeinrt} +hat Kriterien ergeben, unter denen zwei linear unabhängige Lösungen +mit Hilfe einer verallgemeinerten Potenzreihe gefunden werden können. +Falls nur eine solche Lösung gefunden werden kann, wird sie der grösseren +der beiden Zahlen $\alpha$ und $-\alpha$ zugeordnet +(oder $0$, falls $\alpha=-\alpha=0$). +Eine weitere Lösung kann mit Hilfe analytischer Fortsetzung gefunden werden, +wie später gezeigt wird. + +Für nicht reelles $\alpha$ kann $\varrho_1-\varrho_2=2\alpha$ keine +Ganzzahl sein, es ist also garantiert, dass zwei linear unabhängig +Lösungen der Form +\begin{equation} +y_1(x) = x^\alpha\sum_{k=0}^\infty a_kx^k +\qquad\text{und}\qquad +y_2(x) = x^{-\alpha}\sum_{k=0}^\infty b_kx^k. +\label{buch:differentialgleichungen:eqn:besselloesungen} +\end{equation} +existieren. + +Für reelles $\alpha\in\mathbb{R}$ gibt es zwei Lösungen der +Form~\eqref{buch:differentialgleichungen:eqn:besselloesungen} +genau dann, wenn $\varrho_1-\varrho_2$ keine Ganzzahl ist. +Nur eine Lösung kann man finden, wenn +\[ +\alpha-(-\alpha)=2\alpha \in \mathbb{Z} +\qquad\Rightarrow\qquad +\alpha = \frac{k}{2},\quad k\in\mathbb{Z} +\] +ist. + + \subsection{Bessel-Funktionen erster Art} -% XXX Result der Potenzreihenentwicklung +Für $\alpha \ge 0$ gibt es immer mindestens eine Lösung der Besselgleichung +als verallgemeinerte Potenzreihe mit $\varrho=\alpha$. +Die Funktion $q(x)=x^2-\alpha^2$ ist ein Polynom, die einzigen +von $0$ verschiedenen Koeffizienten sind $q_0=-\alpha^2$ +und $q_2=1$. +Für den ersten Koeffizienten $a_0$ gibt es keine Einschränkungen, +wir wählen $a_0=1$. + +Die Rekursionsformel für $n=1$ ist +\[ +F(\varrho+1) a_1 = (\varrho p_1+q_1)a_0, +\] +aber die Koeffizienten $p_1$ und $q_1$ verschwinden beide und damit +die ganze rechte Seite. +Da $F(\varrho+1)\ne 0$ ist, folgt dass $a_1=0$ sein muss. + +% Fall n=1 gesondert behandeln + +\subsubsection{Der allgemeine Fall} +Für die höheren Potenzen $n>1$ wird die Rekursionsformel für die +Koeffizienten $a_n$ der verallgemeinerten Potenzreihe +\[ +a_{n} = +-\frac{ q_2 a_{n-2} }{F(\varrho+n)} += +-\frac{a_{n-2}}{(\varrho+n)^2-\alpha^2} += +-\frac{a_{n-2}}{\varrho^2 + 2\varrho n+n^2-\alpha^2} += +-\frac{a_{n-2}}{n(n+2\varrho)}. +\] +Im letzten Schritt haben wir verwendet, dass $\varrho=\pm\alpha$ +und damit $\varrho^2=\alpha^2$ ist. +Daraus folgt wegen $a_1=0$, dass auch $a_{2k+1}=0$ für alle $k$. +Damit können wir jetzt die Reihe hinschreiben: +\begin{align*} +y(x) +&= +x^{\varrho}\biggl( +1 +- +\frac{1}{2(2+2\varrho)} x^2 ++ +\frac{1}{2(2+2\varrho)4(4+2\varrho)} x^4 +- +\frac{1}{2(2+2\varrho)4(4+2\varrho)6(6+2\varrho)} x^6 ++ +\dots +\biggr) +\\ +&= +x^{\varrho} +\biggl( +1 ++ +\frac{(-x^2/4)}{1\cdot (1+\varrho)} ++ +\frac{(-x^2/4)^2}{1\cdot 2\cdot (1+\varrho)\cdot(2-\varrho)} ++ +\frac{(-x^2/4)^3}{1\cdot 2\cdot 3\cdot (1+\varrho)\cdot(2+\varrho)\cdot(3+\varrho)} ++ +\dots +\biggr) +\\ +&= +x^\varrho\biggl( +1 ++ +\frac{1}{(\varrho+1)}\frac{(-x^2/4)}{1!} ++ +\frac{1}{(\varrho+1)(\varrho+2)}\frac{(-x^2/4)^2}{2!} ++ +\frac{1}{(\varrho+1)(\varrho+2)(\varrho+3)}\frac{(-x^2/4)^3}{3!} ++ +\dots +\biggr) +\\ +&= +x^\varrho \sum_{k=0}^\infty +\frac{1}{(\varrho+1)_k} \frac{(-x^2/4)}{k!} += +\mathstrut_0F_1\biggl(;\varrho+1;-\frac{x^2}{4}\biggr) +\end{align*} +Falls also $\alpha$ kein ganzzahliges Vielfaches von $\frac12$ ist, finden +wir zwei Lösungsfunktionen +\begin{align} +J_\alpha(x) +&= +x^{\alpha\phantom{-}} +\sum_{k=0}^\infty +\frac{1}{(\alpha+1)_k} +\frac{(-x^2/4)^k}{k!