From 9f8e0b23aa9897b429ef997d7de8224844b60880 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 20 Jun 2022 21:27:44 +0200 Subject: fix all the Bessel stuff --- buch/chapters/070-orthogonalitaet/legendredgl.tex | 31 ++++++++++++++++++----- 1 file changed, 25 insertions(+), 6 deletions(-) (limited to 'buch/chapters/070-orthogonalitaet/legendredgl.tex') diff --git a/buch/chapters/070-orthogonalitaet/legendredgl.tex b/buch/chapters/070-orthogonalitaet/legendredgl.tex index de8f63f..6401e98 100644 --- a/buch/chapters/070-orthogonalitaet/legendredgl.tex +++ b/buch/chapters/070-orthogonalitaet/legendredgl.tex @@ -3,7 +3,8 @@ % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % -\section{Orthogonale Polynome und Differentialgleichungen} +\section{Orthogonale Polynome und Differentialgleichungen +\label{buch:orthogonal:section:orthogonale-polynome-und-dgl}} \rhead{Differentialgleichungen orthogonaler Polynome} Legendre hat einen ganz anderen Zugang zu den nach ihm benannten Polynomen gefunden. @@ -16,6 +17,9 @@ Die Orthogonalität wird dann aus einer Verallgemeinerung der bekannten Eingeschaft folgen, dass Eigenvektoren einer symmetrischen Matrix zu verschiedenen Eigenwerten orthogonal sind. +% +% Legendre-Differentialgleichung +% \subsection{Legendre-Differentialgleichung} Die {\em Legendre-Differentialgleichung} ist die Differentialgleichung \begin{equation} @@ -61,7 +65,10 @@ zerlegen, die als Linearkombinationen der beiden Lösungen $y(x)$ und $y_s(x)$ ebenfalls Lösungen der Differentialgleichung sind. -\subsection{Potenzreihenlösung} +% +% Potenzreihenlösungen +% +\subsubsection{Potenzreihenlösung} Wir suchen eine Lösung in Form einer Potenzreihe um $x=0$ und verwenden dazu den Ansatz \[ @@ -170,7 +177,10 @@ eine Polynomlösung $\bar{P}_n(x)$ vom Grad $n$ gibt. Dies kann aber nicht erklären, warum die so gefundenen Polynome orthogonal sind. -\subsection{Eigenfunktionen} +% +% Eigenfunktionen +% +\subsubsection{Eigenfunktionen} Die Differentialgleichung \eqref{buch:integral:eqn:legendre-differentialgleichung} Kann mit dem Differentialoperator @@ -198,7 +208,10 @@ des Operators $D$ zum Eigenwert $n(n+1)$ sind: D\bar{P}_n = -n(n+1) \bar{P}_n. \] -\subsection{Orthogonalität von $\bar{P}_n$ als Eigenfunktionen} +% +% Orthogonalität von P_n als Eigenfunktionen +% +\subsubsection{Orthogonalität von $\bar{P}_n$ als Eigenfunktionen} Ein Operator $A$ auf Funktionen heisst {\em selbstadjungiert}, wenn für zwei beliebige Funktionen $f$ und $g$ gilt \[ @@ -274,7 +287,10 @@ die $\bar{P}_n$ orthogonale Polynome vom Grad $n$ sind, die die gleiche Standardierdisierungsbedingung wie die Legendre-Polyonome erfüllen, also ist $\bar{P}_n(x)=P_n(x)$. -\subsection{Legendre-Funktionen zweiter Art} +% +% Legendre-Funktionen zweiter Art +% +\subsubsection{Legendre-Funktionen zweiter Art} %Siehe Wikipedia-Artikel \url{https://de.wikipedia.org/wiki/Legendre-Polynom} % Die Potenzreihenmethode liefert natürlich auch Lösungen der @@ -368,7 +384,7 @@ Q_1(x) = x \operatorname{artanh}x-1 verwendet werden. % -% +% Laguerre-Differentialgleichung % \subsection{Laguerre-Differentialgleichung \label{buch:orthogonal:subsection:laguerre-differentialgleichung}} @@ -429,6 +445,9 @@ ein anderer Weg zu einer zweiten Lösung gesucht werden. XXX TODO: zweite Lösung der Differentialgleichung. +% +% +% \subsubsection{Die assoziierte Laguerre-Differentialgleichung} \index{assoziierte Laguerre-Differentialgleichung}% \index{Laguerre-Differentialgleichung, assoziierte}% -- cgit v1.2.1