From 53aea87685ea9f37f982f1ec90a82ce168d6d7cb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 23 May 2022 11:34:57 +0200 Subject: rewriting the risch algorithm stuff --- buch/chapters/060-integral/elementar.tex | 7 +++++++ 1 file changed, 7 insertions(+) create mode 100644 buch/chapters/060-integral/elementar.tex (limited to 'buch/chapters/060-integral/elementar.tex') diff --git a/buch/chapters/060-integral/elementar.tex b/buch/chapters/060-integral/elementar.tex new file mode 100644 index 0000000..2962178 --- /dev/null +++ b/buch/chapters/060-integral/elementar.tex @@ -0,0 +1,7 @@ +% +% elementar.tex +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue +% +\subsection{Elementare Funktionen +\label{buch:integral:subsection:elementar}} -- cgit v1.2.1 From f24e5bd9fda39e2f8bbfb0946aac2ee7dcda547d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 26 May 2022 08:35:55 +0200 Subject: new stuff --- buch/chapters/060-integral/elementar.tex | 8 ++++++++ 1 file changed, 8 insertions(+) (limited to 'buch/chapters/060-integral/elementar.tex') diff --git a/buch/chapters/060-integral/elementar.tex b/buch/chapters/060-integral/elementar.tex index 2962178..854a875 100644 --- a/buch/chapters/060-integral/elementar.tex +++ b/buch/chapters/060-integral/elementar.tex @@ -5,3 +5,11 @@ % \subsection{Elementare Funktionen \label{buch:integral:subsection:elementar}} +Etwas allgemeiner kann man sagen, dass in den +Beispielen~\eqref{buch:integration:risch:eqn:integralbeispiel2} +algebraische Erweiterungen von $\mathbb{Q}(x)$ und Erweiterungen +um Logarithmen oder Exponentialfunktionen vorgekommen sind. +Die Stammfunktionen verwenden dieselben Funktionen oder höchstens +Erweiterungen um Logarithmen von Funktionen, die man schon im +Integranden gesehen hat. + -- cgit v1.2.1 From df8e535423f408f789f0cb624df7a4980572bc4d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 28 May 2022 14:57:18 +0200 Subject: more onm integration and lemniscate --- buch/chapters/060-integral/elementar.tex | 199 +++++++++++++++++++++++++++++++ 1 file changed, 199 insertions(+) (limited to 'buch/chapters/060-integral/elementar.tex') diff --git a/buch/chapters/060-integral/elementar.tex b/buch/chapters/060-integral/elementar.tex index 854a875..fd5f051 100644 --- a/buch/chapters/060-integral/elementar.tex +++ b/buch/chapters/060-integral/elementar.tex @@ -13,3 +13,202 @@ Die Stammfunktionen verwenden dieselben Funktionen oder höchstens Erweiterungen um Logarithmen von Funktionen, die man schon im Integranden gesehen hat. +% +% Exponentielle und logarithmische Funktione +% +\subsubsection{Exponentielle und logarithmische Funktionen} +In Abschnitt~\ref{buch:integral:subsection:diffke} haben wir +bereits die Exponentialfunktion $e^x$ und die Logarithmusfunktion +$\log x$ charakterisiert als eine Körpererweiterung durch +Elemente, die der Differentialgleichung +\[ +\exp' = \exp +\qquad\text{und}\qquad +\log' = \frac{1}{x} +\] +genügen. +Für die Stammfunktionen, die in +Abschnitt~\ref{buch:integral:subsection:logexp} +gefunden wurden, sind aber Logarithmusfunktionen nicht von +$x$ sondern von beliebigen über $\mathbb{Q}$ algebraischen