From 9f8e0b23aa9897b429ef997d7de8224844b60880 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 20 Jun 2022 21:27:44 +0200 Subject: fix all the Bessel stuff --- buch/chapters/050-differential/bessel.tex | 277 +++++++++++++++++---- .../chapters/050-differential/hypergeometrisch.tex | 2 +- 2 files changed, 234 insertions(+), 45 deletions(-) (limited to 'buch/chapters/050-differential') diff --git a/buch/chapters/050-differential/bessel.tex b/buch/chapters/050-differential/bessel.tex index 383c360..a3237fe 100644 --- a/buch/chapters/050-differential/bessel.tex +++ b/buch/chapters/050-differential/bessel.tex @@ -18,6 +18,9 @@ die sich durch bekannte Funktionen ausdrücken lassen, es ist also nötig, eine neue Familie von speziellen Funktionen zu definieren, die Bessel-Funktionen. +% +% Besselsche Differentialgleichung +% \subsection{Die Besselsche Differentialgleichung} % XXX Wo taucht diese Gleichung auf Die Besselsche Differentialgleichung ist die Differentialgleichung @@ -30,6 +33,9 @@ für eine auf dem Interval $[0,\infty)$ definierte Funktion $y(x)$. Der Parameter $\alpha$ ist eine beliebige komplexe Zahl $\alpha\in \mathbb{C}$, die Lösungsfunktionen hängen daher von $\alpha$ ab. +% +% Eigenwertproblem +% \subsubsection{Eigenwertproblem} Die Besselsche Differentialgleichung \eqref{buch:differentialgleichungen:eqn:bessel} @@ -46,12 +52,15 @@ erfüllt \[ By = -x^2y''+xy+x^2y +x^2y''+xy'+x^2y =\alpha^2 y, \] ist also eine Eigenfunktion des Bessel-Operators zum Eigenwert $\alpha^2$. +% +% Indexgleichung +% \subsubsection{Indexgleichung} Die Besselsche Differentialgleichung ist eine Differentialgleichung der Art~\eqref{buch:differentialgleichungen:eqn:dglverallg} mit @@ -117,8 +126,9 @@ Nur eine Lösung kann man finden, wenn \] ist. - - +% +% Bessel-Funktionen erster Art +% \subsection{Bessel-Funktionen erster Art} Für $\alpha \ge 0$ gibt es immer mindestens eine Lösung der Besselgleichung als verallgemeinerte Potenzreihe mit $\varrho=\alpha$. @@ -138,6 +148,9 @@ Da $F(\varrho+1)\ne 0$ ist, folgt dass $a_1=0$ sein muss. % Fall n=1 gesondert behandeln +% +% Der allgemeine Fall +% \subsubsection{Der allgemeine Fall} Für die höheren Potenzen $n>1$ wird die Rekursionsformel für die Koeffizienten $a_n$ der verallgemeinerten Potenzreihe @@ -201,10 +214,11 @@ x^\varrho\biggl( x^\varrho \sum_{k=0}^\infty \frac{1}{(\varrho+1)_k} \frac{(-x^2/4)}{k!} = +x^\varrho +\cdot \mathstrut_0F_1\biggl(;\varrho+1;-\frac{x^2}{4}\biggr) \end{align*} -Falls also $\alpha$ kein ganzzahliges Vielfaches von $\frac12$ ist, finden -wir zwei Lösungsfunktionen +Wir finden also zwei Lösungsfunktionen \begin{align} y_1(x) %J_\alpha(x) @@ -214,8 +228,10 @@ x^{\alpha\phantom{-}} \frac{1}{(\alpha+1)_k} \frac{(-x^2/4)^k}{k!} = +x^\alpha +\cdot \mathstrut_0F_1\biggl(;\alpha+1;-\frac{x^2}{4}\biggr), -\label{buch:differentialgleichunge:bessel:erste} +\label{buch:differentialgleichunge:bessel:eqn:erste} \\ y_2(x) %J_{-\alpha}(x) @@ -223,32 +239,50 @@ y_2(x) x^{-\alpha} \sum_{k=0}^\infty \frac{1}{(-\alpha+1)_k} \frac{(-x^2/4)^k}{k!