From 53aea87685ea9f37f982f1ec90a82ce168d6d7cb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 23 May 2022 11:34:57 +0200 Subject: rewriting the risch algorithm stuff --- buch/chapters/060-integral/diffke.tex | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) create mode 100644 buch/chapters/060-integral/diffke.tex (limited to 'buch/chapters/060-integral/diffke.tex') diff --git a/buch/chapters/060-integral/diffke.tex b/buch/chapters/060-integral/diffke.tex new file mode 100644 index 0000000..53b46ad --- /dev/null +++ b/buch/chapters/060-integral/diffke.tex @@ -0,0 +1,20 @@ +% +% diffke.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +% +\subsection{Differentialkörper und ihre Erweiterungen +\label{buch:integral:subsection:diffke}} +% +\subsubsection{Derivation} +% Ableitungsaxiome + +\subsubsection{Ableitungsregeln} +% Ableitungsregeln + +\subsubsection{Konstantenkörper} +% Konstantenkörper + +\subsubsection{Logarithmus und Exponentialfunktion} +% Logarithmus und Exponentialfunktion + -- cgit v1.2.1 From 9a90404d081513254925c76b2fbaabb1a1c62982 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 25 May 2022 20:15:57 +0200 Subject: differenialkoerper --- buch/chapters/060-integral/diffke.tex | 33 ++++++++++++++++++++++++++++++++- 1 file changed, 32 insertions(+), 1 deletion(-) (limited to 'buch/chapters/060-integral/diffke.tex') diff --git a/buch/chapters/060-integral/diffke.tex b/buch/chapters/060-integral/diffke.tex index 53b46ad..a943fa3 100644 --- a/buch/chapters/060-integral/diffke.tex +++ b/buch/chapters/060-integral/diffke.tex @@ -5,16 +5,47 @@ % \subsection{Differentialkörper und ihre Erweiterungen \label{buch:integral:subsection:diffke}} +Die Ableitung wird in den Grundvorlesungen der Analysis jeweils +als ein Grenzprozess eingeführt. +Die praktische Berechnung von Ableitungen verwendet aber praktisch +nie diese Definition, sondern fast ausschliesslich die rein algebraischen +Ableitungsregeln. +So wie die Wurzelfunktionen im letzten Abschnitt als algebraische +Körpererweiterungen erkannt wurden, muss jetzt auch für die Ableitung +eine rein algebraische Definition gefunden werden. +Die entstehende Struktur ist der Differentialkörper, der in diesem +Abschnitt definiert werden soll. + +% +% Derivation % \subsubsection{Derivation} -% Ableitungsaxiome +\begin{definition} +Sei $\mathscr{F}$ ein Funktionenkörper. +Eine {\em Derivation} ist eine lineare Abbildung +$D\colon \mathscr{F}\to\mathscr{F}$ +mit der Eigenschaft +\[ +D(fg) = (Df)g+f(Dg). +\] +\end{definition} + +% +% Ableitungsregeln +% \subsubsection{Ableitungsregeln} % Ableitungsregeln +% +% Konstantenkörper +% \subsubsection{Konstantenkörper} % Konstantenkörper +% +% Logarithmus und Exponantialfunktion +% \subsubsection{Logarithmus und Exponentialfunktion} % Logarithmus und Exponentialfunktion -- cgit v1.2.1 From f24e5bd9fda39e2f8bbfb0946aac2ee7dcda547d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 26 May 2022 08:35:55 +0200 Subject: new stuff --- buch/chapters/060-integral/diffke.tex | 96 +++++++++++++++++++++++++++++++++-- 1 file changed, 92 insertions(+), 4 deletions(-) (limited to 'buch/chapters/060-integral/diffke.tex') diff --git a/buch/chapters/060-integral/diffke.tex b/buch/chapters/060-integral/diffke.tex index a943fa3..02e90f6 100644 --- a/buch/chapters/060-integral/diffke.tex +++ b/buch/chapters/060-integral/diffke.tex @@ -20,32 +20,120 @@ Abschnitt definiert werden soll. % Derivation % \subsubsection{Derivation} +Für die praktische Berechnung der Ableitung einer Funktion verwendet +man in erster Linie die bekannten Rechenregeln. +Dazu gehören für zwei Funktionen $f$ und $g$ +\begin{itemize} +\item Linearität: $(\alpha f+\beta g)' = \alpha f' + \beta g'$ für +Konstanten $\alpha$, $\beta$. +\item Produktregel: $(fg)'=f'g+fg'$. +\index{Produktregel}% +\item Quotientenregel: $(f/g)' = (f'g-fg')/g^2$. +\index{Quotientenregel}% +\end{itemize} +Die ebenfalls häufig verwendete Kettenregel $(f\circ g)' = (f'\circ g) g'$ +\index{Kettenregel}% +für zusammengesetzte Funktionen wird später kaum benötigt, da wir +Verkettungen durch Körpererweiterungen ersetzen wollen. +Die Ableitung hat somit die rein algebraischen Eigenschaften +einer Derivation gemäss folgender Definition. \begin{definition} -Sei $\mathscr{F}$ ein Funktionenkörper. +Sei $\mathscr{F}$ ein Körper. Eine {\em Derivation} ist eine lineare Abbildung +\index{Derivation}% $D\colon \mathscr{F}\to\mathscr{F}$ mit der Eigenschaft \[ D(fg) = (Df)g+f(Dg). \] +Ein {\em Differentialkörper} ist ein Körper mit einer Derivation. +\index{Differentialkoerper@Differentialkörper}% \end{definition} +Die Ableitung in einem Funktionenkörper ist eine Derivation, +die sich zusätzlich dadurch auszeichnet, dass $Dx=x'=1$. +Sie wird weiterhin mit dem Strich bezeichnet. + % % Ableitungsregeln % \subsubsection{Ableitungsregeln} -% Ableitungsregeln +Die Definition einer Derivation macht keine Aussagen über Quotienten, +diese kann man aber aus den Eigenschaften einer Derivation sofort +ableiten. +Wir schreiben $q=f/g$ für $f,g\in\mathscr{F}$, dann ist $f=qg$. +Nach der Kettenregel gilt +\( +f'=q'g+qg' +\). +Substituiert man darin $q=f/g$ und löst nach $q'$ auf, erhält man +\[ +f'=q'g+\frac{fg'}{g} +\qquad\Rightarrow\qquad +q'=\frac1{g}\biggl(f'-\frac{fg'}{g}\biggr) += +\frac{f'g-fg'}{g^2}. +\] + % % Konstantenkörper % \subsubsection{Konstantenkörper} -% Konstantenkörper +Die Ableitung einer Konstanten verschwindet. +Beim Hinzufügen von Funktionen zu einem Funktionenkörper können weitere +Konstanten hinzukommen, ohne dass dies auf den ersten Blick sichtbar wird. +Zum Beispiel enthält $\mathbb{Q}(x,\!\sqrt{x+\pi})$ wegen +$(\!\sqrt{x+\pi})^2-x=\pi$ auch die Konstante $\pi$. +Eine Derivation ermöglicht dank des nachfolgenden Satzes auch, +solche Konstanten zu erkennen. + +\begin{satz} +Sei $\mathscr{F}$ ein Körper und $D$ eine Derivation in $\mathscr{F}$. +Dann ist die Menge $C=\{a\in\mathscr{F}\;|\;Da=0\}$ ein Körper. +\end{satz} + +\begin{proof}[Beweis] +Es muss gezeigt werden, dass Summe und Produkt von Element von $C$ +wieder in $C$ liegen. +Wenn $Da=Db=0$, dann ist $D(a+b)=Da+Db=0$, also ist $a+b\in C$. +Für das Produkt gilt $D(ab)=(Da)b+a(Db)=0b+a0=0$, also ist auch +$ab\in C$. +\end{proof} + +Die Menge $C$ heisst der {\em Konstantenkörper} von $\mathscr{F}$. +\index{Konstantenkörper}% % % Logarithmus und Exponantialfunktion % \subsubsection{Logarithmus und Exponentialfunktion} -% Logarithmus und Exponentialfunktion +Die Exponentialfunktion und der Logarithmus sind nicht algebraisch +über $\mathbb{Q}(x)$, sie lassen sich nicht durch eine algebraische +Gleichung charakterisieren. +Sie zeichnen sich aber durch besondere Ableitungseigenschaften aus. +Die Theorie der gewöhnlichen Differentialgleichungen garantiert, +dass eine Funktion durch eine Differentialgleichung und Anfangsbedingungen +festgelegt ist. +Für die Exponentialfunktion und der Logarithmus haben die +Ableitungseigenschaften +\[ +\exp'(x) = \exp(x) +\qquad\text{und}\qquad +x \log'(x) = 1. +\] +\index{Exponentialfunktion}% +\index{Logarithmus}% +In der algebraischen Beschreibung eines Funktionenkörpers gibt es +das Konzept des Wertes einer Funktion an einer bestimmten Stelle nicht. +Somit können keine Anfangsbedingungen vorgegeben werden. +Da die Gleichungen linear sind, sind Vielfache einer Lösung wieder +Lösungen. +Insbesondere ist mit $\exp(x)$ auch $a\exp(x)$ eine Lösung und mit +$\log(x)$ auch $a\log(x)$ für alle Konstanten $a$. + +Die Eigenschaft, dass die Exponentialfunktion die Umkehrfunktion +des Logarithmus ist, lässt sich mit den Mitteln eines Differentialkörpers +nicht ausdrücken. -- cgit v1.2.1 From df8e535423f408f789f0cb624df7a4980572bc4d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 