From df8e535423f408f789f0cb624df7a4980572bc4d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 28 May 2022 14:57:18 +0200 Subject: more onm integration and lemniscate --- buch/chapters/060-integral/erweiterungen.tex | 98 +++++++++++++++++++++++++++- 1 file changed, 96 insertions(+), 2 deletions(-) (limited to 'buch/chapters/060-integral/erweiterungen.tex') diff --git a/buch/chapters/060-integral/erweiterungen.tex b/buch/chapters/060-integral/erweiterungen.tex index a999ebb..9138f3e 100644 --- a/buch/chapters/060-integral/erweiterungen.tex +++ b/buch/chapters/060-integral/erweiterungen.tex @@ -97,8 +97,8 @@ a_i\in K \} \label{buch:integral:eqn:algelement} \end{equation} -mit $n=\deg m(x) - 1$ der durch Adjunktion von $\alpha$ erhaltene -Erweiterungsköper. +mit $n=\deg m(x) - 1$ der durch {\em Adjunktion} oder Hinzufügen +von $\alpha$ erhaltene Erweiterungsköper. \end{definition} Wieder muss nur überprüft werden, dass jedes Produkt oder jeder @@ -151,7 +151,9 @@ Die Menge $\mathbb{Q}(i)$ ist daher eine algebraische Körpererweiterung von $\mathbb{Q}$ bestehend aus den komplexen Zahlen mit rationalem Real- und Imaginärteil. +% % Transzendente Körpererweiterungen +% \subsubsection{Transzendente Erweiterungen} Nicht alle Zahlen in $\mathbb{R}$ sind algebraisch. Lindemann bewies 1882 einen allgemeinen Satz, aus dem folgt, @@ -201,7 +203,9 @@ $K\subset K(\alpha)$ ist zwar immer noch eine Körpererweiterung, aber $K(\alpha)$ ist nicht mehr ein endlichdimensionaler Vektorraum. Die Körpererweiterung $K\subset K(\alpha)$ heisst {\em transzendent}. +% % rationale Funktionen als Körpererweiterungen +% \subsubsection{Rationale Funktionen als Körpererweiterung} Die unabhängige Variable wird bei Rechnen so behandelt, dass die Potenzen alle linear unabhängig sind. @@ -209,7 +213,9 @@ Dies ist die Grundlage für den Koeffizientenvergleich. Der Körper der rationalen Funktion $K(x)$ ist also eine transzendente Körpererweiterung von $K$. +% % Erweiterungen mit algebraischen Funktionen +% \subsubsection{Algebraische Funktionen} Für das Integrationsproblem möchten wir nicht nur rationale Funktionen verwenden können, sondern auch Wurzelfunktionen. @@ -246,4 +252,92 @@ $y=\sqrt{ax^2+bx+c}$ zu $K(x,y)=K(x,\sqrt{ax^2+bx+c}$ erweitert. Wurzelfunktion werden daher nicht als Zusammensetzungen, sondern als algebraische Erweiterungen eines Funktionenkörpers betrachtet. +% +% Konjugation +% +\subsubsection{Konjugation} +Die komplexen Zahlen sind die algebraische Erweiterung der reellen Zahlen +um die Nullstelle $i$ des Polynoms $m(x)=x^2+1$. +Die Zahl $-i$ ist aber auch eine Nullstelle von $m(x)$, die mit algebraischen +Mitteln nicht von $i$ unterscheidbar ist. +Die komplexe Konjugation $a+bi\mapsto a-bi$ vertauscht die beiden +\index{Konjugation, komplexe}% +\index{komplexe Konjugation}% +Nullstellen des Minimalpolynoms. + +Ähnliches gilt für die Körpererweiterung $\mathbb{Q}(\!\sqrt{2})$. +$\sqrt{2}$ und $\sqrt{2}$ sind beide Nullstellen des Minimalpolynoms +$m(x)=x^2-2$, die mit algebraischen Mitteln nicht unterschiedbar sind. +Sie haben zwar verschiedene Vorzeichen, doch ohne eine Ordnungsrelation +können diese nicht unterschieden werden. +\index{Ordnungsrelation}% +Eine Ordnungsrelation zwischen rationalen Zahlen lässt sich zwar +definieren, aber die Zahl $\sqrt{2}$ ist nicht rational, es braucht +also eine zusätzliche Annahme, zum Beispiel die Identifikation von +$\sqrt{2}$ mit einer reellen Zahl in $\mathbb{R}$, wo der Vergleich +möglich ist. + +Auch in $\mathbb{Q}(\!\sqrt{2})$ ist die Konjugation +$a+b\sqrt{2}\mapsto a-b\sqrt{2}$ eine Selbstabbildung, die +die Körperoperationen respektiert. + +Das Polynom $m(x)=x^2-x-1$ hat die Nullstellen +\[ +\frac12 \pm\sqrt{\biggl(\frac12\biggr)^2+1} += +\frac{1\pm\sqrt{5}}{2} += +\left\{ +\bgroup +\renewcommand{\arraystretch}{2.20} +\renewcommand{\arraycolsep}{2pt} +\begin{array}{lcl} +\displaystyle +\frac{1+\sqrt{5}}{2} &=& \phantom{-}\varphi \\ +\displaystyle +\frac{1-\sqrt{5}}{2} &=& \displaystyle-\frac{1}{\varphi}. +\end{array} +\egroup +\right. +\] +Sie erfüllen die gleiche algebraische Relation $x^2=x+1$. +Sie sind sowohl im Vorzeichen wie auch im absoluten Betrag +verschieden, beides verlangt jedoch eine Ordnungsrelation als +Voraussetzung, die uns fehlt. +Aus beiden kann man mit rationalen Operationen $\sqrt{5}$ gewinnen, +denn +\[ +\sqrt{5} += +4\varphi-1 += +-4\biggl(-\frac{1}{\varphi}\biggr)^2-1 +\qquad\Rightarrow\qquad +\mathbb{Q}(\!\sqrt{5}) += +\mathbb{Q}(\varphi) += +\mathbb{Q}(-1/\varphi). +\] +Die Abbildung $a+b\varphi\mapsto a-b/\varphi$ ist eine Selbstabbildung +des Körpers $\mathbb{Q}(\!\sqrt{5})$, welche die beiden Nullstellen +vertauscht. + +Dieses Phänomen gilt für jede algebraische Erweiterung. +Die Nullstellen des Minimalpolynoms, welches die Erweiterung +definiert, sind grundsätzlich nicht unterscheidbar. +Mit der Adjunktion einer Nullstelle enthält der Erweiterungskörper +auch alle anderen. +Sind $\alpha_1$ und $\alpha_2$ zwei Nullstellen des Minimalpolynoms, +dann definiert die Abbildung $\alpha_1\mapsto\alpha_2$ eine Selbstabbildung, +die die Nullstellen permutiert. + +Die algebraische Körpererweiterung +$\mathbb{Q}(x)\subset \mathbb{Q}(x,\sqrt{ax^2+bx+c})$ +ist nicht unterscheidbar von +$\mathbb{Q}(x)\subset \mathbb{Q}(x,-\!\sqrt{ax^2+bx+c})$. +Für das Integrationsproblem bedeutet dies, dass alle Methoden so +formuliert werden müssen, dass die Wahl der Nullstellen auf die +Lösung keinen Einfluss haben. + -- cgit v1.2.1