From 09e2c20b0a41a36161547b2628366db1e048eaf8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 12 Oct 2021 07:44:15 +0200 Subject: add some info on elliptic functions --- buch/chapters/110-elliptisch/ellintegral.tex | 181 +++++++++++++++++++++++++++ 1 file changed, 181 insertions(+) create mode 100644 buch/chapters/110-elliptisch/ellintegral.tex (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex new file mode 100644 index 0000000..1e35616 --- /dev/null +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -0,0 +1,181 @@ +% +% ellintegral.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\section{Elliptische Integrale +\label{buch:elliptisch:section:integral}} +\rhead{Elliptisches Integral} +Bei der Berechnung des Ellipsenbogens in +Abschnitt~\ref{buch:geometrie:subsection:hyperbeln-und-ellipsen} +sind wir auf ein Integral gestossen, welches sich nicht in geschlossener +Form ausdrücken liess. +Um solche Integrale in den Griff zu bekommen, ist es nötig, sie als +neue spezielle Funktionen zu definieren. + +\subsection{Definition +\label{buch:elliptisch:subsection:definition}} +Ein elliptisches Integral ist ein Integral der Form +\begin{equation} +\int R\left( x, \sqrt{p(x)}\right)\,dx +\label{buch:elliptisch:def:allgemein} +\end{equation} +wobei $R(x,y)$ eine rationale Funktion von zwei Variablen ist und +$p(x)$ ein Polynom dritten oder vierten Grades. +Hätte $p(x)$ ein mehrfache Nullstelle $x_0$, müsste es durch $(x-x_0)^2$ +teilbar sein, man könnte also einen Faktor $(x-x_0)$ aus der +Wurzel im Integraneden von \eqref{buch:elliptisch:def:allgemein} +ausklammern und damit das Integral in eine Form bringen, wo $p(x)$ +höchstens zweiten Grades ist. +Solche Integrale lassen sich meistens mit trigonometrischen Substitutionen +berechnen. +Wir verlangen daher, dass $p(x)$ keine mehrfachen Nullstellen hat. + +Man kann zeigen, dass sich elliptische Integrale in Summen von +elementaren Funktionen und speziellen elliptischen Integralen +der folgenden Form überführen lassen. + +\begin{definition} +\label{buch:elliptisch:def:integrale123} +Die elliptischen Integrale erster, zweiter und dritter Art sind die +Integrale +\[ +\begin{aligned} +\text{1.~Art:}&&& +\int \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}} +\\ +\text{2.~Art:}&&& +\int \sqrt{\frac{1-k^2x^2}{1-x^2}}\,dx +\\ +\text{3.~Art:}&&& +\int \frac{dx}{(1-nx^2)\sqrt{(1-x^2)(1-k^2x^2)}} +\end{aligned} +\] +mit $0