From 02b31342e0dba3703c1a3a91352f7ae19764d7ce Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 29 Nov 2021 13:18:22 +0100 Subject: gauss quadratur zeugs --- buch/chapters/060-integral/orthogonal.tex | 816 ++++++++++++++++++------------ 1 file changed, 486 insertions(+), 330 deletions(-) (limited to 'buch/chapters/060-integral/orthogonal.tex') diff --git a/buch/chapters/060-integral/orthogonal.tex b/buch/chapters/060-integral/orthogonal.tex index 4ffbbde..ceba53a 100644 --- a/buch/chapters/060-integral/orthogonal.tex +++ b/buch/chapters/060-integral/orthogonal.tex @@ -5,6 +5,7 @@ % \section{Orthogonalität \label{buch:integral:section:orthogonale-polynome}} +\rhead{Orthogonale Polynome} Die Fourier-Theorie basiert auf der Idee, Funktionen durch Funktionenreihen mit Summanden zu bilden, die im Sinne eines Skalarproduktes orthogonal sind, welches mit Hilfe eines Integrals @@ -294,6 +295,7 @@ sind sie jedoch nicht orthogonal, denn es ist \biggl[\frac{x^{i+j+1}}{i+j+1}\biggr]_{-1}^1 = \begin{cases} +\displaystyle \frac{2}{i+j+1}&\qquad\text{$i+j$ gerade}\\ 0&\qquad\text{$i+j$ ungerade}. \end{cases} @@ -454,7 +456,8 @@ x^4 &= x^4 -\frac47 P_2(x) - \frac15 P_0(x) -= +\\ +&= x^4 - \frac{6}{7}x^2 + \frac{3}{35} \end{align*} mit $p(1)=\frac{8}{35}$, so dass man @@ -514,334 +517,487 @@ Tabelle~\ref{buch:integral:table:legendre-polynome}. \subsubsection{Legendre-Funktionen zweiter Art} Siehe Wikipedia-Artikel \url{https://de.wikipedia.org/wiki/Legendre-Polynom} +%% +%% Anwendung: Gauss-Quadratur +%% +%\subsection{Anwendung: Gauss-Quadratur} +%Orthogonale Polynome haben eine etwas unerwartet Anwendung in einem +%von Gauss erdachten numerischen Integrationsverfahren. +%Es basiert auf der Beobachtung, dass viele Funktionen sich sehr +%gut durch Polynome approximieren lassen. +%Wenn man also sicherstellt, dass ein Verfahren für Polynome +%sehr gut funktioniert, darf man auch davon ausgehen, dass es für +%andere Funktionen nicht allzu schlecht sein wird. % -% Anwendung: Gauss-Quadratur +%\subsubsection{Interpolationspolynome} +%Zu einer stetigen Funktion $f(x)$ auf dem Intervall $[-1,1]$ +%ist ein Polynome vom Grad $n$ gesucht, welches in den Punkten +%$x_0{$}c<{$}|>{$}r<{$}|>{$}r<{$}|} +%\hline +% n & \text{Gauss-Quadratur} & \text{Trapezregel} \\ +%\hline +%\phantom{0}2 & 0.\u{95}74271077563381 & 0.\u{95}63709682242596 \\ +%\phantom{0}4 & 0.\u{95661}28333449730 & 0.\u{956}5513401768598 \\ +%\phantom{0}6 & 0.\u{9566114}812034364 & 0.\u{956}5847489712136 \\ +%\phantom{0}8 & 0.\u{956611477}5028123 & 0.\u{956}5964425360520 \\ +% 10 & 0.\u{9566114774905}637 & 0.\u{9566}018550715587 \\ +% 12 & 0.\u{956611477490518}7 & 0.\u{9566}047952369826 \\ +% 14 & 0.\u{95661147749051}72 & 0.\u{9566}065680717177 \\ +% 16 & 0.\u{956611477490518}7 & 0.\u{9566}077187127541 \\ +% 18 & 0.\u{956611477490518}3 & 0.\u{9566}085075898731 \\ +% 20 & 0.\u{956611477490518}4 & 0.