From 9f8e0b23aa9897b429ef997d7de8224844b60880 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 20 Jun 2022 21:27:44 +0200 Subject: fix all the Bessel stuff --- buch/chapters/070-orthogonalitaet/sturm.tex | 45 +++++++++++++++++++++++++++-- 1 file changed, 43 insertions(+), 2 deletions(-) (limited to 'buch/chapters/070-orthogonalitaet/sturm.tex') diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex index 35054ab..1ba0ecb 100644 --- a/buch/chapters/070-orthogonalitaet/sturm.tex +++ b/buch/chapters/070-orthogonalitaet/sturm.tex @@ -11,6 +11,9 @@ konnte die Orthogonalität der Funktionen dadurch gezeigt werden, dass sie als Eigenfunktionen eines bezüglich eines geeigneten Skalarproduktes selbstadjungierten Operators erkannt wurden. +% +% Differentialgleichungen +% \subsection{Differentialgleichung} Das klassische Sturm-Liouville-Problem ist das folgende Eigenwertproblem. Gesucht sind Lösungen der Differentialgleichung @@ -30,6 +33,9 @@ erfüllen, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. Weitere Bedingungen an die Funktionen $p(x)$, $q(x)$, $w(x)$ sowie die Lösungsfunktionen $y(x)$ sollen später geklärt werden. +% +% Das verallgemeinerte Eigenwertproblem für symmetrische Matrizen +% \subsection{Das verallgemeinerte Eigenwertproblem für symmetrische Matrizen} Ein zu \eqref{buch:integrale:eqn:sturm-liouville} analoges Eigenwertproblem für Matrizen ist das folgende verallgemeinerte Eigenwertproblem. @@ -175,6 +181,9 @@ ist damit ein gewöhnliches Eigenwertproblem für selbstadjungierte Matrizen des Operators $\tilde{A}$ bezüglich des verallgemeinerten Skalarproduktes $\langle\,\;,\;\rangle_B$. +% +% Der Operator L_0 und die Randbedingung +% \subsection{Der Operator $L_0$ und die Randbedingung} Die Differentialgleichung kann auch in Operatorform geschrieben werden. Dazu schreiben wir @@ -275,6 +284,9 @@ Ausgeschrieben bedeutet dies, dass die Randbedingung \eqref{buch:integrale:sturm:randbedingung} erfüllt sein muss. +% +% Skalarprodukt +% \subsection{Skalarprodukt} Das Ziel der folgenden Abschnitte ist, das Sturm-Liouville-Problem als Eigenwertproblem für einen selbstadjungierten Operator in einem @@ -314,6 +326,9 @@ mit der Gewichtsfunktion $w(x)$ verwendet werden. Damit dies ein vernünftiges Skalarprodukt ist, muss $w(x)>0$ im Innerend es Intervalls sein. +% +% Der Vektorraum H +% \subsection{Der Vektorraum $H$} Damit können wir jetzt die Eigenschaften der in Frage kommenden Funktionen zusammenstellen. @@ -346,7 +361,10 @@ f\in L^2([a,b],w)\;\bigg|\; \biggr\}. \] -\subsection{Differentialoperator} +% +% Der Sturm-Liouville-Differentialoperator +% +\subsection{Der Sturm-Liouville-Differentialoperator} Das verallgemeinerte Eigenwertproblem für $A$ und $B$ ist ein gewöhnliches Eigenwertproblem für die Operator $\tilde{A}=B^{-1}A$ bezüglich des modifizierten Skalarproduktes. @@ -366,12 +384,18 @@ $\lambda$ ist der zu $y(x)$ gehörige Eigenwert. Der Operator ist definiert auf Funktionen des im vorangegangenen Abschnitt definierten Vektorraumes $H$. +% +% Beispiele +% \subsection{Beispiele} Die meisten der früher vorgestellten Funktionenfamilien stellen sich als Lösungen eines geeigneten Sturm-Liouville-Problems heraus. Alle Eigenschaften aus der Sturm-Liouville-Theorie gelten