From f24e5bd9fda39e2f8bbfb0946aac2ee7dcda547d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 26 May 2022 08:35:55 +0200 Subject: new stuff --- buch/chapters/060-integral/logexp.tex | 127 ++++++++++++++++++++++++++++++++-- 1 file changed, 122 insertions(+), 5 deletions(-) (limited to 'buch/chapters/060-integral/logexp.tex') diff --git a/buch/chapters/060-integral/logexp.tex b/buch/chapters/060-integral/logexp.tex index 7cbb906..2bfe0e1 100644 --- a/buch/chapters/060-integral/logexp.tex +++ b/buch/chapters/060-integral/logexp.tex @@ -13,15 +13,132 @@ $\log(x-\alpha)$ hinzuzufügen. Es können jedoch noch ganz andere neue Funktionen auftreten, wie die folgende Zusammenstellung einiger Stammfunktionen zeigt: -\begin{align*} +\begin{equation} +\begin{aligned} \int\frac{dx}{1+x^2} &= -\arctan x +\arctan x, \\ -\end{align*} - - +\int \cos x\,dx +&= +\sin x, +\\ +\int\frac{dx}{\sqrt{1-x^2}} +&= +\arcsin x, +\\ +\int +\operatorname{arcosh} x\,dx +&= +x \operatorname{arcosh} x - \sqrt{x^2-1}. +\end{aligned} +\label{buch:integration:risch:allgform} +\end{equation} +In der Stammfunktion treten Funktionen auf, die auf den ersten +Blick nichts mit den Funktionen im Integranden zu tun haben. +Die trigonometrischen und hyperbolichen Funktionen +in~\eqref{buch:integration:risch:allgform} +lassen sich alle durch Exponentialfunktionen ausdrücken. +So gilt +\begin{equation} +\begin{aligned} +\sin x &= \frac{1}{2i}\bigl( e^{ix} - e^{-ix}\bigr), +& +&\qquad& +\cos x &= \frac{1}{2}\bigl( e^{ix} + e^{-ix}\bigr), +\\ +\sinh x &= \frac12\bigl( e^x - e^{-x} \bigr), +& +&\qquad& +\cosh x &= \frac12\bigl( e^x + e^{-x} \bigr). +\end{aligned} +\label{buch:integral:risch:trighypinv} +\end{equation} +Nach Multiplikation mit $e^{ix}$ bzw.~$e^{x}$ entsteht eine +quadratische Gleichung in $e^{ix}$ bzw.~$e^{x}$. +Die Lösungsformel für quadratische Gleichungen erlaubt daher, $e^{ix}$ +bzw.~$e^{x}$ zu finden und damit auch die Umkehrfunktionen. +Die Rechnung ergibt +\begin{equation} +\begin{aligned} +\arcsin y +&= +\frac{1}{i}\log\bigl( +iy\pm\sqrt{1-y^2} +\bigr) +& +&\qquad& +\arccos y +&= +\log\bigl( +y\pm \sqrt{y^2-1} +\bigr) +\\ +\operatorname{arsinh}y +&= +\log\bigl( +y \pm \sqrt{1+y^2} +\bigr) +& +&\qquad& +\operatorname{arcosh} y +&= +\log\bigl( +y\pm \sqrt{y^2-1} +\bigr) +\end{aligned} +\label{buch:integral:risch:trighypinv} +\end{equation} +Alle Funktionen, die man aus dem elementaren Analysisunterricht +kennt, können also mit Hilfe von Exponentialfunktionen und Logarithmen +geschrieben werden. +Man nennt dies die $\log$-$\exp$-Notation der trigonometrischen +und hyperbolischen Funktionen. +\index{logexpnotation@$\log$-$\exp$-Notation}% +Wendet man die Substitutionen +\eqref{buch:integral:risch:trighyp} +und +\eqref{buch:integral:risch:trighypinv} +auf die Integrale +\eqref{buch:integration:risch:allgform} +an, entstehen die Beziehungen +\begin{equation} +\begin{aligned} +\int\frac{1}{1+x^2} +&= +\frac12i\bigl( +\log(1-ix) - \log(1+ix) +\bigr) +\\ +\int\bigl( +{\textstyle\frac12} +e^{ix} ++ +{\textstyle\frac12} +e^{-ix} +\bigr) +&= +-{\textstyle\frac12}ie^{ix} ++{\textstyle\frac12}ie^{-ix} +\\ +\int +\frac{1}{\sqrt{1-x^2}} +&= +-i\log\bigl(ix+\sqrt{1-x^2}) +\\ +\int \log\bigl(x+\sqrt{x^2-1}\bigr) +&= +x\log\bigl(x+\sqrt{x^2-1}\bigr) - \sqrt{x^2-1}. +\end{aligned} +\label{buch:integration:risch:eqn:integralbeispiel2} +\end{equation} +Die in den Stammfuntionen auftretenden Funktionen treten entweder +schon im Integranden auf oder sind Logarithmen von solchen +Funktionen. +Zum Beispiel hat der Nenner im ersten Integral die Faktorisierung +$1+x^2=(1+ix)(1-ix)$, in der Stammfunktion findet man die Logarithmen +der Faktoren. -- cgit v1.2.1