\u{9566}090718697414 \\ +%\hline +% \infty & 0.9566114774905183 & 0.9566114774905183 \\ +%\hline +%\end{tabular} +%\caption{Integral von $\sqrt{1-x^2}$ zwischen $-\frac12$ und $\frac12$ +%berechnet mit Gauss-Quadratur und der Trapezregel, aber mit zehnmal +%so vielen Stützstellen. +%Bereits mit 12 Stützstellen erreicht die Gauss-Quadratur +%Maschinengenauigkeit, die Trapezregel liefert auch mit 200 Stützstellen +%nicht mehr als 4 korrekte Nachkommastellen. +%\label{buch:integral:gaussquadratur:table0.5}} +%\end{table} +% +%%\begin{table} +%%\def\u#1{\underline{#1}} +%%\centering +%%\begin{tabular}{|>{$}c<{$}|>{$}r<{$}|>{$}r<{$}|} +%%\hline +%% n & \text{Gauss-Quadratur} & \text{Trapezregel} \\ +%%\hline +%%\phantom{0}2 & 1.\u{5}379206741571556 & 1.\u{5}093105464758343 \\ +%%\phantom{0}4 & 1.\u{51}32373472933831 & 1.\u{51}13754509594814 \\ +%%\phantom{0}6 & 1.\u{512}1624557410367 & 1.\u{51}17610879524799 \\ +%%\phantom{0}8 & 1.\u{51207}93479994321 & 1.\u{51}18963282632112 \\ +%% 10 & 1.\u{51207}13859966004 & 1.\u{51}19589735776959 \\ +%% 12 & 1.\u{512070}5317779943 & 1.\u{51}19930161260693 \\ +%% 14 & 1.\u{5120704}334802813 & 1.\u{5120}135471596636 \\ +%% 16 & 1.\u{5120704}216176006 & 1.\u{5120}268743889558 \\ +%% 18 & 1.\u{5120704}201359081 & 1.\u{5120}360123137213 \\ +%% 20 & 1.\u{5120704199}459651 & 1.\u{5120}425490275837 \\ +%%\hline +%% \infty & 1.5120704199172947 & 1.5120704199172947 \\ +%%\hline +%%\end{tabular} +%%\end{table} +% +%%\begin{table} +%%\def\u#1{\underline{#1}} +%%\centering +%%\begin{tabular}{|>{$}c<{$}|>{$}r<{$}|>{$}r<{$}|} +%%\hline +%% n & \text{Gauss-Quadratur} & \text{Trapezregel} \\ +%%\hline +%%\phantom{0}2 & 1.\u{}6246862220133462 & 1.\u{5}597986803933712 \\ +%%\phantom{0}4 & 1.\u{5}759105515463101 & 1.\u{56}63563456168101 \\ +%%\phantom{0}6 & 1.\u{5}706630058381434 & 1.\u{56}77252866190838 \\ +%%\phantom{0}8 & 1.\u{56}94851106536780 & 1.\u{568}2298707696152 \\ +%% 10 & 1.\u{56}91283195332679 & 1.\u{568}4701957758742 \\ +%% 12 & 1.\u{56}90013806299465 & 1.\u{568}6030805941198 \\ +%% 14 & 1.\u{5689}515434853885 & 1.\u{568}6841603070025 \\ +%% 16 & 1.\u{5689}306507843050 & 1.\u{568}7372230731711 \\ +%% 18 & 1.\u{5689}214761291217 & 1.\u{568}7738235496322 \\ +%% 20 & 1.\u{56891}73062385982 & 1.\u{568}8001228530786 \\ +%%\hline +%% \infty & 1.5689135396691616 & 1.5689135396691616 \\ +%%\hline +%%\end{tabular} +%%\end{table} +% +%\begin{table} +%\def\u#1{\underline{#1}} +%\centering +%\begin{tabular}{|>{$}c<{$}|>{$}r<{$}|>{$}r<{$}|} +%\hline +% n & \text{Gauss-Quadratur} & \text{Trapezregel} \\ +%\hline +%\phantom{0}2 & 1.\u{}6321752373234928 & 1.\u{5}561048774629949 \\ +%\phantom{0}4 & 1.\u{57}98691557134743 & 1.\u{5}660124134617943 \\ +%\phantom{0}6 & 1.\u{57}35853681692993 & 1.\u{5}683353001877542 \\ +%\phantom{0}8 & 1.\u{57}19413565928206 & 1.\u{5}692627503425400 \\ +% 10 & 1.\u{57}13388119633434 & 1.\u{5}697323578543481 \\ +% 12 & 1.