28 May 2022 14:57:18 +0200 Subject: more onm integration and lemniscate --- buch/chapters/060-integral/diffke.tex | 106 ++++++++++++++++++++++++++++++++-- 1 file changed, 102 insertions(+), 4 deletions(-) (limited to 'buch/chapters/060-integral/diffke.tex') diff --git a/buch/chapters/060-integral/diffke.tex b/buch/chapters/060-integral/diffke.tex index 02e90f6..61badc8 100644 --- a/buch/chapters/060-integral/diffke.tex +++ b/buch/chapters/060-integral/diffke.tex @@ -105,6 +105,94 @@ $ab\in C$. Die Menge $C$ heisst der {\em Konstantenkörper} von $\mathscr{F}$. \index{Konstantenkörper}% +% +% Ableitung algebraischer Elemente +% +\subsubsection{Ableitung und algebraische Körpererweiterungen} +Die Rechenregeln in einem Differentialkörper $\mathscr{F}$ legen auch die +Ableitung eines algebraischen Elements fest. +Sei $m(z)=m_0+m_1z+\ldots+m_{n-1}z^{n-1}+z^n$ das Minimalpolynom eines +über $\mathscr{F}$ algebraischen Elements $f$. +Aus $m(f)=0$ folgt durch Ableiten +\[ +0 += +m(f)' += +m_0' ++ +(m_1'f+m_1f') ++ +(m_2'f + m_12f'f) ++ +\ldots ++ +(m_{n-1}'f^{n-1} + m_{n-1} (n-1)f'f^{n-2}) ++ +nf'f^{n-1}. +\] +Zusammenfassen der Ableitung $f'$ auf der linken Seite liefert die +Gleichung +\[ +f'( +m_1+2m_2f+\ldots+(n-1)m_{n-1}f^{n-2}+nf^{n-1} +) += +m_0' + m_1'f + m_2'f^2 + \ldots + m_{n-1}'f^{n-1} + f^n, +\] +aus der +\[ +f' += +\frac{ +m_0' + m_1'f + m_2'f^2 + \ldots + m_{n-1}'f^{n-1} + f^n +}{ +m_1+2m_2f+\ldots+(n-1)m_{n-1}f^{n-2}+nf^{n-1} +} +\] +als Element von $\mathscr{F}(g)$ berechnet werden kann. +Die Ableitungsoperation lässt sich somit auf die Körpererweiterung +$\mathscr{F}(f)$ fortsetzen. + +\begin{beispiel} +Das über $\mathbb{Q}(x)$ algebraische Element $y=\sqrt{ax^2+bx+c}$ +hat das Minimalpolynom +\[ +m(z) += +z^2 - [ax^2+bx+c] +\in +\mathbb{Q}(x)[z] +\] +mit Koeffizienten $m_0 = ax^2+bx+c,$ $m_1=0$ und $m_2=1$. +Es hat die Ableitung +\[ +y' += +\frac{m_0'}{2m_2y} += +\frac{ +2ax+b +}{ +2y +} +\in +\mathbb{Q}(x,y) +\] +wegen $m_0'=2ax+b$. +\end{beispiel} + +\begin{definition} +Eine differentielle Körpererweiterung ist eine Körpererweiterung +$\mathscr{K}\subset\mathscr{F}$ von Differentialkörpern derart, dass +die Ableitungen $D_{\mathscr{K}}$ in $\mathscr{K}$ +und $D_{\mathscr{F}}$ in $\mathscr{F}$ übereinstimmen: +\( +D_{\mathscr{K}}g= D_{\mathscr{F}} g +\) +für alle $g\in\mathscr{K}$. +\end{definition} + % % Logarithmus und Exponantialfunktion % @@ -116,6 +204,7 @@ Sie zeichnen sich aber durch besondere Ableitungseigenschaften aus. Die Theorie der gewöhnlichen Differentialgleichungen garantiert, dass eine Funktion durch eine Differentialgleichung und Anfangsbedingungen festgelegt ist. +\label{buch:integral:expundlog} Für die Exponentialfunktion und der Logarithmus haben die Ableitungseigenschaften \[ @@ -128,10 +217,19 @@ x \log'(x) = 1. In der algebraischen Beschreibung eines Funktionenkörpers gibt es das Konzept des Wertes einer Funktion an einer bestimmten Stelle nicht. Somit können keine Anfangsbedingungen vorgegeben werden. -Da die Gleichungen linear sind, sind Vielfache einer Lösung wieder -Lösungen. -Insbesondere ist mit $\exp(x)$ auch $a\exp(x)$ eine Lösung und mit -$\log(x)$ auch $a\log(x)$ für alle Konstanten $a$. +Da die Gleichung für $\exp$ linear sind, sind Vielfache einer Lösung wieder +Lösungen, +insbesondere ist mit $\exp(x)$ auch $a\exp(x)$ eine Lösung. +Die Gleichung für $\log$ ist nicht linear, aber es ist +$\log'(x) = 1/x$, $\log$ ist eine Stammfunktion von $1/x$, die +nur bis auf eine Konstante bestimmt ist. +Tatsächlich gilt +\[ +x(\log(x)+a)' += +x\log(x) + xa' = x\log(x)=1, +\] +die Funktion $\log(x)+a$ ist also auch eine Lösung für den Logarithmus. Die Eigenschaft, dass die Exponentialfunktion die Umkehrfunktion des Logarithmus ist, lässt sich mit den Mitteln eines Differentialkörpers -- cgit v1.2.1