From 02b31342e0dba3703c1a3a91352f7ae19764d7ce Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 29 Nov 2021 13:18:22 +0100 Subject: gauss quadratur zeugs --- buch/chapters/060-integral/gaussquadratur.tex | 484 ++++++++++++++++++++++++++ 1 file changed, 484 insertions(+) create mode 100644 buch/chapters/060-integral/gaussquadratur.tex (limited to 'buch/chapters/060-integral/gaussquadratur.tex') diff --git a/buch/chapters/060-integral/gaussquadratur.tex b/buch/chapters/060-integral/gaussquadratur.tex new file mode 100644 index 0000000..81d6c28 --- /dev/null +++ b/buch/chapters/060-integral/gaussquadratur.tex @@ -0,0 +1,484 @@ +% +% Anwendung: Gauss-Quadratur +% +\subsection{Anwendung: Gauss-Quadratur} +Orthogonale Polynome haben eine etwas unerwartet Anwendung in einem +von Gauss erdachten numerischen Integrationsverfahren. +Es basiert auf der Beobachtung, dass viele Funktionen sich sehr +gut durch Polynome approximieren lassen. +Wenn man also sicherstellt, dass ein Verfahren für Polynome +sehr gut funktioniert, darf man auch davon ausgehen, dass es für +andere Funktionen nicht allzu schlecht sein wird. + +\subsubsection{Interpolationspolynome} +Zu einer stetigen Funktion $f(x)$ auf dem Intervall $[-1,1]$ +ist ein Polynome vom Grad $n$ gesucht, welches in den Punkten +$x_0{$}c<{$}|>{$}r<{$}|>{$}r<{$}|} +\hline + n & \text{Gauss-Quadratur} & \text{Trapezregel} \\ +\hline +\phantom{0}2 & 0.\u{95}74271077563381 & 0.\u{95}63709682242596 \\ +\phantom{0}4 & 0.\u{95661}28333449730 & 0.\u{956}5513401768598 \\ +\phantom{0}6 & 0.\u{9566114}812034364 & 0.\u{956}5847489712136 \\ +\phantom{0}8 & 0.\u{956611477}5028123 & 0.\u{956}5964425360520 \\ + 10 & 0.\u{9566114774905}637 & 0.\u{9566}018550715587 \\ + 12 & 0.\u{956611477490518}7 & 0.\u{9566}047952369826 \\ + 14 & 0.\u{95661147749051}72 & 0.\u{9566}065680717177 \\ + 16 & 0.\u{956611477490518}7 & 0.\u{9566}077187127541 \\ + 18 & 0.\u{956611477490518}3 & 0.\u{9566}085075898731 \\ + 20 & 0.\u{956611477490518}4 & 0.\u{9566}090718697414 \\ +\hline + \infty & 0.9566114774905183 & 0.9566114774905183 \\ +\hline +\end{tabular} +\caption{Integral von $\sqrt{1-x^2}$ zwischen $-\frac12$ und $\frac12$ +berechnet mit Gauss-Quadratur und der Trapezregel, aber mit zehnmal +so vielen Stützstellen. +Bereits mit 12 Stützstellen erreicht die Gauss-Quadratur +Maschinengenauigkeit, die Trapezregel liefert auch mit 200 Stützstellen +nicht mehr als 4 korrekte Nachkommastellen. +\label{buch:integral:gaussquadratur:table0.5}} +\end{table} + +%\begin{table} +%\def\u#1{\underline{#1}} +%\centering +%\begin{tabular}{|>{$}c<{$}|>{$}r<{$}|>{$}r<{$}|} +%\hline +% n & \text{Gauss-Quadratur} & \text{Trapezregel} \\ +%\hline +%\phantom{0}2 & 1.\u{5}379206741571556 & 1.\u{5}093105464758343 \\ +%\phantom{0}4 & 1.\u{51}32373472933831 & 1.\u{51}13754509594814 \\ +%\phantom{0}6 & 1.\u{512}1624557410367 & 1.\u{51}17610879524799 \\ +%\phantom{0}8 & 1.\u{51207}93479994321 & 1.\u{51}18963282632112 \\ +% 10 & 1.\u{51207}13859966004 & 1.\u{51}19589735776959 \\ +% 12 & 1.\u{512070}5317779943 & 1.\u{51}19930161260693 \\ +% 14 & 1.\u{5120704}334802813 & 1.\u{5120}135471596636 \\ +% 16 & 1.\u{5120704}216176006 & 1.\u{5120}268743889558 \\ +% 18 & 1.\u{5120704}201359081 & 1.\u{5120}360123137213 \\ +% 20 & 1.\u{5120704199}459651 & 1.\u{5120}425490275837 \\ +%\hline +% \infty & 1.5120704199172947 & 1.5120704199172947 \\ +%\hline +%\end{tabular} +%\end{table} + +%\begin{table} +%\def\u#1{\underline{#1}} +%\centering +%\begin{tabular}{|>{$}c<{$}|>{$}r<{$}|>{$}r<{$}|} +%\hline +% n & \text{Gauss-Quadratur} & \text{Trapezregel} \\ +%\hline +%\phantom{0}2 & 1.\u{}6246862220133462 & 1.\u{5}597986803933712 \\ +%\phantom{0}4 & 1.\u{5}759105515463101 & 1.\u{56}63563456168101 \\ +%\phantom{0}6 & 1.\u{5}706630058381434 & 1.\u{56}77252866190838 \\ +%\phantom{0}8 & 1.