} += +\mathstrut_0F_1\biggl(;\alpha+1;-\frac{x^2}{4}\biggr), +\label{buch:differentialgleichunge:bessel:erste} +\\ +J_{-\alpha}(x) +&= +x^{-\alpha} \sum_{k=0}^\infty +\frac{1}{(-\alpha+1)_k} \frac{(-x^2/4)^k}{k!} += +\mathstrut_0F_1\biggl(;-\alpha+1;-\frac{x^2}{4}\biggr). +\label{buch:differentialgleichunge:bessel:zweite} +\end{align} +Die Funktionen $J_{\pm\alpha}(x)$ heissen {\em Bessel-Funktionen +der Ordnung $\alpha$}. + +\subsubsection{Der Fall $\alpha=0$} +Im Fall $\alpha=0$ hat das Indexpolynom eine doppelte Nullstelle, wir +können daher nur eine Lösung erwarten. +Im Fall $\alpha=0$ wird das Produkt im Nenner zu $n!$, so dass die +Lösungsfunktion +\[ +J_0(x) += +\sum_{k=0}^\infty +\frac{(-1)^k}{(k!)^2} +\biggl(\frac{x}{2}\biggr)^{2k} +\] +geschrieben werden kann. + +% XXX Zweite Lösung explizit durchrechnen + +\subsubsection{Der Fall $\alpha=p$, $p\in\mathbb{N}, p > 0$} +In diesem Fall kann nur die erste +Lösung~\eqref{buch:differentialgleichunge:bessel:erste} +verwendet werden. +Die Pochhammer-Symbole im Nenner können ebenfalls als +Quotient +\[ +\frac{1}{(p+1)_k} += +\frac{1}{(p+1)\cdot(p+k)} += +\frac{p!}{(p+k)!} +\] +von Fakultäten geschrieben werden. +Damit erhält die Lösungsfunktion die Form +\[ +J_p(x) += +\sum_{k=0}^\infty +\frac{(-1)^k}{k!(p+k)!}\biggl(\frac{x}{2}\biggr)^{p+2k}. +\] + +\subsubsection{Der Fall $\alpha=n+\frac12$, $n\in\mathbb{N}$} +Obwohl $2\alpha$ eine Ganzzahl ist, sind die beiden Lösungen +\label{buch:differentialgleichunge:bessel:erste} +und +\label{buch:differentialgleichunge:bessel:zweite} +linear unabhängig. + +Man kann zeigen, dass sich die Lösungsfunktionen in diesem Fall +durch bereits bekannte elementare Funktionen ausdrücken lassen. +Wir rechnen dies für $n=0$ nach. +Zunächst drücken wir die Pochhammer-Symbole im Nenner anders aus. +Es ist +\begin{align*} +\biggl(\frac12 + 1\biggr)_k +&= +\biggl(\frac12 + 1\biggr) +\biggl(\frac12 + 2\biggr) +\cdots +\biggl(\frac12 + k\biggr) += +\frac{1}{2^k}\bigl(3\cdot 5\cdot\ldots\cdot (2k+1)\bigr) += +\frac{(2k+1)!}{2^{2k+1}\cdot k!} +\\ +\biggl(-\frac12 + 1\biggr)_k +&= +\biggl(-\frac12 + 1\biggr) +\biggl(-\frac12 + 2\biggr) +\cdots +\biggl(-\frac12 + k\biggr) +\\ +&= +\biggl(\frac12 + 0\biggr) +\biggl(\frac12 + 1\biggr) +\cdots +\biggl(\frac12 + k-1\biggr) += +\frac{1}{2^k}\bigl(1\cdot 3 \cdot\ldots\cdot (2(k-1)+1)\bigr) += +\frac{(2k-1)!}{2^{2k}\cdot (k-1)!} +\end{align*} +Damit können jetzt die Reihenentwicklungen der Lösung wie folgt +umgeformt werden +\begin{align*} +y_1(x) +&= +\sqrt{x} +\sum_{k=0}^\infty +\frac{1}{(\alpha+1)_k} +\frac{(-x^2/4)^k}{k!} += +\sqrt{x} +\sum_{k=0}^\infty +\frac{2^{2k+1}k!}{(2k+1)!} +\frac{(-x^2/4)^k}{k!} += +\sqrt{x} +\sum_{k=0}^\infty +(-1)^k +\frac{2\cdot x^{2k}}{(2k+1)!} +\\ +&= +\frac{1}{2\sqrt{x}} +\sum_{k=0}^\infty +(-1)^k +\frac{x^{2k+1}}{(2k+1)!} += +\frac{1}{2\sqrt{x}} \sin x +\\ +y_2(x) +&= +\frac{1}{\sqrt{x}} +\sum_{k=0}^\infty +\frac{2^{2k}\cdot (k-1)!}{(2k-1)!} +\frac{(-x^2/4)^k}{k!} += +\frac{1}{\sqrt{x}} +\sum_{k=0}^\infty +(-1)^k +\frac{x^{2k}}{(2k-1)!\cdot k} +\\ +&= +\frac{2}{\sqrt{x}} +\sum_{k=0}^\infty +(-1)^k +\frac{x^{2k}}{(2k-1)!\cdot 2k} += +\frac{2}{\sqrt{x}} \cos x. +\end{align*} + +% XXX Nachrechnen, dass diese Funktionen +% XXX Lösungen der Differentialgleichung sind + +\subsection{Analytische Fortsetzung und Bessel-Funktionen zweiter Art} + + + + -\subsection{Analytische Fortsetzung und Bessel-Funktioenn zweiter Art} -- cgit v1.2.1