From 931871e8c8e9b266b9b626d816a803bbd2c56653 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 20:55:53 +0200 Subject: more index stuff --- buch/chapters/050-differential/bessel.tex | 4 ++++ 1 file changed, 4 insertions(+) (limited to 'buch/chapters/050-differential/bessel.tex') diff --git a/buch/chapters/050-differential/bessel.tex b/buch/chapters/050-differential/bessel.tex index 4e1c58c..ac509ba 100644 --- a/buch/chapters/050-differential/bessel.tex +++ b/buch/chapters/050-differential/bessel.tex @@ -28,6 +28,8 @@ Die Besselsche Differentialgleichung ist die Differentialgleichung x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} + (x^2-\alpha^2)y = 0 \label{buch:differentialgleichungen:eqn:bessel} \end{equation} +\index{Differentialgleichung!Besselsche}% +\index{Besselsche Differentialgleichung}% zweiter Ordnung für eine auf dem Interval $[0,\infty)$ definierte Funktion $y(x)$. Der Parameter $\alpha$ ist eine beliebige komplexe Zahl $\alpha\in \mathbb{C}$, @@ -41,6 +43,7 @@ Die Besselsche Differentialgleichung \eqref{buch:differentialgleichungen:eqn:bessel} kann man auch als Eigenwertproblem für den Bessel-Operator \index{Bessel-Operator}% +\index{Operator!Bessel-}% \begin{equation} B = x^2\frac{d^2}{dx^2} + x\frac{d}{dx} + x^2 \label{buch:differentialgleichungen:bessel-operator} @@ -468,6 +471,7 @@ Die erzeugende Funktion kann dazu verwendet werden, das Additionstheorem für die Besselfunktionen zu beweisen. \begin{satz} +\index{Satz!Additionstheorem für Besselfunktionen}% Für $l\in\mathbb{Z}$ und $x,y\in\mathbb{R}$ gilt \[ J_l(x+y) = \sum_{m=-\infty}^\infty J_m(x)J_{l-m}(y). -- cgit v1.2.1