daher automatisch für diese Funktionenfamilien. +% +% Trignometrische Funktionen +% \subsubsection{Trigonometrische Funktionen} Die trigonometrischen Funktionen sind Eigenfunktionen des Operators $d^2/dx^2$, also eines Sturm-Liouville-Operators mit $p(x)=1$, $q(x)=0$ @@ -434,6 +458,9 @@ Dann ist wegen die Bedingung~\eqref{buch:integrale:sturm:sabedingung} ebenfalls erfüllt, $L_0$ ist in diesem Raum selbstadjungiert. +% +% Bessel-Funktionen J_n(x) +% \subsubsection{Bessel-Funktionen $J_n(x)$} Der Bessel-Operator \eqref{buch:differentialgleichungen:bessel-operator} kann wie folgt in die Form eines Sturm-Liouville-Operators gebracht @@ -478,6 +505,9 @@ Es folgt damit sofort, dass die Besselfunktionen orthogonale Funktionen bezüglich des Skalarproduktes mit der Gewichtsfunktion $w(x)=1/x$ sind. +% +% Bessel-Funktionen J_n(sx) +% \subsubsection{Bessel-Funktionen $J_n(s x)$} Das Sturm-Liouville-Problem mit den Funktionen \eqref{buch:orthogonal:sturm:bessel:n} @@ -608,6 +638,9 @@ Damit sind geeignete Randbedingungen für das Sturm-Liouville-Problem gefunden. \end{proof} +% +% Laguerre-Polynome +% \subsubsection{Laguerre-Polynome} Die Laguerre-Polynome sind orthogonal bezüglich des Skalarprodukts mit der Laguerre-Gewichtsfunktion $w(x)=e^{-x}$ und erfüllen die @@ -646,6 +679,9 @@ also die Laguerre-Differentialgleichung. Somit folgt, dass die Laguerre-Polynome orthogonal sind bezüglich des Skalarproduktes mit der Laguerre-Gewichtsfunktion. +% +% Tschebyscheff-Polynome +% \subsubsection{Tschebyscheff-Polynome} Die Tschebyscheff-Polynome sind Lösungen der Tschebyscheff-Differentialgleichung @@ -685,10 +721,15 @@ bezüglich des Skalarproduktes \langle f,g\rangle = \int_{-1}^1 f(x)g(x)\frac{dx}{\sqrt{1-x^2}}. \] +% +% Jacobi-Polynome +% \subsubsection{Jacobi-Polynome} TODO - +% +% Hypergeometrische Differentialgleichungen +% \subsubsection{Hypergeometrische Differentialgleichungen} %\url{https://encyclopediaofmath.org/wiki/Hypergeometric_equation} Auch die Eulersche hypergeometrische Differentialgleichung -- cgit v1.2.1 From 8a570ddc78a49006c1e6ad15bf05a19e62038f16 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 21 Jun 2022 16:16:07 +0200 Subject: jacobi stuff completed --- buch/chapters/070-orthogonalitaet/sturm.tex | 83 +++++++++++++++++++++++++++-- 1 file changed, 80 insertions(+), 3 deletions(-) (limited to 'buch/chapters/070-orthogonalitaet/sturm.tex') diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex index 1ba0ecb..613a491 100644 --- a/buch/chapters/070-orthogonalitaet/sturm.tex +++ b/buch/chapters/070-orthogonalitaet/sturm.tex @@ -371,9 +371,10 @@ bezüglich des modifizierten Skalarproduktes. Das Sturm-Liouville-Problem ist also ein Eigenwertproblem im Vektorraum $H$ mit dem Skalarprodukt $\langle\,\;,\;\rangle_w$. Der Operator -\[ +\begin{equation} L = \frac{1}{w(x)} \biggl(-\frac{d}{dx} p(x)\frac{d}{dx} + q(x)\biggr) -\] +\label{buch:orthogonal:sturm-liouville:opL1} +\end{equation} heisst der {\em Sturm-Liouville-Operator}. Eine Lösung des Sturm-Liouville-Problems ist eine Funktion $y(x)$ derart, dass @@ -383,6 +384,15 @@ Ly = \lambda y, $\lambda$ ist der zu $y(x)$ gehörige Eigenwert. Der Operator ist definiert auf Funktionen des im vorangegangenen Abschnitt definierten