} = +x^{-\alpha} +\cdot \mathstrut_0F_1\biggl(;-\alpha+1;-\frac{x^2}{4}\biggr). -\label{buch:differentialgleichunge:bessel:zweite} +\label{buch:differentialgleichunge:bessel:eqn:zweite} \end{align} +Man beachte, dass die zweite Lösung für ganzzahliges $\alpha>0$ nicht +definiert ist. +Man kann auch direkt nachrechnen, dass diese Funktionen Lösungen +der Besselschen Differentialgleichung sind. +% +% Bessel-Funktionen +% \subsubsection{Bessel-Funktionen} Da die Besselsche Differentialgleichung linear ist, ist auch jede Linearkombination der Funktionen -\eqref{buch:differentialgleichunge:bessel:erste} +\eqref{buch:differentialgleichunge:bessel:eqn:erste} und -\eqref{buch:differentialgleichunge:bessel:zweite} +\eqref{buch:differentialgleichunge:bessel:eqn:zweite} eine Lösung. -Man kann zum Beispiel das Pochhammer-Symbol im Nenner loswerden, -wenn man im Nenner mit $\Gamma(\alpha+1)$ -multipliziert: +Satz~\ref{buch:rekursion:gamma:satz:gamma-pochhammer} +ermöglicht, das Pochhammer-Symbol durch Werte der Gamma-Funktion +wie in \[ -\frac{(1/2)^\alpha}{\Gamma(\alpha+1)} +(\alpha+1)_n = \frac{\Gamma(\alpha+k+1)}{\Gamma(\alpha+1)} +\] +auszudrücken. +Damit wird +\begin{align} y_1(x) +&= +x^\alpha +\sum_{k=0}^\infty +\frac{\Gamma(\alpha+1)}{\Gamma(\alpha+k+1)} +\frac{(-x^2/4)^k}{k!} = +\Gamma(\alpha+1) 2^{\alpha} \biggl(\frac{x}{2}\biggr)^\alpha \sum_{k=0}^\infty -\frac{(-1)^k}{k!\,\Gamma(\alpha+k+1)} -\biggl(\frac{x}{2}\biggr)^{2k}. -\] -Dabei haben wir es durch -Multiplikation mit $(\frac12)^\alpha$ auch geschafft, die Funktion -einheitlich als Funktion von $x/2$ auszudrücken. +\frac{(-1)^k}{k!\,\Gamma(\alpha+k+1)} \biggl(\frac{x}{2}\biggr)^{2k} +\label{buch:differentialgleichungen:bessel:normierungsgleichung} +\end{align} +Nur gerade der Faktor $2^\alpha\Gamma(\alpha+1)$ ist von $k$ und $x$ +unabhängig, daher ist die folgende Definition sinnvoll: \begin{definition} \label{buch:differentialgleichungen:bessel:definition} @@ -262,8 +296,26 @@ J_{\alpha}(x) \biggl(\frac{x}{2}\biggr)^{2k} \] heisst {\em Bessel-Funktion erster Art der Ordnung $\alpha$}. +\index{Bessel-Funktion!erster Art}% \end{definition} +Die Bessel-Funktion $J_\alpha(x)$ der Ordnung $\alpha$ unterscheidet sich +nur durch einen Normierungsfaktor von der Lösung $y_1(x)$. +Dasselbe gilt für $J_{-\alpha}(x)$ und $y_2(x)$: +\begin{align*} +J_{\alpha}(x) +&= +\frac{1}{2^\alpha\Gamma(\alpha+1)} +\cdot +y_1(x) +\\ +J_{-\alpha}(x) +&= +\frac{1}{2^{-\alpha}\Gamma(-\alpha+1)} +\cdot +y_2(x). +\end{align*} + Man beachte, dass diese Definition für beliebige ganzzahlige $\alpha$ funktioniert. Ist $\alpha=-n<0$, $n\in\mathbb{N}$, dann hat der Nenner Pole @@ -285,6 +337,8 @@ J_{-n}(x) (-1)^n J_{n}(x). \end{align*} +Insbesondere unterscheiden sich $J_n(x)$ und $J_{-n}(x)$ nur durch +ein Vorzeichen. \subsubsection{Erzeugende Funktion} \begin{figure} @@ -388,6 +442,9 @@ Die beiden Exponentialreihen sind \notag \end{align} +% +% Additionstheorem +% \subsubsection{Additionstheorem} Die erzeugende Funktion kann dazu verwendet werden, das Additionstheorem für die Besselfunktionen zu beweisen. @@ -438,7 +495,9 @@ J_l(x+y) &= \sum_{m=-\infty}^\infty