\u{56}94851106536780 & 1.\u{568}2298707696152 \\ +% 10 & 1.\u{56}91283195332679 & 1.\u{568}4701957758742 \\ +% 12 & 1.\u{56}90013806299465 & 1.\u{568}6030805941198 \\ +% 14 & 1.\u{5689}515434853885 & 1.\u{568}6841603070025 \\ +% 16 & 1.\u{5689}306507843050 & 1.\u{568}7372230731711 \\ +% 18 & 1.\u{5689}214761291217 & 1.\u{568}7738235496322 \\ +% 20 & 1.\u{56891}73062385982 & 1.\u{568}8001228530786 \\ +%\hline +% \infty & 1.5689135396691616 & 1.5689135396691616 \\ +%\hline +%\end{tabular} +%\end{table} + +\begin{table} +\def\u#1{\underline{#1}} +\centering +\begin{tabular}{|>{$}c<{$}|>{$}r<{$}|>{$}r<{$}|} +\hline + n & \text{Gauss-Quadratur} & \text{Trapezregel} \\ +\hline +\phantom{0}2 & 1.\u{}6321752373234928 & 1.\u{5}561048774629949 \\ +\phantom{0}4 & 1.\u{57}98691557134743 & 1.\u{5}660124134617943 \\ +\phantom{0}6 & 1.\u{57}35853681692993 & 1.\u{5}683353001877542 \\ +\phantom{0}8 & 1.\u{57}19413565928206 & 1.\u{5}692627503425400 \\ + 10 & 1.\u{57}13388119633434 & 1.\u{5}697323578543481 \\ + 12 & 1.\u{57}10710489948883 & 1.\u{570}0051217458713 \\ + 14 & 1.\u{570}9362135398341 & 1.\u{570}1784766276063 \\ + 16 & 1.\u{570}8621102742815 & 1.\u{570}2959121005231 \\ + 18 & 1.\u{570}8186779483588 & 1.\u{570}3793521168343 \\ + 20 & 1.\u{5707}919411931615 & 1.\u{570}4408749735932 \\ +\hline + \infty & 1.5707367072605671 & 1.5707367072605671 \\ +\hline +\end{tabular} +\caption{Integral von $\sqrt{1-x^2}$ zwischen $-0.999$ und $0.999$ +berechnet mit Gauss-Quadratur und der Trapezregel, aber mit zehnmal +so vielen Stützstellen. +Wegen der divergierenden Steigung des Integranden bei $\pm 1$ tun +sich beide Verfahren sehr schwer. +Trotzdem erreich die Gauss-Quadrator 4 korrekte Nachkommastellen +mit 20 Stütztstellen, während die Trapezregel auch mit 200 Stützstellen +nur 3 korrekte Nachkommastellen findet. +\label{buch:integral:gaussquadratur:table0.999}} +\end{table} + +\begin{figure} +\centering +\includegraphics{chapters/060-integral/gq/gq.pdf} +\caption{Approximationsfehler des +Integrals~\eqref{buch:integral:gaussquadratur:bspintegral} +in Abhängigkeit von $a$. +Die Divergenz der Ableitung des Integranden an den Intervallenden +$\pm 1$ führt zu schlechter Konvergenz des Verfahrens, wenn $a$ +nahe an $1$ ist. +\label{buch:integral:gaussquadratur:fehler}} +\end{figure} + +Zur Illustration der Genauigkeit der Gauss-Quadratur berechnen wir +das Integral +\begin{equation} +\int_{-a}^a \sqrt{1-x^2}\,dx += +\arcsin a + a \sqrt{1-a^2} +\label{buch:integral:gaussquadratur:bspintegral} +\end{equation} +mit Gauss-Quadratur einerseits und dem Trapezverfahren +andererseits. +Da Gauss-Quadratur mit sehr viel weniger Sützstellen auskommt, +berechnen wir die Trapeznäherung mit zehnmal so vielen Stützstelln. +In den Tabellen~\ref{buch:integral:gaussquadratur:table0.5} +und +\ref{buch:integral:gaussquadratur:table0.999} +sind die Resultate zusammengestellt. +Für $a =\frac12$ zeigt +Tabelle~\ref{buch:integral:gaussquadratur:table0.5} +die sehr schnelle Konvergenz der Gauss-Quadratur, schon mit +12 Stützstellen wird Maschinengenauigkeit erreicht. +Das Trapezverfahren dagegen erreicht auch mit 200 Stützstellen nur +4 korrekte Nachkommastellen. + +An den Stellen $x=\pm 1$ divergiert die Ableitung des Integranden +des Integrals \eqref{buch:integral:gaussquadratur:bspintegral}. +Da grösste und kleinste Stützstelle der Gauss-Quadratur immer +deutlich vom Rand des Intervalls entfernt ist, kann das Verfahren +diese ``schwierigen'' Stellen nicht erkennen. +Tabelle~\ref{buch:integral:gaussquadratur:table0.999} zeigt, wie +die Konvergenz des Verfahrens in diesem Fall sehr viel schlechter ist. +Dies zeigt auch der Graph in +Abbildung~\ref{buch:integral:gaussquadratur:fehler}. + +\subsubsection{Skalarprodukte mit Gewichtsfunktion} + -- cgit v1.2.1