From d4046eef3dee4b3de6f1d456132cda22fef8743f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 9 Oct 2021 21:13:51 +0200 Subject: erster Entwurf Kapitel Funktionentheorie --- buch/chapters/080-funktionentheorie/holomorph.tex | 384 ++++++++++++++++++++++ 1 file changed, 384 insertions(+) create mode 100644 buch/chapters/080-funktionentheorie/holomorph.tex (limited to 'buch/chapters/080-funktionentheorie/holomorph.tex') diff --git a/buch/chapters/080-funktionentheorie/holomorph.tex b/buch/chapters/080-funktionentheorie/holomorph.tex new file mode 100644 index 0000000..c87b083 --- /dev/null +++ b/buch/chapters/080-funktionentheorie/holomorph.tex @@ -0,0 +1,384 @@ +% +% holomorph.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\section{Holomorphe Funktionen +\label{buch:funktionentheorie:section:holomorph}} +\rhead{Holomorphe Funktionen} + +Wir betrachten in diesem Kapitel komplexwertige Funktionen, +\index{komplexwertige Funktion}% +die ein einem Teilgebiet der komplexen Ebene definiert sind. +Ein {\em Gebiet} ist eine offene Teilmenge $\Omega\subset \mathbb C$. +\index{Gebiet}% +{\em Offen} heisst, dass mit jedem Punkt $z_0\in\Omega$ eine Umgebung +\index{offen}% +\index{Umgebung}% +\[ +U=\{z\in\mathbb Z\,|\,|z-z_0|<\varepsilon\} +\] +ebenfalls in $\Omega$ enthalten ist, also $U\subset \Omega$ für genügen +kleines $\varepsilon$. +Sei also $f(z)$ eine in $\Omega\subset\mathbb C$ definierte +Funktion $f\colon\Omega\to\mathbb C$. + +Eine komplexwertige Funktion $f(z)$ kann betrachtet werden als zwei +reellwertige Funktionen von zwei Variablen $x$ und $y$: +\[ +f(z)=\operatorname{Re}f(x+iy) + i \operatorname{Im}f(x+iy). +\] +Schreibt man +$\operatorname{Re}f(x+iy)=u(x,y)$ +und +$\operatorname{In}f(x+iy)=v(x,y)$, +dann ist die komplexe Funktion vollständig durch reelle Funktionen +beschrieben. +Und natürlich wissen wir auch, was unter den Ableitungen der Funktionen +$u(x,y)$ und $v(x,y)$ zu verstehen ist. +Der Funktion $f(z)$ entspricht eine Abbildung $\mathbb R^2\to\mathbb R^2$ +\index{Abbildung}% +\[ +(x,y)\mapsto\begin{pmatrix}u(x,y)\\v(x,y)\end{pmatrix}. +\] +Die Ableitung einer solchen Funktion im Punkt $(x_0,y_0)$ +ist eine lineare Abbildung von Vektoren, die in linearer Näherung +\index{lineare Naherung@lineare Näherung} +\index{Naherung@Näherung, lineare} +den Funktionswert bei $f(z_0 + \Delta z)$ +\[ +\begin{pmatrix} +u(x+\Delta x, y +\Delta y)\\ +v(x+\Delta x, y +\Delta y) +\end{pmatrix} += +\begin{pmatrix} +\frac{\partial u}{\partial x}&\frac{\partial u}{\partial y}\\ +\frac{\partial v}{\partial x}&\frac{\partial v}{\partial y} +\end{pmatrix} +\begin{pmatrix} \Delta x\\\Delta y \end{pmatrix} ++o(\Delta x, \Delta y). +\] +In dieser Sicht einer komplexen Funktion gibt es keine einzelne Zahl, die +die Funktion einer Ableitung übernehmen könnte, die Ableitung +ist eine $2\times 2$-Matrix. + +% +% Definition der komplexen Ableitungen +% +\subsection{Komplexe Ableitung} +Die Ableitung einer Funktion einer reellen Variablen wird mit Hilfe des +Grenzwertes +\[ +f'(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} +\] +definiert, oder als diejenige Zahl $f'(x_0)\in\mathbb R$ mit der Eigenschaft, +dass +\begin{equation} +f(x)=f(x_0)+f'(x_0)(x-x_0) + o(x-x_0) +\label{komplex:abldef} +\end{equation} +gilt. +Der Term $x-x_0$ und die Gleichung \eqref{komplex:abldef} sind aber auch +für komplexe Argument sinnvoll, wir definieren daher + +\begin{definition} +Die komplexe Funktion $f(z)$ heisst im Punkt $z_0$ komplex differenzierbar +und hat die komplexe Ableitung $f'(z_0)\in\mathbb C$, wenn +\index{komplex differenzierbar}% +\index{komplexe Ableitung}% +\index{Ableitung!komplexe}% +\begin{equation} +f(z)=f(z_0) + f'(z_0)(z-z_0) +o(z-z_0) +\label{komplex:defkomplabl} +\end{equation} +gilt. +\end{definition} + +\begin{beispiel} +Die