J_m(x)J_{l-m}(y) für alle $l$. \end{proof} - +% +% Der Fall \alpha=0 +% \subsubsection{Der Fall $\alpha=0$} Im Fall $\alpha=0$ hat das Indexpolynom eine doppelte Nullstelle, wir können daher nur eine Lösung erwarten. @@ -453,8 +512,19 @@ J_0(x) \] geschrieben werden kann. -% XXX Zweite Lösung explizit durchrechnen +Als lineare Differentialgleichung zweiter Ordnung erwarten wir noch +eine zweite, linear unabhängige Lösung. +Diese kann jedoch nicht allein mit der Potenzreihenmethode, +dazu sind die Methoden der Funktionentheorie nötig. +Im Abschnitt~\ref{buch:funktionentheorie:subsection:dglsing} +wird gezeigt, wie dies möglich ist und auf +Seite~\pageref{buch:funktionentheorie:subsubsection:bessel2art} +werden die damit zu findenden Bessel-Funktionen 0-ter Ordnung und +zweiter Art vorgestellt. +% +% Der Fall \alpha=p, p\in \mathbb{N} +% \subsubsection{Der Fall $\alpha=p$, $p\in\mathbb{N}, p > 0$} In diesem Fall kann nur die erste Lösung~\eqref{buch:differentialgleichunge:bessel:erste} @@ -467,8 +537,9 @@ J_p(x) \frac{(-1)^k}{k!(p+k)!}\biggl(\frac{x}{2}\biggr)^{p+2k}. \] -TODO: Lösung für $\alpha=-n$ - +% +% Der Fall $\alpha=n+\frac12$ +% \subsubsection{Der Fall $\alpha=n+\frac12$, $n\in\mathbb{N}$} Obwohl $2\alpha$ eine Ganzzahl ist, sind die beiden Lösungen \label{buch:differentialgleichunge:bessel:erste} @@ -491,7 +562,7 @@ Es ist = \frac{1}{2^k}\bigl(3\cdot 5\cdot\ldots\cdot (2k+1)\bigr) = -\frac{(2k+1)!}{2^{2k+1}\cdot k!} +\frac{(2k+1)!}{2^{2k}\cdot k!} \\ \biggl(-\frac12 + 1\biggr)_k &= @@ -508,63 +579,181 @@ Es ist = \frac{1}{2^k}\bigl(1\cdot 3 \cdot\ldots\cdot (2(k-1)+1)\bigr) = -\frac{(2k-1)!}{2^{2k}\cdot (k-1)!} +\frac{(2k-1)!}{2^{2k-1}\cdot (k-1)!} \end{align*} Damit können jetzt die Reihenentwicklungen der Lösung wie folgt umgeformt werden \begin{align*} y_1(x) &= -\sqrt{x} +x^\alpha \sum_{k=0}^\infty \frac{1}{(\alpha+1)_k} \frac{(-x^2/4)^k}{k!} = \sqrt{x} \sum_{k=0}^\infty -\frac{2^{2k+1}k!}{(2k+1)!} +\frac{2^{2k}k!}{(2k+1)!} \frac{(-x^2/4)^k}{k!} = \sqrt{x} \sum_{k=0}^\infty (-1)^k -\frac{2\cdot x^{2k}}{(2k+1)!} +\frac{x^{2k}}{(2k+1)!} \\ &= -\frac{1}{2\sqrt{x}} +\frac{1}{\sqrt{x}} \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!} = -\frac{1}{2\sqrt{x}} \sin x +\frac{1}{\sqrt{x}} \sin x \\ y_2(x) &= -\frac{1}{\sqrt{x}} +x^{-\alpha} \sum_{k=0}^\infty -\frac{2^{2k}\cdot (k-1)!}{(2k-1)!} +\frac{1}{(-\alpha+1)_k} \frac{(-x^2/4)^k}{k!} = -\frac{1}{\sqrt{x}} +x^{-\frac12} \sum_{k=0}^\infty -(-1)^k -\frac{x^{2k}}{(2k-1)!\cdot k} +\frac{2^{2k-1}\cdot (k-1)!}{(2k-1)!} +\frac{(-x^2/4)^k}{k!} \\ &= -\frac{2}{\sqrt{x}} +\frac{1}{\sqrt{x}} \sum_{k=0}^\infty (-1)^k \frac{x^{2k}}{(2k-1)!