From 8a570ddc78a49006c1e6ad15bf05a19e62038f16 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 21 Jun 2022 16:16:07 +0200 Subject: jacobi stuff completed --- buch/chapters/070-orthogonalitaet/orthogonal.tex | 2 +- buch/chapters/070-orthogonalitaet/rodrigues.tex | 12 ++++ buch/chapters/070-orthogonalitaet/sturm.tex | 83 +++++++++++++++++++++++- 3 files changed, 93 insertions(+), 4 deletions(-) (limited to 'buch/chapters/070-orthogonalitaet') diff --git a/buch/chapters/070-orthogonalitaet/orthogonal.tex b/buch/chapters/070-orthogonalitaet/orthogonal.tex index 97cd06b..df04514 100644 --- a/buch/chapters/070-orthogonalitaet/orthogonal.tex +++ b/buch/chapters/070-orthogonalitaet/orthogonal.tex @@ -638,7 +638,7 @@ Der Vektorraum $H_w$ von auf $(a,b)$ definierten Funktionen sei H_w = \biggl\{ -f:\colon(a,b) \to \mathbb{R} +f\colon(a,b) \to \mathbb{R} \;\bigg|\; \int_a^b |f(x)|^2 w(x)\,dx \biggr\}. diff --git a/buch/chapters/070-orthogonalitaet/rodrigues.tex b/buch/chapters/070-orthogonalitaet/rodrigues.tex index 9a36bdc..39b01b9 100644 --- a/buch/chapters/070-orthogonalitaet/rodrigues.tex +++ b/buch/chapters/070-orthogonalitaet/rodrigues.tex @@ -210,6 +210,18 @@ von Polynomen bilden. Durch Normierung müssen sich daraus die Polynome $p_n(x)$ ergeben. \end{proof} +\subsection{Differentialgleichung} +Man kann auch zeigen (siehe z.~B.~\cite{buch:pearsondgl}, +dass die orthogonalen Polynome, die die +Rodrigues-Formel liefert, einer Differentialgleichung zweiter +Ordnung genügen, deren möglicherweise nicht konstante Koeffizienten +sich direkt aus $A(x)$, $B(x)$ und $w(x)$ bestimmen lassen. + +\subsection{Beispiel} +Im folgenden zeigen wir, wie sich für viele der früher eingeführten +Gewichtsfunktionen Rodrigues-Formeln für die zugehörigen orthogonalen +Polynome konstruieren lassen. + % % Legendre-Polynome % diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex index 1ba0ecb..613a491 100644 --- a/buch/chapters/070-orthogonalitaet/sturm.tex +++ b/buch/chapters/070-orthogonalitaet/sturm.tex @@ -371,9 +371,10 @@ bezüglich des modifizierten Skalarproduktes. Das Sturm-Liouville-Problem ist also ein Eigenwertproblem im Vektorraum $H$ mit dem Skalarprodukt $\langle\,\;,\;\rangle_w$. Der Operator -\[ +\begin{equation} L = \frac{1}{w(x)} \biggl(-\frac{d}{dx} p(x)\frac{d}{dx} + q(x)\biggr) -\] +\label{buch:orthogonal:sturm-liouville:opL1} +\end{equation} heisst der {\em Sturm-Liouville-Operator}. Eine Lösung des Sturm-Liouville-Problems ist eine Funktion $y(x)$ derart, dass @@ -383,6 +384,15 @@ Ly = \lambda y, $\lambda$ ist der zu $y(x)$ gehörige Eigenwert. Der Operator ist definiert auf Funktionen des im vorangegangenen Abschnitt definierten Vektorraumes $H$. +Führt man die Differentiation aus, bekommt der Operator die Form +\begin{equation} +L += +-\frac{p(x)}{w(x)} \frac{d^2}{dx^2} +-\frac{p'(x)}{w(x)} \frac{d}{dx} ++\frac{q(x)}{w(x)}. +\label{buch:orthogonal:sturm-liouville:opL2} +\end{equation} % % Beispiele @@ -725,7 +735,74 @@ bezüglich des Skalarproduktes % Jacobi-Polynome % \subsubsection{Jacobi-Polynome} -TODO +Die Jacobi-Polynome sind orthogonal bezüglich des Skalarproduktes +mit der Gewichtsfunktion +\( +w^{(\alpha,\beta)}(x) = (1-x)^\alpha(1+x)^\beta, +\) +definiert in Definition~\ref{buch:orthogonal:def:jacobi-gewichtsfunktion}. +%Bei der Herleitung der Rodrigues-Formel für die Jacobi-Polynome wurde erkannt, +%dass $B(x)=1-x^2$ und $A(x)=\beta-\alpha-(\alpha+\beta)x$ sein muss. +Man kann zeigen, dass die Jacobi-Polynome Lösungen der +Jacobi-Differentialgleichung +\begin{equation} +(1-x^2)y'' + (\beta-\alpha-(\alpha+\beta + 2)x)y' + n(n+\alpha+\beta+1)y=0 +\label{buch:orthogonal:jacobi:dgl} +\end{equation} +sind. +Es stellt sich die Frage, ob sich Funktionen $p(x)$ und $q(x)$ finden lassen +derart, dass die Differentialgleichung~\eqref{buch:orthogonal:jacobi:dgl} +eine Sturm-Liouville-Gleichung wird. +Gemäss der Form~\eqref{buch:orthogonal:sturm-liouville:opL2} muss +$p(x)$ so gefunden werden, dass +\begin{align*} +\frac{p(x)}{w^{(\alpha,\beta)}(x)} &= 1-x^2 \\ +\frac{p'(x)}{w^{(\alpha,\beta)}(x)} &= \beta-\alpha-(\alpha+\beta+2)x +\end{align*} +gilt. +Der Quotient der ersten beiden Gleichungen ist die logarithmische Ableitung +\[ +(\log p(x))' += +\frac{p'(x)}{p(x)} += +\frac{1-x^2}{\beta-\alpha-(\alpha+\beta+2)x} +\] +die sich in geschlossener Form integrieren lässt. +Man findet als Stammfunktion +\[ +p(x) += +(1-x)^{\alpha+1}(1+x)^{\beta+1}. +\] +Tatsächlich ist +\begin{align*} +\frac{p(x)}{w^{(\alpha,\beta)}(x)} +&= +\frac{(1-x)^{\alpha+1}(1+x)^{\beta+1}}{(1-x)^\alpha(1+x)^\beta} += +(1-x)(1+x)=1-x^2 +\\ +\frac{p'(x)}{w^{(\alpha,\beta)}(x)} +&= +\frac{ +-(\alpha+1) +(1-x)^{\alpha}(1+x)^{\beta+1} ++ +(\beta+1) +(1-x)^{\alpha+1}(1+x)^{\beta} +}{ +(1-x)^{\alpha}(1+x)^{\beta} +} +\\ +&= +-(\alpha+1)(1+x) + (\beta+1)(1-x) += +\beta-\alpha-(\alpha+\beta+2)x. +\end{align*} +Damit ist +die Jacobische Differentialgleichung +als Sturm-Liouville-Differentialgleichung erkannt. % % Hypergeometrische Differentialgleichungen -- cgit v1.2.1