Vektorraumes $H$. +Führt man die Differentiation aus, bekommt der Operator die Form +\begin{equation} +L += +-\frac{p(x)}{w(x)} \frac{d^2}{dx^2} +-\frac{p'(x)}{w(x)} \frac{d}{dx} ++\frac{q(x)}{w(x)}. +\label{buch:orthogonal:sturm-liouville:opL2} +\end{equation} % % Beispiele @@ -725,7 +735,74 @@ bezüglich des Skalarproduktes % Jacobi-Polynome % \subsubsection{Jacobi-Polynome} -TODO +Die Jacobi-Polynome sind orthogonal bezüglich des Skalarproduktes +mit der Gewichtsfunktion +\( +w^{(\alpha,\beta)}(x) = (1-x)^\alpha(1+x)^\beta, +\) +definiert in Definition~\ref{buch:orthogonal:def:jacobi-gewichtsfunktion}. +%Bei der Herleitung der Rodrigues-Formel für die Jacobi-Polynome wurde erkannt, +%dass $B(x)=1-x^2$ und $A(x)=\beta-\alpha-(\alpha+\beta)x$ sein muss. +Man kann zeigen, dass die Jacobi-Polynome Lösungen der +Jacobi-Differentialgleichung +\begin{equation} +(1-x^2)y'' + (\beta-\alpha-(\alpha+\beta + 2)x)y' + n(n+\alpha+\beta+1)y=0 +\label{buch:orthogonal:jacobi:dgl} +\end{equation} +sind. +Es stellt sich die Frage, ob sich Funktionen $p(x)$ und $q(x)$ finden lassen +derart, dass die Differentialgleichung~\eqref{buch:orthogonal:jacobi:dgl} +eine Sturm-Liouville-Gleichung wird. +Gemäss der Form~\eqref{buch:orthogonal:sturm-liouville:opL2} muss +$p(x)$ so gefunden werden, dass +\begin{align*} +\frac{p(x)}{w^{(\alpha,\beta)}(x)} &= 1-x^2 \\ +\frac{p'(x)}{w^{(\alpha,\beta)}(x)} &= \beta-\alpha-(\alpha+\beta+2)x +\end{align*} +gilt. +Der Quotient der ersten beiden Gleichungen ist die logarithmische Ableitung +\[ +(\log p(x))' += +\frac{p'(x)}{p(x)} += +\frac{1-x^2}{\beta-\alpha-(\alpha+\beta+2)x} +\] +die sich in geschlossener Form integrieren lässt. +Man findet als Stammfunktion +\[ +p(x) += +(1-x)^{\alpha+1}(1+x)^{\beta+1}. +\] +Tatsächlich ist +\begin{align*} +\frac{p(x)}{w^{(\alpha,\beta)}(x)} +&= +\frac{(1-x)^{\alpha+1}(1+x)^{\beta+1}}{(1-x)^\alpha(1+x)^\beta} += +(1-x)(1+x)=1-x^2 +\\ +\frac{p'(x)}{w^{(\alpha,\beta)}(x)} +&= +\frac{ +-(\alpha+1) +(1-x)^{\alpha}(1+x)^{\beta+1} ++ +(\beta+1) +(1-x)^{\alpha+1}(1+x)^{\beta} +}{ +(1-x)^{\alpha}(1+x)^{\beta} +} +\\ +&= +-(\alpha+1)(1+x) + (\beta+1)(1-x) += +\beta-\alpha-(\alpha+\beta+2)x. +\end{align*} +Damit ist +die Jacobische Differentialgleichung +als Sturm-Liouville-Differentialgleichung erkannt. % % Hypergeometrische Differentialgleichungen -- cgit v1.2.1 From 98e2356f6d690fc6840c3ec5ae8b9eaf21771df2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 21 Jun 2022 17:54:12 +0200 Subject: bessel 2nd kind --- buch/chapters/070-orthogonalitaet/sturm.tex | 17 +++++++++++------ 1 file changed, 11 insertions(+), 6 deletions(-) (limited to 'buch/chapters/070-orthogonalitaet/sturm.tex') diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex index 613a491..164cd9a 100644 --- a/buch/chapters/070-orthogonalitaet/sturm.tex +++ b/buch/chapters/070-orthogonalitaet/sturm.tex @@ -694,7 +694,8 @@ des Skalarproduktes mit der Laguerre-Gewichtsfunktion. % \subsubsection{Tschebyscheff-Polynome} Die Tschebyscheff-Polynome sind Lösungen der -Tschebyscheff-Differentialgleichung +bereits in Kapitel~\ref{buch:chapter:potenzen} hergeleiteten +Tschebyscheff-Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl} \[ (1-x^2)y'' -xy' = n^2y \] @@ -737,14 +738,16 @@ bezüglich des Skalarproduktes \subsubsection{Jacobi-Polynome} Die Jacobi-Polynome sind orthogonal bezüglich des Skalarproduktes mit der Gewichtsfunktion -\( +\[ w^{(\alpha,\beta)}(x) = (1-x)^\alpha(1+x)^\beta, -\) +\] definiert in Definition~\ref{buch:orthogonal:def:jacobi-gewichtsfunktion}. %Bei der Herleitung der Rodrigues-Formel für die Jacobi-Polynome wurde erkannt, %dass $B(x)=1-x^2$ und $A(x)=\beta-\alpha-(\alpha+\beta)x$ sein muss. -Man kann zeigen, dass die Jacobi-Polynome Lösungen der -Jacobi-Differentialgleichung +Man kann zeigen, dass sie Lösungen der +{\em Jacobi-Diffe\-ren\-tial\-gleichung} +\index{Jacobi-Differentialgleichung}% +\index{Differentialgleichung!Jacobi}% \begin{equation} (1-x^2)y'' + (\beta-\alpha-(\alpha+\beta + 2)x)y' + n(n+\alpha+\beta+1)y=0 \label{buch:orthogonal:jacobi:dgl} @@ -760,7 +763,7 @@ $p(x)$ so gefunden werden, dass \frac{p'(x)}{w^{(\alpha,\beta)}(x)} &= \beta-\alpha-(\alpha+\beta+2)x \end{align*} gilt. -Der Quotient der ersten beiden Gleichungen ist die logarithmische Ableitung +Der Quotient der beiden Gleichungen ist die logarithmische Ableitung \[ (\log p(x))' = @@ -768,6 +771,7 @@ Der Quotient der ersten beiden Gleichungen ist die logarithmische Ableitung = \frac{1-x^2}{\beta-\alpha-(\alpha+\beta+2)x} \] +von $p(x)$, die sich in geschlossener Form integrieren lässt. Man findet als Stammfunktion \[ @@ -811,6 +815,7 @@ als Sturm-Liouville-Differentialgleichung erkannt. %\url{https://encyclopediaofmath.org/wiki/Hypergeometric_equation} Auch die Eulersche hypergeometrische Differentialgleichung lässt sich in die Form eines Sturm-Liouville-Operators +\index{Eulersche hypergeometrische Differentialgleichung!als Sturm-Liouville-Gleichung}% bringen. Dazu setzt man \begin{align*} -- cgit v1.2.1 From 931871e8c8e9b266b9b626d816a803bbd2c56653 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 20:55:53 +0200 Subject: more index stuff --- buch/chapters/070-orthogonalitaet/sturm.tex | 21 ++++++++++++++++++++- 1 file changed, 20 insertions(+), 1 deletion(-) (limited to 'buch/chapters/070-orthogonalitaet/sturm.tex') diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex index 164cd9a..742ec0a 100644 --- a/buch/chapters/070-orthogonalitaet/sturm.tex +++ b/buch/chapters/070-orthogonalitaet/sturm.tex @@ -7,6 +7,7 @@ \label{buch:integrale:subsection:sturm-liouville-problem}} \rhead{Das Sturm-Liouville-Problem} Sowohl bei den Bessel-Funktionen wie bei den Legendre-Polynomen +\index{Bessel-Funktion}% konnte die Orthogonalität der Funktionen dadurch gezeigt werden, dass sie als Eigenfunktionen eines bezüglich eines geeigneten Skalarproduktes selbstadjungierten Operators erkannt wurden. @@ -57,6 +58,7 @@ Für symmetrische Matrizen lässt sich dieses Problem auf ein Optimierungsproblem reduzieren. \begin{satz} +\index{Satz!verallgemeinertes Eigenwertproblem}% Seien $A$ und $B$ symmetrische $n\times n$-Matrizen und sei ausserdem $B$ positiv definit. Ist $v$ ein Vektor, der die Grösse @@ -127,6 +129,7 @@ Eigenwert $\lambda$ ist. \end{proof} \begin{satz} +\index{Satz!Orthogonalität verallgemeinerter Eigenvektoren}% Verallgemeinerte Eigenvektoren $u$ und $v$ von $A$ und $B$ zu verschiedenen Eigenwerten erfüllen $u^tBv=0$. \end{satz} @@ -153,6 +156,8 @@ dass $u^tBv=0$ sein muss. Verallgemeinerte Eigenwerte und Eigenvektoren verhalten sich also ganz analog zu den gewöhnlichen Eigenwerten und Eigenvektoren. Da $B$ positiv definit ist, ist $B$ auch invertierbar. +\index{verallgemeinertes Skalarprodukt}% +\index{Skalarprodukt!verallgemeinertes}% Zudem kann $B$ zur Definition des verallgemeinerten Skalarproduktes \[ \langle u,v\rangle_B = u^tBv @@ -201,6 +206,7 @@ Bezüglich des gewöhnlichen Skalarproduktes für Funktionen auf dem Intervall $[a,b]$ ist der Operator $L_0$ tatsächlich selbstadjungiert. Mit partieller Integration rechnet man nach: +\index{partielle Integration}% \begin{align} \langle f,L_0g\rangle &= @@ -376,6 +382,8 @@ L = \frac{1}{w(x)} \biggl(-\frac{d}{dx} p(x)\frac{d}{dx} + q(x)\biggr) \label{buch:orthogonal:sturm-liouville:opL1} \end{equation} heisst der {\em Sturm-Liouville-Operator}. +\index{Sturm-Liouville-Operator}% +\index{Operator!Sturm-Liouville-}% Eine Lösung des Sturm-Liouville-Problems ist eine Funktion $y(x)$ derart, dass \[ @@ -529,7 +537,10 @@ Im Folgenden sollen hingegen die Funktionen $J_n(s x)$ für konstantes $n$, aber verschiedene $s$ untersucht und als orthogonal erkannt werden. -Die Funktion $y(x) = J_n(x)$ ist eine Lösung der Bessel-Differentialgleichung +Die Funktion $y(x) = J_n(x)$ ist eine Lösung der Besselschen +Differentialgleichung +\index{Besselsche Differentialgleichung}% +\index{Differentialgleichung!Besselsche}% \[ x^2y'' + xy' + x^2y = n^2y. \] @@ -616,6 +627,7 @@ des Sturm-Liouville-Problems für den Eigenwert $\lambda = -s^2$. \begin{satz}[Orthogonalität der Bessel-Funktionen] +\index{Satz!Orthogonalität der Bessel-Funktionen}% Die Bessel-Funktionen $J_n(sx)$ für verschiedene $s$ sind orthogonal bezüglich des Skalarproduktes mit der Gewichtsfunktion $w(x)=x$, d.~h. @@ -696,6 +708,8 @@ des Skalarproduktes mit der Laguerre-Gewichtsfunktion. Die Tschebyscheff-Polynome sind Lösungen der bereits in Kapitel~\ref{buch:chapter:potenzen} hergeleiteten Tschebyscheff-Differentialgleichung~\eqref{buch:potenzen:tschebyscheff:dgl} +\index{Tschebyscheff-Differentialgleichung}% +\index{Differentialgleichung!Tschebyscheff-}% \[ (1-x^2)y'' -xy' = n^2y \] @@ -727,6 +741,7 @@ xy'(x) \lambda y(x). \end{align*} Es folgt, dass die Tschebyscheff-Polynome orthogonal sind +\index{Tschebyscheff-Polynom}% bezüglich des Skalarproduktes \[ \langle f,g\rangle = \int_{-1}^1 f(x)g(x)\frac{dx}{\sqrt{1-x^2}}. @@ -737,6 +752,8 @@ bezüglich des Skalarproduktes % \subsubsection{Jacobi-Polynome} Die Jacobi-Polynome sind orthogonal bezüglich des Skalarproduktes +\index{Jacobi-Polynome}% +\index{Polynome!Jacobi-}% mit der Gewichtsfunktion \[ w^{(\alpha,\beta)}(x) = (1-x)^\alpha(1+x)^\beta, @@ -814,6 +831,8 @@ als Sturm-Liouville-Differentialgleichung erkannt. \subsubsection{Hypergeometrische Differentialgleichungen} %\url{https://encyclopediaofmath.org/wiki/Hypergeometric_equation} Auch die Eulersche hypergeometrische Differentialgleichung +\index{Eulersche hypergeometrische Differentialgleichung}% +\index{Differentialgleichung!Eulersche hypergeometrische}% lässt sich in die Form eines Sturm-Liouville-Operators \index{Eulersche hypergeometrische Differentialgleichung!als Sturm-Liouville-Gleichung}% bringen. -- cgit v1.2.1