From 9f8e0b23aa9897b429ef997d7de8224844b60880 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 20 Jun 2022 21:27:44 +0200 Subject: fix all the Bessel stuff --- buch/chapters/070-orthogonalitaet/rodrigues.tex | 145 +++++++++++++++++------- 1 file changed, 105 insertions(+), 40 deletions(-) (limited to 'buch/chapters/070-orthogonalitaet/rodrigues.tex') diff --git a/buch/chapters/070-orthogonalitaet/rodrigues.tex b/buch/chapters/070-orthogonalitaet/rodrigues.tex index 9fded85..9a36bdc 100644 --- a/buch/chapters/070-orthogonalitaet/rodrigues.tex +++ b/buch/chapters/070-orthogonalitaet/rodrigues.tex @@ -14,7 +14,8 @@ mit der Ableitung kann man den Grad aber auch senken, man könnte daher auch nach einer Rekursionsformel fragen, die bei einem Polynom hohen Grades beginnt und mit Hilfe von Ableitungen zu geringeren Graden absteigt. -Solche Formeln heissen Rodrigues-Formeln nach dem Entdecker Olinde +Solche Formeln heissen {\em Rodrigues-Formeln} nach dem Entdecker Olinde +\index{Rodriguez, Olinde}% Rodrigues, der eine solche Formal als erster für Legendre-Polynome gefunden hat. @@ -27,12 +28,17 @@ Die Skalarprodukte sollen \] sein. +% +% Pearsonsche Differentialgleichung +% \subsection{Pearsonsche Differentialgleichung} Die {\em Pearsonsche Differentialgleichung} ist die Differentialgleichung \begin{equation} B(x) y' - A(x) y = 0, \label{buch:orthogonal:eqn:pearson} \end{equation} +\index{Differentialgleichung!Pearsonsche}% +\index{Pearsonsche Differentialgleichung}% wobei $B(x)$ ein Polynom vom Grad höchstens $2$ ist und $A(x)$ ein höchstens lineares Polynom. Die Gleichung~\eqref{buch:orthogonal:eqn:pearson} @@ -45,20 +51,31 @@ Dann kann man die Gleichung umstellen in = \frac{A(x)}{B(x)} \qquad\Rightarrow\qquad -y = \exp\biggl( \int\frac{A(x)}{B(x)}\biggr)\,dx. +y += +\exp\biggl( +\int\frac{A(x)}{B(x)} +\,dx +\biggr) +. \] -Im folgenden nehmen wir zusätzlich an, dass +Im Folgenden nehmen wir zusätzlich an, dass an den Intervallenden \begin{equation} \lim_{x\to a+} w(x)B(x) = 0, \qquad\text{und}\qquad -\lim_{x\to b-} w(x)B(x) = 0. +\lim_{x\to b-} w(x)B(x) = 0 \end{equation} +gilt. + Falls $w(x)$ an den Intervallenden einen von $0$ verschiedenen Grenzwert hat, bedeutet dies, dass $B(a)=B(b)=0$ sein muss. Falls $w(x)$ am Intervallende divergiert, muss $B(x)$ dort eine Nullstelle höherer Ordnung haben, was aber für ein Polynom zweiten Grades nicht möglich ist. +% +% Rekursionsformel +% \subsection{Rekursionsformel} Multiplikation mit $B(x)$ wird den Grad eines Polynomes typischerweise um $2$ erhöhen, die Ableitung wird ihn wieder um $1$ reduzieren. @@ -66,12 +83,13 @@ Etwas formeller kann man dies wie folgt formulieren: \begin{satz} Für alle $n\ge 0$ ist -\[ +\begin{equation} q_n(x) = \frac{1}{w(x)} \frac{d^n}{dx^n} B(x)^n w(x) -\] +\label{buch:orthogonalitaet:rodrigues:eqn:rekursion} +\end{equation} ein Polynom vom Grad höchstens $n$. \end{satz} @@ -85,50 +103,65 @@ r_0(x) B(x)^n w(x) \\ &= \frac{d^{n-1}}{dx^{n-1}} -\bigl(r_0'(x)B(x)+ nB'(x)B(x)^{n-1}w(x) + B(x)^n w'(x) \bigr) +\bigl(r_0'(x)B(x)+ nr_0(x)B'(x)B(x)^{n-1}w(x) + r_0(x)B(x)^n w'(x) \bigr) \\ &= \frac{d^{n-1}}{dx^{n-1}} -(r_0'(x)B(x)+nB'(x)+A(x)) B(x)^{n-1} w(x) -= +(\underbrace{r_0'(x)B(x)+nr_0(x)B'(x)+r_0(x)A(x)}_{\displaystyle = r_1(x)}) +B(x)^{n-1} w(x) +\\ +&= \frac{d^{n-1}}{dx^{n-1}} r_1(x)B^{n-1}(x) w(x). \end{align*} -Für die Funktionen $r_k$ gilt die Rekursionsformel +Iterativ lässt sich eine Folge von +Funktionen $r_k(x)$ definieren, für die Rekursionsformel \begin{equation} -r_k(x) = r_{k-1}'(x)B(x) + kB'(x) + A(x). +r_k(x) = r_{k-1}'(x)B(x) + \bigl((n+1-k)B'(x) + A(x)\bigr)r_{k-1}(x) \label{buch:orthogonal:rodrigues:rekursion:beweis1} \end{equation} +gilt. Wenn $r_0(x)$ ein Polynom ist, dann sind alle Funktionen $r_k(x)$ ebenfalls Polynome. -Durch wiederholte Anwendung dieser Formel kann man schliessen, dass +Aus der Konstruktion kann man schliessen, dass \[ \frac{d^n}{dx^n} r_0(x) B(x)^n w(x) = r_n(x) w(x). \] -Insbesondere folgt für $r_0(x)=1$, dass man durch $w(x)$ dividieren kann -und dass $r_n(x)=q_n(x)$. +Insbesondere folgt für $r_0(x)=1$, dass die $n$-te Ableitung den +Faktor $w(x)$ enthält und dass somit $r_n(x)=q_n(x)$ ein Polynom ist. + +Wir müssen auch noch den Grad von $r_k(x)$ bestimmen, wobei wir +wieder von $r_0(x)=1$ ausgehen. +Wir behaupten, dass $\deg r_k(x)\le k$ ist, und beweisen dies +mit vollständiger Induktion. +Für $k=0$ ist $\deg r_0(x) = 0 \le k$ die Induktionsverankerung. -Wir müssen auch noch den Grad von $r_k(x)$ bestimmen. -Dazu verwenden wir -\eqref{buch:orthogonal:rodrigues:rekursion:beweis1} und berechnen den -Grad: +Wir nehmen jetzt also an, dass $\deg r_{k-1}(x)\le k-1$ ist und +verwenden +\eqref{buch:orthogonal:rodrigues:rekursion:beweis1} um den Grad zu berechnen: \begin{equation*} \deg r_k(x) = \max \bigl( -\underbrace{\deg(r_{k-1}'(x) B(x))}_{\displaystyle \deg r_{k-1}(x) -1 + 2} +\underbrace{\deg(r_{k-1}'(x) B(x))}_{\displaystyle (k-1) -1 + 2} , -\underbrace{\deg(B'(x))}_{\displaystyle \le 1} +\underbrace{\deg(r_{k-1}(x)B'(x))}_{\displaystyle \le (k-1)+1} , -\underbrace{\deg(A(x))}_{\displaystyle \le 1} +\underbrace{\deg(r_{k-1}(x)A(x))}_{\displaystyle \le (k-1)+1} \bigr) -\le \max r_{k-1}(x) + 1. +\le k. \end{equation*} -Aus $\deg r_0(x)=0$ kann man jetzt ablesen, dass $\deg r_k(x)\le k$ ist. -Damit ist gezeigt, dass $\deg q_n(x)\le n$. +Damit ist der Induktionsschritt und $\deg r_k(x)\le k$ bewiesen. +Damit ist auch gezeigt, dass $\deg q_n(x)\le n$. \end{proof} +Die Rodrigues-Formel~\eqref{buch:orthogonalitaet:rodrigues:eqn:rekursion} +produziert eine Folge von Polynomen aufsteigenden Grades, es ist aber +noch nicht klar, dass diese Polynome bezüglich des gewählten Skalarproduktes +orthogonal sind. +Dies ist der Inhalt des folgenden Satzes. + \begin{satz} Es gibt Konstanten $c_n$ derart, dass \[ @@ -140,7 +173,7 @@ gilt. \end{satz} \begin{proof}[Beweis] -Wir müssen zeigen, dass die Polynome orthogonal sind auf allen Monomen +Wir zeigen, dass die Polynome orthogonal sind auf allen Monomen von geringerem Grad. \begin{align*} \langle q_n, x^k\rangle_w @@ -148,15 +181,17 @@ von geringerem Grad. \int_a^b q_n(x)x^kw(x)\,dx \\ &= -\int_a^b \frac{1}{w(x)}\frac{d^n}{dx^n}(B(x)^n w(x)) x^k w(x)\,dx +\int_a^b \frac{1}{w(x)} +\biggl(\frac{d^n}{dx^n}\bigl(B(x)^n w(x)\bigr)\biggr) +x^k w(x)\,dx \\ &= -\int_a^b \frac{d^n}{dx^n}(B(x)^n w(x)) x^k \,dx +\int_a^b \frac{d^n}{dx^n}\bigl(B(x)^n w(x)\bigr) x^k \,dx \\ &= -\biggl[\frac{d^{n-1}}{dx^{n-1}}(B(x)^n w(x)) x^k \biggr]_a^b +\biggl[\frac{d^{n-1}}{dx^{n-1}}\bigl(B(x)^n