From bd95a05c1c036bb4b8f24d6309922f18804255c9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 9 Dec 2021 16:59:08 +0100 Subject: Eigenwertproblem auf dem Rechteck --- buch/chapters/090-pde/rechteck.tex | 190 +++++++++++++++++++++++++++++++++++++ 1 file changed, 190 insertions(+) (limited to 'buch/chapters/090-pde/rechteck.tex') diff --git a/buch/chapters/090-pde/rechteck.tex b/buch/chapters/090-pde/rechteck.tex index 944fbf1..72e2806 100644 --- a/buch/chapters/090-pde/rechteck.tex +++ b/buch/chapters/090-pde/rechteck.tex @@ -5,3 +5,193 @@ % \section{Rechteckige Membran \label{buch:pde:section:rechteck}} +Als Beispiel für die Lösung des in +Abschnitt~\ref{buch:pde:subsection:eigenwertproblem} +aus der Wellengleichung abgeleiteten Eigenwertproblems +mit Hilfe von Separation betrachten wir ein rechteckiges Gebiet. + +\subsection{Differentialgleichung und Randbedingungen} +Wir betrachten das Gebiet +\[ +G += +(0,a) \times (0,b) += +\{ (x,y) \mid 0< x 0$ in den roten gilt +$U_{kl}(x,y)<0$. +die vertikalen und horizontalen schwarzen Linien sind Knotenlinien +der Eigenfunktion, ihre $x$-Koordinaten sind Vielfache von $a/k$, +die $y$-Koordinaten sind Vielfache von $b/l$. +\label{buch:pde:rechteck:fig:knoten}} +\end{figure} +Die Lösungen $U_{kl}(x,y)$ aus \eqref{buch:pde:rechteck:eqn:ukl} +sind Lösungen der ursprünglichen Differentialgleichung +$\Delta U=-\lambda^2 U$. +Durch Einsetzen lassen sich jetzt auch die Eigenwerte bestimmen: +\begin{align*} +\Delta U_{kl}(x,y) +&= +-\frac{k^2\pi^2}{a^2} \sin\frac{k\pi}{a}x\cdot \sin\frac{k\pi}{b}y +-\frac{l^2\pi^2}{b^2} \sin\frac{k\pi}{a}x\cdot \sin\frac{k\pi}{b}y += +-\biggl(\frac{k^2\pi^2}{a^2}+\frac{l^2\pi^2}{b^2}\biggr) U_{kl}(x,y) +\end{align*} +Die Eigenfrequenzen einer rechtecking schwingenden Membran sind also +\[ +\lambda += +\sqrt{ +\frac{k^2\pi^2}{a^2}+\frac{l^2\pi^2}{b^2} +}. +\] +Die Vorzeichen und die Knotenlinien der $U_{kl}(x,y)$ des +Eigenwertproblems ist in Abbildung~\ref{buch:pde:rechteck:fig:knoten} +dargestellt. -- cgit v1.2.1