\u{57}10710489948883 & 1.\u{570}0051217458713 \\ +% 14 & 1.\u{570}9362135398341 & 1.\u{570}1784766276063 \\ +% 16 & 1.\u{570}8621102742815 & 1.\u{570}2959121005231 \\ +% 18 & 1.\u{570}8186779483588 & 1.\u{570}3793521168343 \\ +% 20 & 1.\u{5707}919411931615 & 1.\u{570}4408749735932 \\ +%\hline +% \infty & 1.5707367072605671 & 1.5707367072605671 \\ +%\hline +%\end{tabular} +%\caption{Integral von $\sqrt{1-x^2}$ zwischen $-0.999$ und $0.999$ +%berechnet mit Gauss-Quadratur und der Trapezregel, aber mit zehnmal +%so vielen Stützstellen. +%Wegen der divergierenden Steigung des Integranden bei $\pm 1$ tun +%sich beide Verfahren sehr schwer. +%Trotzdem erreich die Gauss-Quadrator 4 korrekte Nachkommastellen +%mit 20 Stütztstellen, während die Trapezregel auch mit 200 Stützstellen +%nur 3 korrekte Nachkommastellen findet. +%\label{buch:integral:gaussquadratur:table0.999}} +%\end{table} +% +%\begin{figure} +%\centering +%\includegraphics{chapters/060-integral/gq/gq.pdf} +%\caption{Approximationsfehler des +%Integrals~\eqref{buch:integral:gaussquadratur:bspintegral} +%in Abhängigkeit von $a$. +%Die Divergenz der Ableitung des Integranden an den Intervallenden +%$\pm 1$ führt zu schlechter Konvergenz des Verfahrens, wenn $a$ +%nahe an $1$ ist. +%\label{buch:integral:gaussquadratur:fehler}} +%\end{figure} +% +%Zur Illustration der Genauigkeit der Gauss-Quadratur berechnen wir +%das Integral +%\begin{equation} +%\int_{-a}^a \sqrt{1-x^2}\,dx +%= +%\arcsin a + a \sqrt{1-a^2} +%\label{buch:integral:gaussquadratur:bspintegral} +%\end{equation} +%mit Gauss-Quadratur einerseits und dem Trapezverfahren +%andererseits. +%Da Gauss-Quadratur mit sehr viel weniger Sützstellen auskommt, +%berechnen wir die Trapeznäherung mit zehnmal so vielen Stützstelln. +%In den Tabellen~\ref{buch:integral:gaussquadratur:table0.5} +%und +%\ref{buch:integral:gaussquadratur:table0.999} +%sind die Resultate zusammengestellt. +%Für $a =\frac12$ zeigt +%Tabelle~\ref{buch:integral:gaussquadratur:table0.5} +%die sehr schnelle Konvergenz der Gauss-Quadratur, schon mit +%12 Stützstellen wird Maschinengenauigkeit erreicht. +%Das Trapezverfahren dagegen erreicht auch mit 200 Stützstellen nur +%4 korrekte Nachkommastellen. +% +%An den Stellen $x=\pm 1$ divergiert die Ableitung des Integranden +%des Integrals \eqref{buch:integral:gaussquadratur:bspintegral}. +%Da grösste und kleinste Stützstelle der Gauss-Quadratur immer +%deutlich vom Rand des Intervalls entfernt ist, kann das Verfahren +%diese ``schwierigen'' Stellen nicht erkennen. +%Tabelle~\ref{buch:integral:gaussquadratur:table0.999} zeigt, wie +%die Konvergenz des Verfahrens in diesem Fall sehr viel schlechter ist. +%Dies zeigt auch der Graph in +%Abbildung~\ref{buch:integral:gaussquadratur:fehler}. +% +%\subsubsection{Skalarprodukte mit Gewichtsfunktion} +\input{chapters/060-integral/gaussquadratur.tex} -- cgit v1.2.1