\cdot 2k} = -\frac{2}{\sqrt{x}} \cos x. +\frac{1}{\sqrt{x}} \cos x. \end{align*} -% XXX Nachrechnen, dass diese Funktionen -% XXX Lösungen der Differentialgleichung sind - -\subsection{Analytische Fortsetzung und Bessel-Funktionen zweiter Art} - - - +Die Bessel-Funktionen verwenden aber eine andere Normierung. +Die Gleichung~\eqref{buch:differentialgleichungen:bessel:normierungsgleichung} +zeigt, dass die Bessel-Funktionen durch Division +der Funktion $y_1(x)$ und $y_2(x)$ durch $2^\alpha \Gamma(\alpha+1)$ +erhalten werden können. +Dies ergibt +\begin{equation*} +\renewcommand{\arraycolsep}{1pt} +\begin{array}{rclclclcl} +J_{\frac12}(x) +&=& +\displaystyle\frac{1}{2^{\frac12}\Gamma(\frac12+1)} +y_1(x) +&=& +\displaystyle\frac{1}{2^{\frac12}\frac12\Gamma(\frac12)} +y_1(x) +&=& +\displaystyle\frac{\sqrt{2}}{\Gamma(\frac12)} +y_1(x) +&=& +\displaystyle\frac{1}{\Gamma(\frac12)} +\sqrt{ \frac{2}{x}} +\sin x, +\\ +J_{-\frac12}(x) +&=& +\displaystyle\frac{1}{2^{-\frac12}\Gamma(-\frac12+1)} +y_2(x) +&=& +\displaystyle\frac{2^{\frac12}}{\Gamma(\frac12)} +y_2(x) +&=& +\displaystyle\frac{\sqrt{2}}{\Gamma(\frac12)} +y_2(x) +&=& +\displaystyle\frac{1}{\Gamma(\frac12)} +\sqrt{\frac{2}{x}} +\cos x. +\end{array} +\end{equation*} +Wegen $\Gamma(\frac12)=\sqrt{\pi}$ sind die +halbzahligen Bessel-Funktionen daher +\begin{align*} +J_{\frac12}(x) +&= +\sqrt{\frac{2}{\pi x}} \sin x += +\sqrt{\frac{2}{\pi}} x^{-\frac12}\sin x +& +&\text{und}& +J_{-\frac12}(x) +&= +\sqrt{\frac{2}{\pi x}} \cos x += +\sqrt{\frac{2}{\pi}} x^{-\frac12}\cos x. +\end{align*} +% +% Direkte Verifikation der Lösungen +% +\subsubsection{Direkte Verifikation der Lösungen für $\alpha=\pm\frac12$} +Tatsächlich führt die Anwendung des Bessel-Operators auf die beiden +Funktionen auf +\begin{align*} +\sqrt{\frac{\pi}2} +BJ_{\frac12}(x) +&= +\sqrt{\frac{\pi}2} +\biggl( +x^2J_{\frac12}''(x) + xJ_{\frac12}'(x) + x^2J_{\frac12}(x) +\biggr) +\\ +&= +x^2(x^{-\frac12}\sin x)'' ++ +x(x^{-\frac12}\sin x)' ++ +x^2(x^{-\frac12}\sin x) +\\ +&= +x^2( +x^{-{\textstyle\frac12}}\cos x +-{\textstyle\frac12}x^{-\frac32}\sin x +)' ++ +x( +x^{-\frac12}\cos x +-{\textstyle\frac12}x^{-\frac32}\sin x +) ++ +x^{\frac32}\sin x +\\ +&= +x^2( +-x^{-\frac12}\sin x +-{\textstyle\frac12}x^{-\frac32}\cos x +-{\textstyle\frac12}x^{-\frac32}\cos x ++{\textstyle\frac{3}{4}}x^{-\frac52}\sin x +) ++ +x^{\frac12}\cos x ++ +x^{-\frac12}(x-{\textstyle\frac12})\sin x +\\ +&= +( +-x^{\frac32} ++{\textstyle\frac34}x^{-\frac12} ++x^{\frac32} +-{\textstyle\frac12}x^{-\frac12} +) +\sin x += +\frac14x^{-\frac12}\sin x += +\frac14 +\sqrt{\frac{\pi}2} +J_{\frac12}(x) +\\ +BJ_{\frac12}(x) +&= +\biggl(\frac12\biggr)^2 J_{\frac12}(x). +\end{align*} +Dies zeigt, dass $J_{\frac12}(x)$ tatsächlich eine Eigenfunktion +des Bessel-Operators zum Eigenwert $\alpha^2 = \frac14$. +Analog kann man die Lösung $y_2(x)$ für $-\frac12$ verifizieren. diff --git a/buch/chapters/050-differential/hypergeometrisch.tex b/buch/chapters/050-differential/hypergeometrisch.tex index 65b3be7..87b9318 100644 --- a/buch/chapters/050-differential/hypergeometrisch.tex +++ b/buch/chapters/050-differential/hypergeometrisch.tex @@ -1591,7 +1591,7 @@ x\cdot \end{align*} als Lösungen. Die Differentialgleichung von $\mathstrut_0F_1$ sollte sich in diesem -Fall also auf die Airy-Differentialgleichung reduzieren lassen. +Fall also auf die Airy-Dif\-fe\-ren\-tial\-glei\-chung reduzieren lassen. Bei der Substition der Parameter in die Differentialgleichung \eqref{buch:differentialgleichungen:0F1:dgl} beachten wird, dass -- cgit v1.2.1