From 5c05517960c4913a10eb526b69f99178ee08ef68 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 7 Jan 2022 20:31:27 +0100 Subject: reorganize chapter 7 --- buch/chapters/070-orthogonalitaet/bessel.tex | 91 ++++++++++++++++++++++++++++ 1 file changed, 91 insertions(+) create mode 100644 buch/chapters/070-orthogonalitaet/bessel.tex (limited to 'buch/chapters/070-orthogonalitaet/bessel.tex') diff --git a/buch/chapters/070-orthogonalitaet/bessel.tex b/buch/chapters/070-orthogonalitaet/bessel.tex new file mode 100644 index 0000000..3e9412a --- /dev/null +++ b/buch/chapters/070-orthogonalitaet/bessel.tex @@ -0,0 +1,91 @@ +% +% Besselfunktionen also orthogonale Funktionenfamilie +% +\section{Bessel-Funktionen als orthogonale Funktionenfamilie} +\rhead{Bessel-Funktionen} +Auch die Besselfunktionen sind eine orthogonale Funktionenfamilie. +Sie sind Funktionen differenzierbaren Funktionen $f(r)$ für $r>0$ +mit $f'(r)=0$ und für $r\to\infty$ nimmt $f(r)$ so schnell ab, dass +auch $rf(r)$ noch gegen $0$ strebt. +Das Skalarprodukt ist +\[ +\langle f,g\rangle += +\int_0^\infty r f(r) g(r)\,dr, +\] +als Operator verwenden wir +\[ +A = \frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} + s(r), +\] +wobei $s(r)$ eine beliebige integrierbare Funktion sein kann. +Zunächst überprüfen wir, ob dieser Operator wirklich selbstadjungiert ist. +Dazu rechnen wir +\begin{align} +\langle Af,g\rangle +&= +\int_0^\infty +r\,\biggl(f''(r)+\frac1rf'(r)+s(r)f(r)\biggr) g(r) +\,dr +\notag +\\ +&= +\int_0^\infty rf''(r)g(r)\,dr ++ +\int_0^\infty f'(r)g(r)\,dr ++ +\int_0^\infty s(r)f(r)g(r)\,dr. +\notag +\intertext{Der letzte Term ist symmetrisch in $f$ und $g$, daher +ändern wir daran weiter nichts. +Auf das erste Integral kann man partielle Integration anwenden und erhält} +&= +\biggl[rf'(r)g(r)\biggr]_0^\infty +- +\int_0^\infty f'(r)g(r) + rf'(r)g'(r)\,dr ++ +\int_0^\infty f'(r)g(r)\,dr ++ +\int_0^\infty s(r)f(r)g(r)\,dr. +\notag +\intertext{Der erste Term verschwindet wegen der Bedingungen an die +Funktionen $f$ und $g$. +Der erste Term im zweiten Integral hebt sich gegen das +zweite Integral weg. +Der letzte Term ist das Skalarprodukt von $f'$ und $g'$. +Somit ergibt sich +} +&= +-\langle f',g'\rangle ++ +\int_0^\infty s(r) f(r)g(r)\,dr. +\label{buch:integrale:orthogonal:besselsa} +\end{align} +Vertauscht man die Rollen von $f$ und $g$, erhält man das Gleiche, da im +letzten Ausdruck~\eqref{buch:integrale:orthogonal:besselsa} die Funktionen +$f$ und $g$ symmetrische auftreten. +Damit ist gezeigt, dass der Operator $A$ selbstadjungiert ist. +Es folgt nun, dass Eigenvektoren des Operators $A$ automatisch +orthogonal sind. + +Eigenfunktionen von $A$ sind aber Lösungen der Differentialgleichung +\[ +\begin{aligned} +&& +Af&=\lambda f +\\ +&\Rightarrow\qquad& +f''(r) +\frac1rf'(r) + s(r)f(r) &= \lambda f(r) +\\ +&\Rightarrow\qquad& +r^2f''(r) +rf'(r)+ (-\lambda r^2+s(r)r^2)f(r) &= 0 +\end{aligned} +\] +sind. + +Durch die Wahl $s(r)=1$ wird der Operator $A$ zum Bessel-Operator +$B$ definiert in +\eqref{buch:differentialgleichungen:bessel-operator}. +Die Lösungen der Besselschen Differentialgleichung zu verschiedenen Werten +des Parameters müssen also orthogonal sein, insbesondere sind die +Besselfunktion $J_\nu(r)$ und $J_\mu(r)$ orthogonal wenn $\mu\ne\nu$ ist. + -- cgit v1.2.1