w(x)\bigr) x^k \biggr]_a^b - -\int_a^b \frac{d^{n-1}}{dx^{n-1}}(B(x)^n w(x))kx^{k-1}\,dx +\int_a^b \frac{d^{n-1}}{dx^{n-1}}\bigl(B(x)^n w(x)\bigr)kx^{k-1}\,dx \end{align*} Durch $n$-fache Iteration wird das Integral auf $0$ reduziert. Es bleiben nur die eckigen Klammern stehen, doch wenn man die Produktregel @@ -164,9 +199,20 @@ auswertet, bleibt immer mindestens ein Produkt $B(x)w(x)$ stehen, nach den Voraussetzungen an den Grenzwert dieses Produktes an den Intervallenden verschwinden diese Terme alle. Damit sind die $q_n(x)$ Polynome, die $w$-orthogonal sind auf allen -$x^k$ mit $k Date: Tue, 21 Jun 2022 16:16:07 +0200 Subject: jacobi stuff completed --- buch/chapters/070-orthogonalitaet/rodrigues.tex | 12 ++++++++++++ 1 file changed, 12 insertions(+) (limited to 'buch/chapters/070-orthogonalitaet/rodrigues.tex') diff --git a/buch/chapters/070-orthogonalitaet/rodrigues.tex b/buch/chapters/070-orthogonalitaet/rodrigues.tex index 9a36bdc..39b01b9 100644 --- a/buch/chapters/070-orthogonalitaet/rodrigues.tex +++ b/buch/chapters/070-orthogonalitaet/rodrigues.tex @@ -210,6 +210,18 @@ von Polynomen bilden. Durch Normierung müssen sich daraus die Polynome $p_n(x)$ ergeben. \end{proof} +\subsection{Differentialgleichung} +Man kann auch zeigen (siehe z.~B.~\cite{buch:pearsondgl}, +dass die orthogonalen Polynome, die die +Rodrigues-Formel liefert, einer Differentialgleichung zweiter +Ordnung genügen, deren möglicherweise nicht konstante Koeffizienten +sich direkt aus $A(x)$, $B(x)$ und $w(x)$ bestimmen lassen. + +\subsection{Beispiel} +Im folgenden zeigen wir, wie sich für viele der früher eingeführten +Gewichtsfunktionen Rodrigues-Formeln für die zugehörigen orthogonalen +Polynome konstruieren lassen. + % % Legendre-Polynome % -- cgit v1.2.1 From 931871e8c8e9b266b9b626d816a803bbd2c56653 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 20:55:53 +0200 Subject: more index stuff --- buch/chapters/070-orthogonalitaet/rodrigues.tex | 6 ++++++ 1 file changed, 6 insertions(+) (limited to 'buch/chapters/070-orthogonalitaet/rodrigues.tex') diff --git a/buch/chapters/070-orthogonalitaet/rodrigues.tex b/buch/chapters/070-orthogonalitaet/rodrigues.tex index 39b01b9..4852624 100644 --- a/buch/chapters/070-orthogonalitaet/rodrigues.tex +++ b/buch/chapters/070-orthogonalitaet/rodrigues.tex @@ -82,6 +82,7 @@ um $2$ erhöhen, die Ableitung wird ihn wieder um $1$ reduzieren. Etwas formeller kann man dies wie folgt formulieren: \begin{satz} +\index{Satz!Rodrigues-Rekursionsformel}% Für alle $n\ge 0$ ist \begin{equation} q_n(x) @@ -163,6 +164,7 @@ orthogonal sind. Dies ist der Inhalt des folgenden Satzes. \begin{satz} +\index{Satz!Rodrigues-Formel für orthonormierte Polynome}% Es gibt Konstanten $c_n$ derart, dass \[ p_n(x) @@ -464,6 +466,8 @@ hat die Ableitung w'(x) = -e^{-x}, \] die Pearsonsche Differentialgleichung ist daher +\index{Pearsonsche Differentialgleichung}% +\index{Differentialgleichung!Pearsonsche}% \[ \frac{w'(x)}{w(x)}=\frac{-1}{1}. \] @@ -562,6 +566,8 @@ an der Stelle $0$. Wir fassen die Resultate im folgenden Satz zusammen. \begin{satz} +\index{Satz!Laguerre-Polynome}% +\index{Polynome!Laguerre-}% Die Laguerre-Polynome vom Grad $n$ haben die Form \begin{equation} L_n(x) -- cgit v1.2.1