Funktion $z\mapsto f(z)=z^n$ ist überall komplex differenzierbar +und hat die Ableitung $nz^{n-1}$. +Um dies nachzuprüfen, müssen wir die Bedingung~\eqref{komplex:defkomplabl} +verifizieren. +Aus einer wohlbekannten Faktorisierung von $z^n - z_0^n$ können wir den +Differenzenquotienten finden: +\begin{align*} +\frac{f(z)-f(z_0)}{z-z_0} +&= +\frac{z^n-z_0^n}{z-z_0} += +\frac{(z-z_0)(z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z^{n-1})}{z-z_0} +\\ +&= +\underbrace{z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z^{n-1} +}_{\displaystyle \text{$n$ Summanden}}. +\end{align*} +Lassen wir jetzt $z$ gegen $z_0$ gehen, wird die rechte Seite +zu $nz_0^{n-1}$. +\end{beispiel} + +\begin{beispiel} +Die Funktion $z\mapsto f(z)=\bar z=x-iy$ ist nicht differenzierbar. +Wenn $f(z)=\bar z$ differenzierbar wäre, dann müsste es eine Zahl +$a\in\mathbb C$ geben, so dass +\[ +\bar z-\bar z_0=a(z-z_0)+o(z-z_0) +\] +gilt. +wählen wir $z=z_0+x$ bzw.~$z=z_0+iy$, dann erhalten wir +\[ +\begin{aligned} +z-z_0&=x:& +\bar z-\bar z_0&=x +&&\Rightarrow& +\bar z-\bar z_0&=1\cdot x +&&\Rightarrow& +a&=1 +\\ +z-z_0&=iy:& +\bar z-\bar z_0&=-iy +&&\Rightarrow& +\bar z-\bar z_0&=-1\cdot iy +&&\Rightarrow& +a&=-1 +\end{aligned} +\] +Es ist also nicht möglich, eine einzige Zahl $a$ zu finden, die als +die Ableitung der Funktion $z\mapsto \bar z$ betrachtet werden könnte. +\end{beispiel} + +Das letzte Beispiel zeigt, dass +selbst Funktionen, deren Real- und Imaginärteil beliebig oft stetig +differenzierbare Funktionen sind, nicht komplex differenzierbar +sein müssen. +Komplexe Differenzierbarkeit ist eine wesentlich stärkere Bedingung +an eine Funktion, komplex differenzierbare Funktionen bilden eine +echte Teilmenge aller Funktionen, deren Real- und Imaginärteil +differenzierbar ist. + +% +% Cauchy-Riemann-Differentialgleichungen +% +\subsection{Die Cauchy-Riemann-Differentialgleichungen} +Komplexe Funktionen können nur differenzierbar sein, wenn sich die vier +partiellen Ableitungen zu einer einzigen komplexen Zahl zusammenfassen +lassen. +Um diese Beziehung zu finden, gehen wir von einer komplexen Funktion +\[ +f(x+iy) = u(x,y) + iv(x,y) +\] +aus, und berechnen die Ableitung auf zwei verschiedene Arten, indem +wir sowohl nach $x$ als auch nach $iy$ ableiten: +\begin{align*} +f'(z)& += +\lim_{x\to 0}\frac{f(z+x)-f(z)}{x} += +\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x} +\\ +f'(z)& += +\lim_{y\to 0}\frac{f(z+iy)-f(z)}{iy} += +\frac1{i} +\frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} += +\frac{\partial v}{\partial y} +-i +\frac{\partial u}{\partial y}. +\end{align*} +Dies ist nur möglich, wenn Real- und Imaginärteile übereinstimmen. +Es folgt also + +\begin{satz} +\label{komplex:satz:cauchy-riemann} +Real- und Imaginärteil $u(x,y)$ und $v(x,y)$ einer +komplex differenzierbaren Funktion $f(z)$ mit $f(x+iy)=u(x,y)+iv(x,y)$ +erfüllen die Cauchy-Riemannschen Differentialgleichungen +\index{Cauchy-Riemann-Differentialgleichungen} +\begin{equation} +\begin{aligned} +\frac{\partial u}{\partial x} +&= +\frac{\partial v}{\partial y}, +& +\frac{\partial u}{\partial y} +&= +- +\frac{\partial v}{\partial x}. +\end{aligned} +\label{komplex:dgl:cauchy-riemann} +\end{equation} +\end{satz} + +Leitet man die Cauchy-Riemann-Differentialgleichungen nochmals nach +$x$ und $y$ ab, erhält man +\begin{equation*} +\begin{aligned} +\frac{\partial^2 u}{\partial x^2} +&= +\frac{\partial^2 v}{\partial x\,\partial y}, +& +\frac{\partial^2 u}{\partial x\,\partial y} +&= +-\frac{\partial^2 v}{\partial x^2}, +& +\frac{\partial^2 u}{\partial y\,\partial x} +&= +\frac{\partial^2 v}{\partial y^2}, +& +\frac{\partial^2 u}{\partial