Elementen +nötig. +Um zu verstehen, wie wir diese Funktion als Körpererweiterung erhalten +könnten, betrachten wir die Ableitung einer Exponentialfunktion +$\vartheta(x) = \exp(f(x))$ und eines +Logarithmus +$\psi(x) = \log(f(x))$, wie man sie mit der Kettenregel +berechnet hätte: +\begin{align*} +\vartheta'(x) +&=\exp(f(x)) \cdot f'(x) +& +\psi'(x) +&= +\frac{f'(x)}{f(x)} +\quad\Leftrightarrow\quad +f(x)\psi'(x) += +f'(x). +\end{align*} +Dies motiviert die folgende Definition + +\begin{definition} +\label{buch:integral:def:explog} +Sei $\mathscr{F}$ ein Differentialklörper und $f\in\mathscr{F}$. +Ein Exponentialfunktion von $f$ ist ein $\vartheta\in \mathscr{F}$mit +$\vartheta' = \vartheta f'$. +Ein Logarithmus von $f$ ist ein $\vartheta\in\mathscr{F}$ mit +$f\vartheta'=f'$. +\end{definition} + +Für $f=x$ mit $f'=1$ reduziert sich die +Definition~\ref{buch:integral:def:explog} +auf die Definition der Exponentialfunktion $\exp(x)$ und +Logarithmusfunktion $\log(x)$ auf Seite~\pageref{buch:integral:expundlog}. + + +% +% +% +\subsubsection{Transzendente Körpererweiterungen} +Die Wurzelfunktionen haben wir früher als algebraische Erweiterungen +eines Differentialkörpers erkannt. +Die logarithmischen und exponentiellen Elemente gemäss +Definition~\ref{buch:integral:def:explog} sind nicht algebraisch. + +\begin{definition} +\label{buch:integral:def:transzendent} +Sei $\mathscr{F}\subset\mathscr{G}$ eine Körpererweiterung und +$\vartheta\in\mathscr{G}$. +$\vartheta$ heisst {\em transzendent}, wenn $\vartheta$ nicht +algebraisch ist. +\end{definition} + +\begin{beispiel} +Die Funktion $f = e^x + e^{2x} + e^{x/2}$ ist sicher transzendent, +in diesem Beispiel zeigen wir, dass es mindestens drei verschiedene +Möglichkeiten gibt, eine Körpererweiterung von $\mathbb{Q}(x)$ zu +konstruieren, die $f$ enthält. + +Erste Möglichkeit: $f=\vartheta_1 + \vartheta_2 + \vartheta_3$ mit +$\vartheta_1=e^x$, +$\vartheta_2=e^{2x}$ +und +$\vartheta_3=e^{x/2}$. +Jedes der Elemente $\vartheta_i$ ist exponentiell über $\mathbb{Q}(x)$ und +$f$ ist in +\[ +\mathbb{Q}(x) +\subset +\mathbb{Q}(x,\vartheta_1) +\subset +\mathbb{Q}(x,\vartheta_1,\vartheta_2) +\subset +\mathbb{Q}(x,\vartheta_1,\vartheta_2,\vartheta_3) +\ni +f. +\] +Jede dieser Körpererweiterungen ist transzendent. + +Zweite Möglichkeit: $\vartheta_1=e^x$ ist exponentiell über +$\mathbb{Q}(x)$ und $\mathbb{Q}(x,\vartheta_1)$ enthält wegen +\[ +(\vartheta_1^2)' += +2\vartheta_1\vartheta_1' += +2\vartheta_1^2, +\] +somit ist $\vartheta_1^2=\vartheta_2$ eine Exponentialfunktion von $2x$ +über $\mathbb{Q}(x)$. +Das Element $\vartheta_3=e^{x/2}$ ist zwar auch exponentiell über +$\mathbb{Q}(x)$, es ist aber auch eine Nullstelle des Polynoms +$m(z)=z^2-[\vartheta_1]$. +Die Erweiterung +$\mathbb{Q}(x,\vartheta_1)\subset\mathbb{Q}(x,\vartheta_1,\vartheta_3)$ +ist eine algebraische Erweiterung, die +$f=\vartheta_1 + \vartheta_1^2+\vartheta_3$ enthält. + +Dritte Möglichkeit: $\vartheta_3=e^{x/2}$ ist exponentiell über +$\mathbb{Q}(x)$. +Die transzendente Körpererweiterung +\[ +\mathbb{Q}(x) \subset \mathbb{Q}(x,\vartheta_3) +\] +enthält das Element +$f=\vartheta_3^4+\vartheta_3^2 + \vartheta_3 $. +\end{beispiel} + +Das Beispiel zeigt, dass man nicht sagen kann, dass eine Funktion +ausschliesslich in einer algebraischen oder transzendenten Körpererweiterung +zu finden ist. +Vielmehr gibt es für die gleiche Funktion möglicherweise verschiedene +Körpererweiterungen, die alle die Funktion enthalten können. + +% +% Elementare Funktionen +% +\subsubsection{Elementare Funktionen} +Die Stammfunktionen~\eqref{buch:integration:risch:eqn:integralbeispiel2} +können aufgebaut werden, indem man dem Körper $\mathbb{Q}(x)$ schrittweise +sowohl algebraische wie auch transzendente Elemente hinzufügt, +wie in der folgenden Definition, die dies für abstrakte +Differentialkörpererweiterungen formuliert. + +\begin{definition} +Eine Körpererweiterung $\mathscr{F}\subset\mathscr{G}$ heisst +{\em transzendente elementare Erweiterung}, wenn +$\mathscr{G} = \mathscr{F}(\vartheta_1,\dots,\vartheta_n)$ und +jedes der Element $\vartheta_i$ transzendent und logarithmisch oder +exponentiell ist über +$\mathscr{F}_{i-1}=\mathscr{F}(\vartheta_1,\dots,\vartheta_{i-1})$. +Die Körpererweiterung $\mathscr{F}\subset\mathscr{G}$ heisst +{\em elementare Erweiterung}, wenn +$\mathscr{G} = \mathscr{F}(\vartheta_1,\dots,\vartheta_n)$ und +jedes Element $\vartheta_i$ ist entweder logarithmisch, exponentiell +oder algebraisch über $\mathscr{F}_{i-1}$. +\end{definition} + +Die Funktionen, die als akzeptable Stammfunktionen für das Integrationsproblem +in Betracht kommen, sind also jene, die in einer geeigneten elementaren +Erweiterung des von $\mathbb{Q}(x)$ liegen. +Ausserdem können auch noch weitere Konstanten nötig sein, sowohl +algebraische Zahlen wie auch Konstanten wie $\pi$ oder $e$. + +\begin{definition} +Sei $\mathscr{K}(x)$ der Differentialklörper der rationalen Funktionen +über dem Konstantenkörper $\mathscr{K}\supset\mathbb{Q}$, der in $\mathbb{C}$ +enthalten ist. +Ist $\mathscr{F}\supset \mathscr{K}(x)$ eine transzendente elementare +Erweiterung von $\mathscr{K}(x)$, dann heisst $\mathscr{F}$ +ein Körper von {\em transzendenten elementaren Funktionen}. +Ist $\mathscr{F}$ eine elementare Erweiterung von $\mathscr{K}(x)$, dann +heisst $\mathscr{F}$ ein Körper von {\em elementaren Funktionen}. +\end{definition} + +\subsubsection{Das Integrationsproblem} +Die elementaren Funktionen enthalten alle Funktionen, die sich mit +arithmetischen Operationen, Wurzeln, Exponentialfunktionen, Logarithmen und +damit auch mit trigonometrischen und hyperbolischen Funktionen und ihren +Umkehrfunktionen aus den rationalen Zahlen, der unabhängigen Variablen $x$ +und möglicherweise einigen zusätzlichen Konstanten aufbauen lassen. +Sei also $f$ eine Funktion in einem Körper von elementaren +Funktionen +\[ +\mathscr(F) += +\mathbb{Q}(\alpha_1,\dots,\alpha_l)(x,\vartheta_1,\dots,\vartheta_n). +\] +Eine elementare Stammfunktion ist eine Funktion $F=\int f$ in einer +elementaren Körpererweiterung +\[ +\mathscr{G} += +\mathbb{Q}(\alpha_1,\dots,\alpha_l,\dots,\alpha_{l+k}) +(x,\vartheta_1,\dots,\vartheta_n,\dots,\vartheta_{n+m}) +\] +mit $F'=f$. +Das Ziel ist, $F$ mit Hilfe eines Algorithmus zu bestimmen. + + + -- cgit v1.2.1