From 679ddbd15f09283aad606f443f3c38361f0ff9cc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 16 Jan 2022 16:51:47 +0100 Subject: many changes in the orthogonality chapter --- buch/chapters/070-orthogonalitaet/saev.tex | 95 ++++++++++++++++++++++++++++++ 1 file changed, 95 insertions(+) create mode 100644 buch/chapters/070-orthogonalitaet/saev.tex (limited to 'buch/chapters/070-orthogonalitaet/saev.tex') diff --git a/buch/chapters/070-orthogonalitaet/saev.tex b/buch/chapters/070-orthogonalitaet/saev.tex new file mode 100644 index 0000000..c667297 --- /dev/null +++ b/buch/chapters/070-orthogonalitaet/saev.tex @@ -0,0 +1,95 @@ +\subsubsection{Selbstadjungierte Operatoren und Eigenvektoren} +Symmetrische Matrizen spielen eine spezielle Rolle in der +endlichdimensionalen linearen Algebra, weil sie sich immer +mit einer orthonormierten Basis diagonalisieren lassen. +In der vorliegenden Situation undendlichdimensionaler Vektorräume +brauchen wir eine angepasste Definition. + +\begin{definition} +Eine lineare Selbstabbildung $A\colon V\to V$ +eines Vektorrraums mit Skalarprodukt +heisst {\em selbstadjungiert}, wenn für alle Vektoren $u,v\in V$ +heisst $\langle Au,v\rangle = \langle u,Av\rangle$. +\end{definition} + +Es ist wohlbekannt, dass Eigenvektoren einer symmetrischen Matrix +zu verschiedenen Eigenwerten orthogonal sind. +Der Beweis ist direkt übertragbar, wir halten das Resultat hier +für spätere Verwendung fest. + +\begin{satz} +Sind $f$ und $g$ Eigenvektoren eines selbstadjungierten Operators $A$ +zu verschiedenen Eigenwerten $\lambda$ und $\mu$, dann sind $f$ und $g$ +orthogonal. +\end{satz} + +\begin{proof}[Beweis] +Im vorliegenden Zusammenhang möchten wir die Eigenschaft nutzen, +dass Eigenfunktionen eines selbstadjungierten Operatores zu verschiedenen +Eigenwerten orthogonal sind. +Dazu seien $Df = \lambda f$ und $Dg=\mu g$ und wir rechnen +\begin{equation*} +\renewcommand{\arraycolsep}{2pt} +\begin{array}{rcccrl} +\langle Df,g\rangle &=& \langle \lambda f,g\rangle &=& \lambda\phantom{)}\langle f,g\rangle +&\multirow{2}{*}{\hspace{3pt}$\biggl\}\mathstrut-\mathstrut$}\\ +=\langle f,Dg\rangle &=& \langle f,\mu g\rangle &=& \mu\phantom{)}\langle f,g\rangle& +\\[2pt] +\hline + 0 & & &=& (\lambda-\mu)\langle f,g\rangle& +\end{array} +\end{equation*} +Da $\lambda-\mu\ne 0$ ist, muss $\langle f,g\rangle=0$ sein. +\end{proof} + +\begin{beispiel} +Sei $C^1([0,2\pi], \mathbb{C})=C^1(S^1,\mathbb{C})$ +der Vektorraum der $2\pi$-periodischen differenzierbaren Funktionen mit +dem Skalarprodukt +\[ +\langle f,g\rangle += +\frac{1}{2\pi}\int_0^{2\pi} \overline{f(t)}g(t)\,dt +\] +enthält die Funktionen $e_n(t) = e^{int}$. +Der Operator +\[ +D=i\frac{d}{dt} +\] +ist selbstadjungiert, denn mit Hilfe von partieller Integration erhält man +\[ +\langle Df,g\rangle += +\frac{1}{2\pi} +\int_0^{2\pi} +\underbrace{ +\overline{i\frac{df(t)}{dt}} +}_{\uparrow} +\underbrace{g(t)}_{\downarrow} +\,dt += +\underbrace{ +\frac{-i}{2\pi} +\biggl[ +\overline{f(t)}g(t) +\biggr]_0^{2\pi} +}_{\displaystyle=0} ++ +\frac{1}{2\pi} +\int_0^{2\pi} +\overline{f(t)}i\frac{dg(t)}{dt} +\,dt += +\langle f,Dg\rangle +\] +unter Ausnützung der $2\pi$-Periodizität der Funktionen. + +Die Funktionen $e_n(t)$ sind Eigenfunktionen des Operators $D$, denn +\[ +De_n(t) = i\frac{d}{dt}e^{int} = -n e^{int} = -n e_n(t). +\] +Nach obigem Satz sind die Eigenfunktionen von $D$ orthogonal. +\end{beispiel} + +Das Beispiel illustriert, dass orthogonale Funktionenfamilien +ein automatisches Nebenprodukt selbstadjungierter Operatoren sind. -- cgit v1.2.1