From 931871e8c8e9b266b9b626d816a803bbd2c56653 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 20:55:53 +0200 Subject: more index stuff --- buch/chapters/050-differential/bessel.tex | 4 ++++ buch/chapters/050-differential/hypergeometrisch.tex | 2 ++ buch/chapters/050-differential/potenzreihenmethode.tex | 2 ++ 3 files changed, 8 insertions(+) (limited to 'buch/chapters/050-differential') diff --git a/buch/chapters/050-differential/bessel.tex b/buch/chapters/050-differential/bessel.tex index 4e1c58c..ac509ba 100644 --- a/buch/chapters/050-differential/bessel.tex +++ b/buch/chapters/050-differential/bessel.tex @@ -28,6 +28,8 @@ Die Besselsche Differentialgleichung ist die Differentialgleichung x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} + (x^2-\alpha^2)y = 0 \label{buch:differentialgleichungen:eqn:bessel} \end{equation} +\index{Differentialgleichung!Besselsche}% +\index{Besselsche Differentialgleichung}% zweiter Ordnung für eine auf dem Interval $[0,\infty)$ definierte Funktion $y(x)$. Der Parameter $\alpha$ ist eine beliebige komplexe Zahl $\alpha\in \mathbb{C}$, @@ -41,6 +43,7 @@ Die Besselsche Differentialgleichung \eqref{buch:differentialgleichungen:eqn:bessel} kann man auch als Eigenwertproblem für den Bessel-Operator \index{Bessel-Operator}% +\index{Operator!Bessel-}% \begin{equation} B = x^2\frac{d^2}{dx^2} + x\frac{d}{dx} + x^2 \label{buch:differentialgleichungen:bessel-operator} @@ -468,6 +471,7 @@ Die erzeugende Funktion kann dazu verwendet werden, das Additionstheorem für die Besselfunktionen zu beweisen. \begin{satz} +\index{Satz!Additionstheorem für Besselfunktionen}% Für $l\in\mathbb{Z}$ und $x,y\in\mathbb{R}$ gilt \[ J_l(x+y) = \sum_{m=-\infty}^\infty J_m(x)J_{l-m}(y). diff --git a/buch/chapters/050-differential/hypergeometrisch.tex b/buch/chapters/050-differential/hypergeometrisch.tex index 87b9318..2fe43c1 100644 --- a/buch/chapters/050-differential/hypergeometrisch.tex +++ b/buch/chapters/050-differential/hypergeometrisch.tex @@ -371,6 +371,7 @@ $c$ darf also kein natürliche Zahl $\ge 2$ sein. Wir fassen die Resultate dieses Abschnitts im folgenden Satz zusammen. \begin{satz} +\index{Satz!Lösung der eulerschen hypergeometrischen Differentialgleichung}% Die eulersche hypergeometrische Differentialgleichung \begin{equation} x(1-x)\frac{d^2y}{dx^2} @@ -906,6 +907,7 @@ Funktion wohldefiniert. Wir fassen diese Resultat zusammen: \begin{satz} +\index{Satz!1f1@Differentialgleichung von $\mathstrut_1F_1$}% \label{buch:differentialgleichungen:satz:1f1-dgl-loesungen} Die Differentialgleichung \[ diff --git a/buch/chapters/050-differential/potenzreihenmethode.tex b/buch/chapters/050-differential/potenzreihenmethode.tex index d046f06..9f2e0a6 100644 --- a/buch/chapters/050-differential/potenzreihenmethode.tex +++ b/buch/chapters/050-differential/potenzreihenmethode.tex @@ -44,6 +44,7 @@ Tatsächlich gilt der folgende sehr viel allgemeinere Satz von Cauchy und Kowalevskaja: \begin{satz}[Cauchy-Kowalevskaja] +\index{Satz!von Cauchy-Kowalevskaja}% Eine partielle Differentialgleichung der Ordnung $k$ für eine Funktion $u(x_1,\dots,x_n,t)=u(x,t)$ in expliziter Form @@ -334,6 +335,7 @@ wir die Darstellung Damit haben wir den folgenden Satz gezeigt. \begin{satz} +\index{Satz!Newtonsche Reihe}% \label{buch:differentialgleichungen:satz:newtonschereihe} Die Newtonsche Reihe für $(1-t)^\alpha$ ist der Wert \[ -- cgit v1.2.1