y^2} +&= +-\frac{\partial^2 v}{\partial y\,\partial x}. +\end{aligned} +\end{equation*} +Die erste und die letzte sowie die mittleren zwei können zu jeweils +einer Differentialgleichung für die Funktionen $u$ und $v$ zusammengefasst +werden, nämlich +\begin{equation*} +\frac{\partial^2 u}{\partial x^2} ++ +\frac{\partial^2 u}{\partial y^2} += +0 +\qquad\text{und}\qquad +\frac{\partial^2 v}{\partial x^2} ++ +\frac{\partial^2 v}{\partial y^2} += +0. +\end{equation*} + +\begin{definition} +Der Operator +\[ +\Delta = +\frac{\partial^2}{\partial x^2} ++ +\frac{\partial^2}{\partial y^2} +\] +heisst der {\em Laplace-Operator} in zwei Dimensionen. + +\index{Laplace-Operator}% +\end{definition} + +\begin{definition} +Eine Funktion $h(x,y)$ von zwei Variablen heisst {\em harmonisch}, wenn sie +die Gleichung +\[ +\Delta h=0 +\] +erfüllt. +\index{harmonische Funktion}% +\index{harmonisch}% +\end{definition} + +\begin{satz} +Real- und Imaginärteil einer komplexen Funktion sind harmonische Funktionen. +\end{satz} + +Die Cauchy-Riemann-Differentialgleichungen schränken also einerseits stark +ein, welche Funktionen überhaupt als Real- und Imaginärteil einer +komplex differenzierbaren Funktion in Frage kommen. +Andererseits koppeln sie auch Real- und Imaginärteil stark zusammen. + +\begin{beispiel} +Von einer komplex differenzierbaren Funktion $f(z)$ sei nur der Realteil +$u(x,y)=x^3 -3xy^2$ bekannt. +Man finde alle möglichen Funktionen $f(z)$. + +Zunächst kontrollieren wir, ob dies überhaupt ein Realteil sein kann, +indem wir nachrechnen, ob $u(x,y)$ harmonisch ist. +\begin{equation*} +\begin{aligned} +\frac{\partial u}{\partial x} +&= +3x^2-3y^2 +&&\Rightarrow& +\frac{\partial^2 u}{\partial x^2} +&= +6x +\\ +\frac{\partial u}{\partial y} +&= +-6xy +&&\Rightarrow& +\frac{\partial^2 u}{\partial y^2} +&= +-6x +\\ +&&&&\Delta u&=\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}=6x-6x=0, +\end{aligned} +\end{equation*} +$u$ ist also harmonisch. + +Um die Funktion $f$ zu finden, brauchen wir jetzt noch den Imaginärteil. +Wir finden ihn mit Hilfe der Cauchy-Riemann-Differentialgleichungen. +Es gilt +\begin{equation} +\begin{aligned} +\frac{\partial v}{\partial x} +&= +-\frac{\partial u}{\partial y}=6xy, +& +\frac{\partial v}{\partial y} +&= +\frac{\partial u}{\partial x}=3x^2-3y^2 +\end{aligned} +\label{komplex:crbeispiel} +\end{equation} +Aus der ersten Gleichung erhält man durch Integrieren nach $x$ +\[ +v(x,y)=-3x^2y + C(y), +\] +die Integrations-``Konstante'' ist eine Funktion, die aber nur von $y$ +abhängen darf. +Die zweite Cauchy-Riemann-Gleichung verwendet die Ableitung von $v$ nach $y$, +sie ist +\[ +\frac{\partial v}{\partial y}=3x^2+C'(y). +\] +Aus der zweiten Gleichung von \eqref{komplex:crbeispiel} liest man +ab, dass +\[ +C'(y)=-3y^2 +\qquad\Rightarrow\qquad +C(y)=-y^3+k +\] +sein muss. +Damit ist $v$ bis auf eine Konstante bestimmt. +Die zugehörige Funktion $f(z)$ ist daher +\[ +f(z)=f(x+iy)=x^3-3xy^2+i(3x^2y-y^3)+ik +=x^3 + 3x^2iy + 3x(iy)^2+(iy)^3+ik=z^3+ik. +\] +Wir haben die Funktion $f(z)$ bis auf eine Konstanten $ik$ +aus ihrem Realteil rekonstruiert. +\end{beispiel} +Die Cauchy-Riemann-Differentialgleichungen besagen auch, dass man nur +die Ableitungen nach $x$ zu berechnen braucht, um die Ableitung $f'(x)$ +zu bestimmen. +Die Rechenregeln für die Ableitung lassen sich daher direkt auf +komplexe Funktionen übertragen: +\begin{align*} +\frac{d}{dz}z^n +&= +nz^{n-1} +\\ +\frac{d}{dz}e^z +&= +e^z +\\ +\frac{d}{dz}f(g(z)) +&= +f'(g(z)) g'(z) +\\ +\frac{d}{dz}\bigl(f(z)g(z)\bigr) +&= +f'(z)g(z)+f(z)g'(z) +\end{align*} +Die Ableitungsformeln ändern also nicht, die formalen Ableitungsregeln +für holomorphe Funktionen sind die gleichen wie für reelle Funktionen. + + + -- cgit v1.2.1