From 70287f9b87cf4492e639ce2a191708c3265e75a3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 18:40:19 +0200 Subject: complete chapter 9 --- buch/chapters/080-funktionentheorie/holomorph.tex | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'buch/chapters/080-funktionentheorie/holomorph.tex') diff --git a/buch/chapters/080-funktionentheorie/holomorph.tex b/buch/chapters/080-funktionentheorie/holomorph.tex index c87b083..dfe2744 100644 --- a/buch/chapters/080-funktionentheorie/holomorph.tex +++ b/buch/chapters/080-funktionentheorie/holomorph.tex @@ -83,6 +83,7 @@ Der Term $x-x_0$ und die Gleichung \eqref{komplex:abldef} sind aber auch für komplexe Argument sinnvoll, wir definieren daher \begin{definition} +\label{buch:funktionentheorie:definition:differenzierbar} Die komplexe Funktion $f(z)$ heisst im Punkt $z_0$ komplex differenzierbar und hat die komplexe Ableitung $f'(z_0)\in\mathbb C$, wenn \index{komplex differenzierbar}% @@ -258,11 +259,11 @@ Der Operator \frac{\partial^2}{\partial y^2} \] heisst der {\em Laplace-Operator} in zwei Dimensionen. - \index{Laplace-Operator}% \end{definition} \begin{definition} +\label{buch:funktionentheorie:definition:harmonisch} Eine Funktion $h(x,y)$ von zwei Variablen heisst {\em harmonisch}, wenn sie die Gleichung \[ -- cgit v1.2.1 From 931871e8c8e9b266b9b626d816a803bbd2c56653 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 20:55:53 +0200 Subject: more index stuff --- buch/chapters/080-funktionentheorie/holomorph.tex | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) (limited to 'buch/chapters/080-funktionentheorie/holomorph.tex') diff --git a/buch/chapters/080-funktionentheorie/holomorph.tex b/buch/chapters/080-funktionentheorie/holomorph.tex index dfe2744..b2bacae 100644 --- a/buch/chapters/080-funktionentheorie/holomorph.tex +++ b/buch/chapters/080-funktionentheorie/holomorph.tex @@ -108,10 +108,10 @@ Differenzenquotienten finden: &= \frac{z^n-z_0^n}{z-z_0} = -\frac{(z-z_0)(z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z^{n-1})}{z-z_0} +\frac{(z-z_0)(z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z_0^{n-1})}{z-z_0} \\ &= -\underbrace{z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z^{n-1} +\underbrace{z^{n-1}+z^{n-2}z_0+z^{n-3}z_0^2+\dots+z_0^{n-1} }_{\displaystyle \text{$n$ Summanden}}. \end{align*} Lassen wir jetzt $z$ gegen $z_0$ gehen, wird die rechte Seite @@ -192,6 +192,7 @@ Dies ist nur möglich, wenn Real- und Imaginärteile übereinstimmen. Es folgt also \begin{satz} +\index{Satz!Cauchy-Riemann Differentialgleichungen}% \label{komplex:satz:cauchy-riemann} Real- und Imaginärteil $u(x,y)$ und $v(x,y)$ einer komplex differenzierbaren Funktion $f(z)$ mit $f(x+iy)=u(x,y)+iv(x,y)$ @@ -260,6 +261,7 @@ Der Operator \] heisst der {\em Laplace-Operator} in zwei Dimensionen. \index{Laplace-Operator}% +\index{Operator!Laplace-}% \end{definition} \begin{definition} -- cgit v1.2.1